
ON THE FUNDAMENTAL EXISTENCE
THEOREM OF KISHI

MITSURU NAKAI

1. Notation and terminology. Let Ω be a locally compact Hausdorff space

and G{x, y) be a strictly positive lower semicontinuous function on the product

space ΩxΩ of Ω. Such a function G(x, y) is called a kernel on Ω. The

adjoint kernel 6(x, y) of G(x, y) is defined by <5(x, y) = G(jy, x). Whenever

we say a measure on Ω, we mean a positive regular Borel measure on Ω. The

potential Gμ(#) and the adjoint potential Gμ(x) of a measure μ relative to the

kernel G(x, y) is defined by

Gμ(x) = fax, y)dμ(y) and Gμ(x) =

respectively. These are also strictly positive lower semicontinuous functions on

Ω provided μ =*F 0.

We say that a kernel G(x, y) on Ω satisfies the continuity principle when,

for any measure μ with compact support Sμ, the finite continuity of the restric-

tion of Gμ(x) to Sμ implies the global finite continuity of Gμ(x) on Ω.

A property is said to hold G-p.p.p. on a subset X in Ω, when the property

holds on X except a set E which does not contain any compact support Sv of

a measure v*0 with finite G-energy \GΛx)dv(x). Notice that \GΛx)dv(x) =

x). Hence the notion G-p.p.p. is equivalent to that of G-p.p.p.

2. Result. M. Kishi [4] [5H proved the following important existence

theorem in the potential theory with non-symmetric kernel -

Assume that the adjoint kernel G(xt y) of G(x, y) satisfies the continuity

principle. Given a non-empty separable compact subset K of Ω and a strictly

positive finite upper semicontinuous function u(x) on K. Then there exists a

measure μ with support Sμ in K such that
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G-p.p.p. on K and

Gμ(*) (

everywhere on Sμ.

In contrast with the symmetric case and also in the view point of the

application, it is desirable to avoid the separability condition in Kishi's theorem

on the given compact set K and the aim of this note is to do this. Namely,

we shall prove

THEOREM: Assume that the adjoint kernel G(x, y) satisfies the continuity

principle. Given an arbitrary non-empty compact subset K of Ω and a strictly

positive finite upper semicontinuous function u{x) on K. Then there exists a

measure μ with compact support Sμ in K such that

Gμ.(x)>u(x)

G-p.p.p. on K and

Gμ(x) < u(x)

everywhere on Sμ.

To prove this theorem, we may assume without loss of generality that

u(x) = 1 identically on K.

In fact, consider the function G'(x, y) on KxK defined by

Clearly G'(x, y) is again a kernel on K. Moreover, the adjoint kernel Gf(x,y)

satisfies the continuity principle on K along with G(xy y). To see this, assume

that Gfμ(x) is finitely continuous on the support Sμ (cϋf) of a measure μ.

Then

y, x)/u(y))dμ(y)>(infKχκG(z,

Taking x in Sμ and noticing that infKχκG(z, z')>0, we see that the -function

l/u(y) is ^-integrable on K. Hence the set function

v(X) = [ (l/u(y))dμ(y)
Jx
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is again a positive regular Borel measure on K and S»-Sμ. and O'μ(x) =G\(#)

on K and so OΛx) is finitely continuous on Sv. Thus by the continuity

principle assumed for G(x, y)t GΛx) is finitely continuous on Ω and a fortiori

on K. Hence G'μ(x) is finitely continuous on K.

If we get the theorem concerning this new kernel Gf(x, y) and the constant

function 1, then we get the theorem concerning G(x, y) and u(x). Hence

hereafter we always assume that u(x) = 1 identically on K.

3. Fundamental lemma of Kishi. The method of our proof is an un-

countable version of the interesting method of Kishi [4], [5]. The starting

point and also the key of Kishi's method is the following lemma of algebraic

character which we shall give an alternating proof using the finite points

version of Gauss-Frostman-Ninomiya's variation:

LEMMA 1 (Kishi [5], Theorem 1.3). Given strictly positive numbers aui

(k, i = 1, 2, . . . , n). Then there exists a system tίf U, . . . ,t» of non-negative

numbers such that

for all k = 1, 2, . . . , n and

for all j such that tj # 0.

For the proof, we shall use the following theorem (see Kakutani [3] or

Nikaido [7]):

Kakutani's fixed point theorem: Let X be a compact convex set in the

euclidean n space Rn and f be a closed "point to set" mapping of X in X such

that the set fix) is a non-empty convex set in Xfor any point x in X. Then

there exists a point x in X such that x belongs to fix).

In our case, we take X as follows *•

χ=(x = (Xlt . . . ,#„)€=£*; Σ?=i#, = l, #, > 0 (ι = l,2, n)).

Then the set X is a compact convex set in Rn. We also denote by X the

totality of non-empty convex subset of X. We consider the bilinear form
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where x = (xlt . . . , χn) and y= (yh . . . yyn) are in Rn. Clearly lxy y] is

continuous on Rn x Rn and lx, xl > 0. We set, for each x in X,

f(x) = (y e X; infβezDz, *] = [ y, #]).

Clearly /(#) belongs to X Hence / defines a mapping of X into X. Moreover

/ is a closed mapping, i.e. for any sequences (*v) in X and (jyv) in X such

that jyv e f(x") and limvΛΓv = ΛΓ and limv;y
v =y, we get y e / (^) . In fact, for any

2 in Z, we have

Hence by making z;/*00,

[2, ΛΓ] > Zy, x\

for any 2 in X, which shows that infZE=κ[z, d = C ,̂ *3 and so by the definition

of f(x), we obtain ye fix).

Thus we may use Kakutani's fixed point theorem for our X and /. So

there exists a point Λ i n Z such that * e / ( # ) , or equivalently

[2, xl > CΛΓ, #] for any 2 in X

Now let

t = (ίi, . . . , ί«) = Ui/O, ΛΓ], . . . , Xn/ίx, Xl).

Then

fe ί ] > l for any 2 in I

and

U ί] = 1.

Let zk be the point in X whose &-th coordinate is 1 (& = 1,2, . . . , n). Then

we get, for all k = 1, 2, . . . , n,

These relations with

ΣLM *]** = [*, fl = i
give

ΣΓ-iβ/i fe = 1 for all j with tj * 0.

If this is not the case, there exists a j with tj^O such that [y, f] = *Σ?=iajiti> 1.

Then ΛΓ> = [ΛΓ, AΓ]/>#0 and
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, tlxj

which is clearly a contradiction. Q.E.D.

4. The case where G(χ, y) is finitely continuous. Although we cannot

always choose a countable dense subset of K in general, we can always con-

struct a sort of countable dense subset of K relative to the kernel G(xf y).

For the aim, let

d(y,y') = supzeκ\G(yf z)-G(y', z)\.

This d(y, y1) defines a pseudo-metric on K Concerning this, we have

LEMMA 2. For any x in K and for any positive number e, there exists a

neighborhood U of x in K such that d(x, x'Xe for any x' in U.

Proof By the finite continuity of G(x, y) on K> for each point z in K,

there exist open neighborhoods Uz of x and Vz of z in K such that

IGU, * ) - G ( * ' , z')\<ε/2

for any (#', zf) in UzxVz. Since ϋf is compact, (Vz)z(=κ contains a finite

subcovering (FZi)?=i °f ^ Let U= Γ\?=iUZi. Suppose that x1 and 2 are

arbitrary points in U and K respectively. Then there exists a neighborhood

VZi such that z belongs to VZi. Since (x'f z) belongs to UZtx VZiy

IGU, z)-G(x?t z)\ < IGU « ) - G U «, ) I + | G U 2i)-G(^, «)|<e.

Thus d(x, xf)<ε for any x' in ί/. Q.E.D.

LEMMA 3. There exist a sequence {xn)n~\ of points in K and a strictly

increasing sequence (v(m))m=i of positive integers and a family (Um(xk) l<k

<v(m)) of open sets in K such that Xk belongs to Um(xk) and UV™* Um(Xk) = K

and Um(xk)^Um+i(xk) (^ = 1, 2, . . . , v(m)) and

d(x, Xk)<l/2m for any x in Um(xk) (l<k<v(m)).

Proof. We construct such a system by induction on m. Firstly, for each

point z in K, Lemma 2 assures the existence of an open neighborhood Vi(z)

of z in K such that d(x, z) <l/2 for each point x in VΊ(z). By the compact-

ness of K we can choose a finite subcovering (Vi(zi))?ii of K of the covering

( VX(Z))ZGK. We set *(1) = nι and xk = zk and Ux{xk) = Vx{zk) (k = 1, 2, . . . ,
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Assume that the system is constructed for m = 1, 2, . . . , s — 1. By Lemma

1, for each point z in if, there exists an open neighborhood Vs(z) of z in K

such that d(x, z)<l/2s for any x in Vs(z). By the compactness of K, we

can choose a finite subcovering (Vs(zi))i*i of K of the covering (Vs(z))z^κ.

We set v(s) - v{s — l) +ns and #v(β-u+& = 2* (& = 1, 2, . . . , ws) and we also put

Us{xk) = Vs(xk) Π Us-ι(xk) (# = 1,2, . . . , p ( s —1)) and F s (^) (# = ẑ (s — 1) + 1,

*(s - 1) + 2 . . . , p(s - 1) + ws). This completes the induction. Q.E.D.

Let M(K) be the totality of all positive regular Borel measures on K. The

vague topology in M(K) is the topology defined by the total family of semi-

norms μ-> I \f(x) dμ{x) I, where / runs over all elements in the Banach space of

all finitely continuous functions on K. A subset F of M(K) is said to be

bounded if s\xp(μ(K); μ<^F)<°°. Combining Tychonoff-Kakutani theorem

(see Loomis [6], Theorem 9 B, p. 22) with the representation theorem of Riesz-

Markoff-Kakutani (see Halmos [2], Theorem D, p. 247), we see that

LEMMA 4. The vague-closure of a bounded set in M(K) is vaguely compact.

Using these lemmas, we shall prove the theorem under the assumption that

the kernel G(x, y) is finitely continuous on Kx K. Let Km = (xu XZ, . . . , Xv(m)),

where (Xk)k=i is as in Lemma 3. By Lemma 1, there exists a positive measure

μm with support Sμm in Km such that

\jG(x,y)dμm(y)>:l

on Km and

^GU, y)dμm(y) < 1

on Sμ,w. Let a = mmEχκG(x, y). Then a >0 and for a point x in Sμm, a\dμ?n(x)

< Gμ.m{x) < 1. Hence μm(K) < I/a (m = 1, 2, . . . ) . Let Fn^(μml m> n) and

Ύn be the vague-closure of Fn in M{K). Since (FnWi has the finite intersec-

tion property, by Lemma 4,

Fix a μ in Π«=i F r t . Let A = U) be the totality of open neighborhoods λ of μ in

M(iD and A = (U, m) >t e Λ, m = 1, 2, . , . ) . For each α = (λ, m) and Λ' =

(λ\ mf) in A, we define a>af if λc:λ' and m>m'. By this ordering, A becomes

a directed set. For each a= Q, m) in A, we choose a measure μΛ such that

μa^λΠ Fm. If μa = μ«, then we fix such a μn in λ Π F m for ^ and set M =

^. Since la} > w, we see that
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\\vcίaβa = μ (vaguely) and limα M = °°.

Let x be an arbitrary point.in K. Since \Jk(=ί])U^(xk) = K, x belongs to a

Uw(xk) (l<k<v(ίal)). Then by the definition of (Jw(xk), d(x, Xk) <1/2[Λ] and so

G(x,y)+ l/2lal> G(xk,y)

for any y in K. Hence by using the fact that Xk^K\μ\>

Gμa(x) + /Jta(K)/2ίal>Gv.a(xk) > 1.

Hence

Gμ(*) =* limβ (Gμα(*) + ̂ ( iT)/2W)> 1.

Next, suppose that x be an arbitrary point in Sμ. For any fixed positive

integer mf we can find a Um(xk) such that χ(=Um(xk) (l<k<v(m)). We

assert that there exists an a0 in A such that [α0] > ^ and

for any a in A with ^ > Λ0. In fact, let / be a finitely continuous function on

7T such that fix) = 1 and / = 0 outside Um{xk). Then

0 < \f{y) dμ(y) = li

From this our assertion follows. Hence we can find a point xa in Sμa ΠUm(xk).

Then since d(x, Xk)<l/2m and d(xa, Xk)<l/2m,

G(x, y)<G(xk, y) + l/2tn<(G(xa, y)+ 1/2m)+ 1/2ni

for any y in K. Hence Gμα(#) < Gμα(jfe) -f μa(K)/m < 1 + l/α:m and so

Thus by making mfr°°, we get Gμ(#) < 1 . Q.E.D.

5. General case. We shall prove the theorem without any additional

assumption. Let (S be the totality of finitely continuous functions g(x,y) on

KxK dominated by G(x,y) and dominating the constant a -minKχκG(x,y)>0.

The set © becomes a directed set with the usual function ordering and by

considering © as a directed sequence,

y) = G(x, y)

on KxK, By the preceding proof in §4, there exists a measure μg with sup-
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port Sμg in K such that

on K and

on Sμy. Let # be in Sμg, then αr\<i^(^) <Gμ,(x) < 1 and so μg(K)<l/a. Let

F# = (μg>)($3g'>g and F^ be the vague-closure of F# in M(K). Since (F^)^e©

has the finite intersection property, by Lemma 4, there exists a measure μ in

the set Π^^gTg. Let Λ = (A) be the totality of vague-neighborhoods λ of μ

and A = (U, #) λ e Λ, # e ®). For any a = (A, g) and Λ' = U', g1) in A, we

define a>af if Ac:A' and # > # ' . By this ordering, A is a directed set. For

each a- (λy g) in A, we choose a measure μa such that μa^λf) Fg and if μα

= /j£/, then we fix such a ^ in λΠ Fg for μβ and set ίal =g*. Since gf>g, it

is clear that

limα£to = μ (vaguely) and lim aM(#, y) =G(xyy) on KxK.

We first show that Gμ(x)>l G-p.p.p. on K. Contrary to the assertion,

assume that there exists a measure z^O with support Sv in K such that

}GΛx)dv(x) = \tGΛx)dv{x) < °° and Gμ{χ)<l on Sv. By Lusin's theorem (see

Halmos [2], p.p. 242-243), since \Gμ(x)du(x) < \dv{x) < «>, there exists a com-

pact subset Kι of Sv with positive ^-measure such that Gμ(x) and G*(x) are

finitely continuous on Ki. Hence Gμ(x) - 1 is continuous on Kι and so

p =

Let in be defined by vι(X) =v(XΠKι). Then ^ belongs to M(K) and the

lower semicontinuous function GVl(#) is equal to the finitely upper semiconti-

nuous function GΛx) — G^-^Sχ^ o n SVl. Hence G^ix) is finitely continuous

on SVl. So by the continuity principle assumed for the kernel G(#, y), G^^x)

is finitely continuous on Ω and so on K. Thus

or
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On the other hand, J(Gμ(#) -l)dvi{x)<\pdvi(x) =pvi{K)<0, which is a con-

tradiction.

Finally we show that Gμ(x) < 1 on Sμ. For the aim, let x be an arbitrary

point in Sμ and T= (r) be the totality of neighborhoods τ of x. We set B = ((r,

λ, g) Γ G T , 1 G J , ^ G S ) and for any ά = (r, λ, g) and £' = (r', λ'f #0 in 5,

we define b>b* if : C : ' , Acλ' and #>£"'. Then B is a directed set. As in

§ 4, we can find an a<> in A such that

Sμ α Πr#0 for any a in A with α>

Hence for any &= (r, #) = (r, A, g) in £, we can find a point ^ in SμaPι τ for

some a' with af > Λ. We set [#] = α' and <&> = τ. Then we see that

= A< (vaguely) and lim^CM] (ΛΓ, ^) = G(x, y) on KxK

and

Hence for any fixed g1 in ©, we get

Let ε be an arbitrary positive number. Since gr(x, y) is continuous on Kx K,

we can find, for any y in K> neighborhoods τy in T and Vy of jy such that

\gf(xf, y ) -gΊx, y) I <e for any U', y') in τy x Fy. Since K is compact, there

exists a finite subcovering (V^.)?^ of K of (F^es: . Let τo= Π/-iryt , which

is in T. Then for any (Λ;f, y) in r0 x iΓ, \g'(x', y) -gf{x, y)\ <e. Clearly there

exists a δ0 in β such that for any b>bo, <Z>>Cro or #$ero. Hence for any

Thus we have lim supbgμb(xb) >g'μ(x) ~ ε^(iΓ) and as e is arbitrary,

lim sup^ίft(^)>5μ(Ar).

Thus we obtain l>g'μ(x). By a Fatou type theorem (see Breiot Q], p. 7);

tf, y)dμ(y) = Jsup^e^^ίΛ;, y)dμ(y)

Gμ(Λ). Q.E.D.
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