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1. Resolutive compactification and harmonic measures. Let R be an open

Riemann surface. A compact Hausdorff space /?* containing R as its dense

subspace is called a compactification of R and the compact set Δ = R* - R is

called an ideal boundary of R. Hereafter we always assume that R does not

belong to the class Oo. Given a real-valued function / on Δ, we denote by

<f>f'E* (resp. ΨR'R*) the totality of lower bounded superharmonic (resp. upper

bounded subharmonic) functions s on R satisfying

lim inf sgj-^ s(p) >/(£*) (resp. lim supΛ3p-*p* s(p)<,f(p*))

for any point p* in Δ. If these two families are not empty, then

* s e f / ^ ) and Ef'E*(p) = sup (sip) s^ΨfRΊ

are harmonic functions on R and HfR*>HfR* on R. If these two functions

coincide with each other on R, then we denote by HR'R* this common function

and call f resolutive with respect to /?* (or J ) . We denote by C(Δ) the totality

of bounded real valued continuous functions on Δ. If any function in C(Δ) is

resolutive with respect to J, then following Constantinescu and Cornea [1] we

say that i?* is a resolutive compact iήc at ion of R. Important examples of resolu-

tive compactifications are Wiener's, Martin's Royden's, Kuramochi's and

Kerekjartό-Stoilow's compactifications (see [1]). Hereafter we always consider

the resolutive compactification R* of R.

Fix a point p in R. It is easy to see that f-*HψR\p) is a positive linear

functional on C(Δ) and so by Riesz-Markoff-Kakutani's theorem, there exists a

positive regular Borel measure μp on Δ such that
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Hf R'(p) = \f(p*)dμp(p*).

The measure μp is called the harmonic measure on A with the reference point

p. We shall investigate the interdependence between each members of the

family iμp; p^R) of harmonic measures.

2, Harnack's function. Let k be the Harnack's function on RxR, i.e. the

function k defined by

k{p, />') = inf (c>0; c~1u(p)<u(p')<tcu(p) for any u^HPiR)).

Then l<kip, p') < °° for any p and p' in # and limp^kip, p') = 1. In fact,

let Z7 be a relatively compact simply connected domain in R containing p and

pf, and ψ a 1 1 conformal mapping of U onto U I z \ < 1) with ψ{pf) =0. Then

by putting φ(p) = r^Jί

«(jp>) = (1/2 TΓ) f π ((l

for any M in HP(R) and so

Thus l<k(p, p')<(l-tr)/(l~r)<™ and if i>-^^;, then r-*0 and so

lim/,^^(^, p') = 1. Moreover it is easy to see that kip, p) = 1, kip, p') =

kip1, p) and fc(/>, p")<kip, p')k{p', p") for any p, p' and ^" in R.

3. Harmonic kernel. Let p and # belong to R. By the definition of kip, q),

we see that

(1) kip, qYιdμq<dμp<*kip, q)dμq.

Thus measures μpip^ R) are absolutely continuous with respect to each other

and so the μ/,-integrability and the /^-nullity do not depend on the special choice

of p in R. We denote by idμQ/dμp)(p*) the Radon-Nikodym density of μq with

respect to μp.

We fix a point o in R. Then we can easily see that the function p->

\ fip*)dμp(p*) is harmonic on R if / is /v integrable on Δ. The main assertion

in this note is the following

THEOREM. There exists a function Poip, p*) on Rx Δ such that

(a) Poip, p*) = (dμp/dμo)ip*) (μ0-almost everywhere) on Δ as the function
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of P* for any fixed p in R;

(b) P0(py p*) is harmonic on R as the function of p for any fixed p* in Δ;

(c) k(o, pYι<P0(p, p*)£k(o, p) for any (p, p*) in RxΔ;

(d) P0(p, i>*̂  is Borel measurable on RxΔ as the function of (p, p*).

Needless to say, such a function P0(p, p*) is not unique in the proper

sense, but unique in the following sense*, if PG(p, ί>+) is another function on

Rx Δ satisfying the above four conditions, then Po(p,p*) = Pdp, p*) #o-almost

everywhere on RxΔ. Here μ0 is the product measure μXμ0, where μ is a

measure on R which is equivalent to the Lebesgue measure in each parameter

neighborhood of R. Such a P0

{p, />*) may be called a harmonic kernel (or

Poisson type kernel) on i ? χ j with the reference point o. For any Borel func-

tion /, ^-integrable on J, we then have

Hf *Ίfi) = \ Po(p, P*)fip*)dμo(p*).

The harmonicity of the function p -* P0(p, p*) increases the usefulness of the

above integral representation.

4. Proof of Theorem. Let Pip, p*) be an arbitrary but fixed function on

RxΔ such that P(p, p*) = (dμp/dμo)(p*) (^o-almost everywhere) on Δ as the

function of p* for any fixed p in R. We may assume that P(o, p*) = 1 on Δ.

Since R is separable, there exists a countable dense subset D of R with o^D.

For any p and q in D, by (1), we see that

A (A q)~1(dμQ/dμo)(p*)<(dμp/dμo)(P*)<k(p, q)(dμQ/dμ0)(p*)

/ΛO-almost everywhere on Δ as the function of p*. Hence there exists a Borel

set E(p, q) in Δ such that

μo(E{p, g ) ) = 0

and

k(pt qΓΨ(q, p*)<P(P, p*)<k(p, q)P(q, p*)

for any p* in Δ — E(py q). Let

E= \Jp,eeDE(p, q).

Since D is countable, μo{E) = 0. Hence

kip. Q)"ιPiQ> P*)<P(P, P*)<k(p, q)P(q, p*)



74 MITSURU NAKAI

for any p and q in D and p* in Δ - E. In particular, since P(o, p*) = 1 on J,

(2) MA oΓ'^Pip, p*)<k(p, o)

for any p in D and p* in Δ~ E. Thus

(3) |P(i>, p*)-P(q, p*)\£k(p, o) maxikip, q)-l, l-k(p, q)'1)

for any )̂ and q in D and />* in J - E. We saw in Section 2 that

1<A(& q)<k(p, po)k(p, q0), l<k(p, o)<k(o, po) k(p, pQ)

and

\imDΞ)p^pok(p, po) = UmD^q^pokiq, pQ) = 1

for any pQ in i?. From these and (3), it follows that

limDΞ,p.^p.\P(β, p*)-P{q, p*)\ =0,

or equivalently that

lunD=ip-+ρΛP(P> P*)

exists for any po in R and if pQ belongs to Dy then

UmDΞBp^pQP(p, p*) = P ( ί o , p*).

Hence if we set

P(A P*) =l iniD3^^P(^, i>*)

in Rx (Δ — E), then the function p-*P(p, p*) is continuous on i? for fixed p*

in Δ •-E. For arbitrary point ^ in R, take a sequence (pn)n=i of points in Z)

with pn~*p. Then for any function / in C(Δ), by using (2), the definition of

, p*) and Lebesgue's convergence theorem,

?(pn, P*)AP*)dμo(P*)
A-E

n9 P*)f(p*) dμo(p*)

= f P(p.P*)AP*)dμo(p").

This shows that dμpifi*) - P(^, p*)dμo(p*). Hence P(£, />*) = (dμP/dμ0) (p*)
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everwhere.

Let φ be an analytic mapping of the open unit disc (z; U | < 1 ) onto R.

Now we prove that the function p-+P{p,p*) is harmonic on R for almost every

fixed p* in A. For the aim, we have only to show that the function z-*P(φ(z), p*)

is harmonic on (z; \z\<l) for almost every fixed p* in A, since p->P(p, p*)

is continuous on R for any fixed p* in A—E. Since p*-*P(φ(z), p*) is

Borel measurable on A for any fixed z in (2; | z | < l ) and z->P{φ(z), p*) is

continuous on R for any fixed p* in J - E, it is easy to see that the function

(2, p*)-+P{φ(z)f ./>*) is Borel measurable on i ? x l

Let (2n)n=i be a countable dense subset of (2; | 2 | < 1 ) . Fix an arbitrary

positive integer n and choose a countable dense subset (rm)m=i of the open

interval (0, 1 - \zn\). Then for a n y / in C U ) , since ( P(0(z), p*)f(p*)dμo(p*)

is harmonic in 2 of (2; U | < 1 ) , by Fubini's theorem,

f P(φ(zn), P*)f(p*)dμo(p*) = - ^ Π f K ^ U + V !'9), p*)f(p*)dμo(p*) \dθ

Hence there exists a set Fn,m in Δ with μo{Fn,m) = 0 such that for any >̂* in

Δ-Fn,m it holds that

(4) P(φ(zn), p*) = -^(Mφizn+rm^), P*)dθ.

Let Fn = EΌ( Um-iFΛfWf). Then /ιo(F») = 0 and the identity (4) holds for any

m = 1, 2, . . . and £* in J - FΛ . By the continuity of P{φ(z)f p*) in 2 for any

fixed p* in J - £, we conclude that

(5) P(φ(zn), ί * ) = -o PiφiZn + rέΊ, p*)dθ

for any r in 0 < r < l - \zn\ and ί* in J ~ F W . Finally let F = U»-iF«. Then

μo(F) =0 and (5) holds for any w = 1, 2, . . . and any r in §<r<l-\zn\ and

any ^* in J - F. By the continuity of P(φ(z), p*) in 2 for any fixed p* in

J - E 1 , we conclude that

P(φ(z) p*) = * P(φ(z + retQ), p*)dθ
Δ π JQ

for any 2 in the unit disc and r in 0 < r < l - U I and p* in A - F, which shows
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that z-*P{φ{z), p*) is harmonic in (z; ]z\<l) for any fixed p* in Δ-F.

Thus the function p-^ Pip, p*) is harmonic on R for any fixed p* in J — F

with μo(F) = 0 . Let

, # x ί PiP, fi*), for (A p*) in Λx (J - F)
Po(p, P ) =

1 1, for (^, p*) in i ?xF.

Then for any fixed p in i?, P0(p, p*) = P(p, p*) = (dμβ/dju0) (j>*) (^-almost

everywhere) on i . Thus (α) is satisfied by P0{p, P*) thus constructed. It is

also clear that PO(P, p*) satisfies (b). The condition (c) follows immediately

from {b), the definition of k(o, p) and the fact that Poio, j>*) s 1 for any ί>* in

J (see (2)). The last condition {d) is an easy consequence of (a) and {b).
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