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1. Introduction

E. S. Barnes and I recentlyυ constructed a series of positive quadratic

forms fm in N = 2n variables (n = 1, 2, , . . ) with relative minima of order N 2

for large N. I continue this investigation by determining the minimal vectors

of fN and showing that, for N^ 8, its group of automorphs is the Clifford group2)

y ) ( § 3 ) . This suggests a generalization. Replacing ^^t\2n) by
n)t where p is an odd prime, I derive a new series of positive forms in

j.

N~{p— ί)pn variables (§4). The relative minima are again of order N 2 (p

fixed, N~> oo), the "best" forms being those for p = 3,5. All forms are eutactic

though only those for p = 3,5 are extreme.

The methods used here raise several questions. Firstly, the forms con-

structed have fairly big relative minima while the representations of the sym-

plectic group Sp{2n, p) associated with "€J7(pn\ are of smallest possible degree

(CGI, theorem 10). Are these two facts directly related? Secondly, it is natural

to regard the lattice introduced in § 4.2 as a commutative algebra. Is there a

simple direct relation between this algebra and the automorph group c(o<^r(pn)?

2. Preliminaries

The notation used in this paper is a compromise between that of EF and

that of CGI, CGΠ. See in particular § 2.1-2.3 below.

2.1. Vector spaces and groups over GF(p).

Throughout this paper, p stands for a fixed prime and n for a fixed natural

Received Nov. 22, 1961.
χ) Cf. [1]. This paper is referred to as EF.
2> Cf. [2], [3]. These papers are referred to as CGI, CGII.
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number. F = Vn(p) denotes the vector space of all row vectors a- iau

an) over the Galois field GF(p). Vr stands generically for an r-dimensional

subspace of V, Cr for a coset o + F r .

It is easily proved that each function /(a) defined on V and with values

in GF(p) coincides in value with a unique polynomial P(ai, . . . , an) of degree

<p in each α/. Such polynomials will be called standard. The degree of / is

defined as the total degree of P.

n

Let p = 2. Consider the 2 w-dimensional quadratic form <ρ(λ)= *Σλiλn+i over
1

GF(2), where X is the row vector U, ) (* = 1, . . . , 2n). The (2 crowed)

matrices3) T which leave φ(λ) invariant, i.e., ψ(λ) =φ(λV)) form the orthogonal

group Oι(2n, 2). Let

(P Q\
T = ( ) (P, Q, R, S nxn matrices)

(2.1.1) Vi? SJ

dτ = rank R.

The T such that di is even form the rotation subgroup Oΐ(2n, 2).

Let p>2. Consider the 2 ̂ -dimensional alternate bilinear form

n

f(λ, μ) = 'ΣiλiMn+i — μiλfH-i)
1

over GF(p). The matrices T which leave f(λ, μ) invariant, i.e., fiλ, μ)

= f(λV, μΓ) form the symplectic group Sp{2n, p). The notation (2.1.1) will

also be used for the elements of Sp.

2.2. Vector spaces and groups over the cyclotomic field P.

Let RQ denote the rational field, P the p-th cyclotomic field: P=Ro(ω),

where ω - exp(2 πi/p). Then E = Epn denotes a ^-dimensional vector space

over P. We choose a fixed basis of E, indexing its pn members eα with the pn

elements a of V. We use the notations

X = (Xa) =

for the elements of E.

The scalar product on E is defined by

3> The transpose of a matrix T in denoted by T\
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(X*) (ya) = Σj^βJ'α.

The terms unitary (p>2)t orthogonal (p = 2) are interpreted accordingly.

Let p = 2. The Clifford transform group "€SX{2 n)4) is a group of orthogonal

transformations on E. There exists a homomorphism of cto^rt{2n) onto

Oΐ(2n, 2) such that each original of TeίOΐ has the formδ)

(2.2.1) -Ye.=2~τ* a i Σ(- l ) / ( ' ) e*,
5€=C

where C is a coset of dimension dτ> f a function of degree < 2. For each

function g(a) of degree < 2, non-singular nxn matrix D over GF(2) and vector

t e F, the linear transformation6'

(2.2.2) yeα = (-D^ ( β ) eαD + t

belongs to < i O 7 .

Let p>2. The Clifford transform group CT(pn) was defined in CGI §3.1.

We define ΉJT(pn) as the commutator group of CT(pn) when pn>3, as the

group (Y, Z}tf& in CGI Appendix, section (4), when pn = 3. tf^(p") is a

group of unitary transformations on £ There exists a homomorphism of
n) onto S?(2w, i>) such that each original of TtΞSp has the form75

(2.2.3) Ze β = ± β " * Σ < / ( Λ β ^

where C is a coset of dimension dTi f a function of degree < 2 and

(2.2.4) ί=Σ/

For each function ^(α) of degree <2, non-singular nxn matrix D oγer GF(p)

and vector t e V, the linear transformation^

(2.2.5) Yea = ω8ίa)eaD+t

belongs to

4> Defined in CGII §3.3., for » > 3 only, as the commutator group of CT(2n). A
universal definition is that Ίo^xk^) consists of the elements in CGII (δ. 10) correspond-
ing to the elements T of Of{2n, 2).

5> See CGII (510) and (5.5).
6> These are the elements in CGII (5.10) corresponding to dτ = 0.
7> See CGI (3.1.1) and (4.1.6).
8> These are the elements of %7J? corresponding to the T with dj =0.
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2.3. Lattices. Let Ω denote the ring of all integers in P. We define an Ω-

lattice as the set of all integral linear combinations

ΣίαUα (ξa^Ω)

of pn linearly independent vectors ua. In particular, Γ^Γpn denotes the Ω-

lattice of all integral vectors

If Au A2 are ,0-lattices and ΛiCΛ2, the grouptheoretical index |Λ2:Λi| is

finite. In particular, if λ( 3FO) e Ω, we have

where N(λ) is the norm of λ in P relative to Ro. For, if x, y e Γ then x = y

(mod λΓ) if, and only if, xa = v« (mod A) for each a G V.

Let /I be an β-lattice such that λΓ^ΛaΓ, where A(^0)ei2. We define

the dual Λ' of A modulo λ as follows: A1 is the set o f x e E such that x y e ^

for all ye/1. Since λΓczAaΓ, we have ΪΓCZΛ'CIΓ. The argument of EF §2

shows that Λ' is an ^-lattice, that A is the dual of A' modulo J and that

(2.3.1) \

It is a well known theorem that every finitely generated module over a

principal ideal ring has a basis. The following variant is proved in exactly the

same way.

LEMMA 2.3.1. Let λ( ̂  0) e Ω and suppose that every divisor of the principal

ideal with generator λ is principal. Then every Ω-module M such that ϋ Γ c M c Γ

is an ΩΊattice.

2.4. Criteria for quadratic functions on Vn(2).

In the present section, p = 2 and f(a) is a function defined on V with values

in GF{2). If PFc F, we write

(2.4.1) <FF;/>= Σ ( - D / ( β > .

As stated in §2.1., / has a unique expression in the form

(2.4.2) / U )

where summation is over the subsets (including the empty set) of 1, 2, . . . , n.
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We note that, since a2 = a on GF(2), the degree of ftά) is <2 if, and only if,

the function g(a) =/(α) +/(0) is a quadratic form.

LEMMA 2.4.1. The degree of f(a) is <2 if and only if,f(a) has an even

number of zeros in every F3 c V.

Proof The following conditions for a scalar-valued function h(u) on a

vector space to be a quadratic form are well known:

(i) the function k(u9 v) = ft(u + v) ~~ h{n) — h(y) is bilinear, and

(ii) ftUu)=λ2ft(u).

It follows that h is a quadratic form if, and only if, its restriction to every

subspace of dimension < 3 is a quadratic form. It is therefore sufficient to

prove our lemma for n<3. For n<2> the lemma is obvious from (2.4.2).

For # = 3, it follows from the formula Σ / ( α ) =tfu,2,3).

COROLLARY. The degree off(a) is <2 if and only if

(2.4.3) <F3; />Ξ=0 (mod 4)/or every F 3 c V.

We suppose from now on that the degree of/(α) is <2. Let q(a) ~f(a)

-f/(θ) be the corresponding quadratic form. The polar form of q is the

bilinear form

Since Q is alternate (Q(α, a) =0) its rank is even, say 2d. We call d the

reduced rank of /.

LEMMA 2.4.2. Suppose that ft a) has degree <2, reduced rank <D. Then,

for each ^ c F ( 0 < ^ « ) ,

(2.4.4) <VA;/>SO (mod 2'),

max ([~

Proof Let J be the reduced rank of /. Then q{a) =/(α) +/(0) is equiva-

lent lω to one of

9 ) [r] = integral part of r.
10> See e.g., Dieudonne [6].
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The number of zeros of q(a) is accordingly

and so < V /> = e 2n~d. Therefore

<V; / > Ξ 0 (mod 2n"d)

and, since d < -<yn,

= 0 (mod

Applying the last two congruences to the restriction / of / to Vu and noting

that the reduced rank of / cannot exceed that of / we get the lemma.

LEMMA 2.4.3. Suppose that f(a) has degree <2, reduced rank d. Let D

be an integer such that 0 < D < -K- n. If

(2 4.5) <F >

2 J D + 2 ; / > Ξ 0 (mod 2D+2) for every V2D+2^ V,

then d<D.

In fact, if d were > D, the restriction of q(a) to a suitable V2D+2 would be
D+l

equivalent to S^αfB+i+t; but then KVzn+tl />= ±2 D + 1 , contrary to (2.4.5).

We shall later have to consider functions h(a) defined on a coset a-h Vk

rather than the whole of V. The degree and reduced rank of h are defined

to be those of the function l(β) = hia + β), whose domain of definition is the

subspace Vk.

3. Lattices of dimension 2"

We suppose throughout this section that p = 2. The minimal vectors of the

lattices ΛU) are determined in §3.1, the automorphs of the "principal" lattices

Λa\ Λi2) in §3.2.

We recall the definition of Λ(λ) (EF §3). (λ) = (λQi . . . , λn) is a set of

integral indices satisfying

(3.0.1) Jo = 0, λr - 1 < Jr-i < Ar for 1 < r < n,

and Λ(λ) is the lattice formed by all integral linear combinations of the vectors

where Cr runs over all cosets in V.
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If wc V and/lα) is a function defined on W with values in GF(2), we

write

(3.0.2)* ZW;fl = Σ ( - D / ( β ) e « .

3.1. Minimal vectors of Λ(λ). Let x be a minimal vector of Λ = Λ(λ). By

theorem 3.2. of EF,

(3.1.1) x2 =* 2m, wftere m = min (» - r + 2 Ar),

and x

(3.1.2)

u;/iere i? satisfies

(3.1.3)

αwύ? if is a subset of V with 2n"R elements.

We now complete this partial characterization by giving the conditions that a

vector of the form (3.1.2) belong to A.

THEOREM 3.1. Let R be an integer satisfying (3.1.3), W a subset of V

with 2n~B etementSy f{a) a function defined on W with values in GF{2). Let

d be the largest integer such that

(3.1.4) JB+* = A a +[y(*+l)] for 0<k<2d.

Then the vector 2λBίW; / ] e A(λ) if, and only if,

(i) W is a coset Cn-R, and

(ii) f(a) has degree <2, reduced rank <d.

Proof. Lemma 3.3 of EF can be sharpened by adding the following condi-

tions for equality:

If precisely 2n's coordinates xa are odd, the corresponding a form a coset

Cn-s

The proof is straightforward and is omitted. This sharper form of the lemma

shows that (i) is a necessary condition.

We may now suppose that W is a coset, or even a sύbspace Vn-Rt because
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the results for cosets can easily be deduced by translation of coordinates. Now,

each Vk<^ Vn-R is the meet of Vn-R with some Vk+n<^ V but not the meet of

Vn-B with any FA>+B+M., U>0. Therefore, by theorem 3.1 of EF, the vector

x = 2 λ i W ; fl<=Λ if, and only if,

(3.1.5) <Vk\ / > s θ (mod 2μ*) for every F*cVrt-*,

where μk = λR+k - λR. We remark that, by (3.1.4),

(3.1.6) /I* = [ - | - ( * + 1 ) ] for 0<k<2df

and that, by (3.0.1) and (3.1.1),

(3.1.7) μ*d+2 = d+2 i/2d+2<n~R,

(3.1.8) [~-(k+l)]<μk<k-d for 2d<k<n-R.

Suppose now that x ε l By (3.1.5), (3.1.6) and (3.1.8),

< F 3 ; / > Ξ 0 (mod 4) for every F 3 c Vn-R,

so that, by the corollary to lemma 2.4.1, the degree o f/< 2. Again, by (3.1.5)

and (3.1.7),

<VW; /> = 0 (mod 2d+2) for every V2d+2c yn_B,

so that, by lemma 2.4.3, the reduced rank of / < d.

Conversely, suppose that / has degree < 2, reduced rank < d. If k < 2 d,

(3.1.5) holds by lemma 2.4.2 and (3.1.6). If k>2d, (3.1.5) holds by lemma

2.4.2 and (3.1.8). Hence x e l This proves our theorem.

A straightforward enumeration of the quadratic functions of given reduced

rank yields the total number of minimal vectors of rank R stated in (5.10) of

EF.

3.2. Automorphs of the principal lattices. The first and second principal lattices

Λn\ Λ{2λ of dimension N=2n are the Λ{λ) given by

(3.2.1) ; r = Γ-l rl and 1-^(^+1)1 (0<r<n)

respectively. They occupy a special position in that their (common) relative

minimum {-n-Nj * exceeds that of any other Λ(λ) of dimension iV.
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The fact that Λ(1), Λ{2) are dual modulo 2n implies that they have the same

group of automorphs. Suppose e.g. that X is an automorph of A{1). If x e Λa\

y e Λ{2\ then

x . Xy = χ ' ι

x . y s 0 (mod 2W).

Since this holds for all x ε i ( 1 ) , Xy<=Λ(2). Since Xy<==Λ{2) whenever y e / ' ,

X is an automorph of Λ{2). The common group of automorphs is denoted by

21.

By §3.1, the minimal vectors of Λ(1) {n odd), Λ(2) (n even) are

(3.2.2) 2 ^ n > s [ C 2 s ; / ] ,

where C2 S runs over all even-dimensional cosets in F, / over all functions of

degree < 2 on C 2 S ; and those of Λ{1) (n even), Λ{2) (n odd) are

(3.2.3) 2 θ + 1 > > ΐ C , . t l ; / L

where C2s+i runs over all odd-dimensional cosets in V, f over all functions of

degree < 2 on Czs+i

THEOREM 3.2. // n * 3, 3ί = ^ ^ ί (2W). // n = 3, % ^[34'2'x] (in the nota-

tion of Coxeter and Moser [5]) and ^ ^ ί " ( 2 3 ) is a subgroup of % of index 270.

Proof Let Ms denote the set of vectors (3.2.2) of fixed dimension 2 s, M

the union of all the Ms. Write uo = 2*-2 "^eo. We first prove that

(3.2.4) M is the set of all vectors I m ( I

By (2.2.1), Xu<>€zM if I e <€Sχ. By (2.2.2) <€j?t permutes the vectors

in each Ms transitively. It remains to prove that for each s there is an

I G "€^χ such that Zuo e Ms, i.e., by (2.2.1), that there is a T e O ί such that

dτ = 2 s. The matrix T defined as follows satisfies the requirement:

XT' = μ, where

d<n). Iλi = jUj, ^n fι = Un+i (2 S < % <

This proves (3.2.4).

Let 3ί0 be the group formed by the automorphs which leave u » fixed. By

(3.2.4),
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Assuming that n # 3, we now prove that 21 = ΉJFΐ by showing that

(3.2.5) Sίβ

We consider three cases.

(a) w = l. M=C±eo, ± e j , so that 91 consists of the 8 symmetries of the

square. 01 is the identity group, so that *toS\ consists of the 8 linear trans-

formations (2.2.2). Hence ϋ^^SΊ.

(b) w = 2. The elements of SίoίΊΐO^ are the 48 linear transformations

(2.2.2) such that t = 0, g(0) =0. On the other hand, 9ί0 permutes the elements

of M orthogonal to uo, viz.,

± 2 e a , ±2βb, ± 2 e c (a, b, c the non-zero elements of V),

so that the order of 3ί0 is at most 48. Hence 2ί0 = 3ί0 Π "tg^t c <€^ f.

(c) w>4. We call C2s the carrier of the vector (3.2.2). Let Ns denote

the set of vectors in Ms whose carriers are subspaces, N the union of all the

Ns. If v e M, we have

0 (v $ N) \

so that 9Xo permutes the elements of each Ns.

Suppose now that

v , ε J V i , Z v , = w ί ( ί = l , 2, . . . ) ,

and let V\y W\ be the (2-dimensional) carriers of vt , w, respectively. Since

2 2 - 2 Π - f ] v . O V j . Ξ θ o r x ( m o d 2 ) according as V\Γ\ V{*(0) or = (0),

it follows that

(3.2.6) V\ Π V{ = (0) if, and only if, W\ Π W{ = (0).

Now, since n>3, a 2-dimensional subspace is uniquely determined by the set

of 2-dimensional subspaces which meet it in the zero subspace (0). Therefore,

by (3.2.6),

(3.2.7) V\ = V? ι/, «wJ ow/̂  if, W\ = VΓi

Thus, -X* maps the set of elements of N with fixed carrier V% onto the set of

elements of N with a fixed carrier Wi which depends only on F2.
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It now follows from case (b) that X has the form

X&a = ( ~~ 1 ) β Λ ( α ) ,

where π is a mapping of V onto itself whose restriction to each V2 is a non-

degenerate linear mapping into V. It follows that π is a non-singular linear

transformation on V. Also, since [ F ] is a vector (3.2.2) or (3.2.3), XlV]

has the form \_V\ /] for some function / of degree <2. Hence g has degree

<2 and so, by (2.2.2), XeiΉ^ΐ. This proves (3.2.5).

We mention briefly the case n =3. VI has a subgroup isomorphic to [34'2'1]

(Coxeter and Moser [5], §9.4). On the other hand, an argument on the lines

of (c) above shows that 91 and [34'2'1] have the same order. Hence 9! = [34 '2 f lJ

4. Lattices of dimension (P — l)ρn

We pass now to the case p>2. Given the relation of *€St to Λ(1\ and

the similarity in form between the elements of Ή^ΐ and "€<^, it becomes

clear how to generalize Λ(1) and Λ(2). The definitions, and several alternative

characterizations, are given in § 4.1.. The "77-adic" characterization is of central

importance and greatly simplifies the determination of the relative minima and

minimal vectors. A real metric, which turns Λa\ Λ(2) into (p - 1 ̂ -dimensional

real lattices in the usual sense, is introduced in §4.2. With these preparations

the main lattice properties follow fairly easily, though the anomalous cases

p = 3,5 need some further detailed consideration.

Notation. We write

cr /I = θ"-τcr fl = 0- r Σ </(β)β.,

Uα = 0 w e α ,

where θ is the Gauss sum (2.2.4).

We write 77=ω-l. The principal ideal ΠΩ is prime and ΠΎ{p~l)Ω = ΘΩ

= 0Ω, Ήp~xΩ=pΩ. The p elements of the residue class ring Ω/ΉΩ are repre-

sented by the rational integers 0, 1, . . . , p - 1 .

If ΛeP, the norm and trace of λ relative to Ro are denoted by N(λ), tr X.

4.1. The principal lattices. We define Λ{2) as the set o f x e Γ such that I x e Γ
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for all JY"e ̂ oj? in other words, it is the largest set of integral vectors invariant

(as a whole) under <€&. By (2.2.3), θnΓdA{2\ Therefore, by lemma 2.3.1,

/1(2) is an ^-lattice.

We define Λ(1) as the dual of Λm modulo θn. It is an ^-lattice such that

βnΓc:Λ{1)<zΓ. By the argument of §3.2, every unitary transformation which

leaves Λ(2) invariant also leaves Λ[1) invariant. In particular, Aa) is invariant

under <€&. Hence, by the definition of A{2\ Aa)aA{2).

The following is an alternative characterization of A{1). Consider the 42-

lattice, say A, formed by the integral linear combinations of the vectors

(4.1.1) IG /I ,

where Cr runs over all cosets in V, f over all functions on Cr of degree < 2.

The vectors (4.1.1) are, apart from sign, the vectors Xuat where a runs over

V, X over "€S (see (2.2.3) and (2.2.5)). Since

where y = Xx, it follows that A is dual to Am modulo θn. Therefore A = A{1).

For the remaining characterizations of Λ(1), Λ(2), some preparations are

necessary. We define the product of two vectors by

(Xa)(ya) = Uαjyα).

Under this product, Γ becomes a commutative algebra over the ring Ω, with

unit element 1 = [ F ] . A polynomial in the elements X, Y, ... . of Γ means a

sum

Σ « λ μ...x λγμ

λ, μ,...,SQ

of monomials with coefficients in Ω. The subalgebra of Γ generated by

X, Y, . . . means the smallest subalgebra of Γ which contains these elements

it consists of the polynomials in X, Y, . . . with zero constant term #oo . . . 1.

If a&GF(p), let a! denote that rational integer in the interval [0, p~H

which represents a. Write

...fβn, ί f = l , . . . , n).

Then each x e Γ has a unique IJ-adic expansion

(4,1,2) x - ΣQi( Ai, , » An) if,
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where the Qi are standard11' polynomials with coefficients in [0, p— 1]. (4.1.2)
7 c - 1

means that x = 'ΣQiΠ* (mod JΓΓ) for all k.
0

To prove our assertion, we consider the congruences

Σ ίλx...λMαίXl « i λ " s * . (mod Π\
λi. . , λn=0

where α runs over V. This is a system of £w linear equations for the pn

variables q\x...\n in the residue class ring Ω/I7kΩ. Since the determinant of the

system is a power of Π(αί-αrj ) and so a unit of Ω/ΠkΩ, the solution is

unique. Thus, x = Q(Ai, . . . , A») (mod 77* Γ), where Q is a standard poly-

nomial over Ω, whose coefficients are unique modulo 77*. Replacing the coeffi-

cients of Q by their 77-adic representations, we get the required unique re-

presentation x= 'ΣQiW (mod 77* Γ).
0

If xa is a function of ctiu...tait only, each Qi is a polynomial in Aiu...,Aitonly.

This follows from the 77-adic expansion of the ̂ -dimensional vector y(aiι ait)

= Xa.

We return now to Λa\ Λ{2\ We first prove that Λ(1) is the subalgebra of-

Γ generated by the vectors

(4.1.3) IV /Ud-,1,

where f runs over all functions of degree <2, Cn-\ over all (n — I)-dimensional

cosets.

Consider the product S= \Cr\ f\\Cs\ g\, where/, g have degree <2. If

Cr^Cs is empty, S=0. If not, Cr Π Cs = C/, where n> dim (Cr + Cs) = r + s - 1

Hence S = on+t~r~s\Ct\ / + ̂ 1 e Λ(1). This proves that Λa) is a subalgebra. The
r

elements (4.1.3) a re generators because \Cr\ f\ = \V; / | Π | C n - i l for any
< = 1

(n-r) Cnlis with meet Cr.

Let L(1) denote the set of x e Γ s u c h that, in the ZΓ adic expansion (3.1.2),

(4.1.4) degree Q, < 2 i (i = 0, 1, . . . ) .

Since (4.1.4) places no restriction on Qi when i>-<χn(p — 1), we have

Π*n{p-1)Γ=θnΓc:La). Using the TiΓ-adic expansion

11 > i.e., the degree of Qi in each variable is </>; cf §2.1,
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of A?, it can be verified that products and iMinear combinations of elements

of Ln) are again in Lω therefore L{1) is α subαlgebrα of Γ. We prove now

that

(4.1.5) L(1) = Λ(1).

Notation. If S is a subset or element of Γ, S* denotes the corresponding

subset or element in the factor algebra Γ* = /70WΓ. The elements of Γ* are

regarded as vectors over the residue class ring Ω* = Ω/θnΩ. <J*(X*, . . .)

denotes the subalgebra of 71* generated by X*, . . . .

Proof of (4.1.5) Considering the monomials in the ZΓ-adic expansion, we

see that L(1>* is generated by the r? + n + l elements

(4.1.6) 1*, 77Af, ΠAfAf.

Since every | F ; / | in (4.1.3) is a polynomial in the rf + n + l vectors

1, a/ = I V; ai\- 1, a# = | V; α, αy| - 1,

Λφ* is generated by the corresponding elements

(4.1.7) 1*, a?, ag

and the vectors

(4.1.8) |C-il*.

We prove (4.1.5) by showing that

(A) the elements (4.1.6) and (4.1.7) can be expressed in terms of one

another

(B) the elements (4.1.8) can be expressed in terms of the elements (4.1.6).

The proof of (A) is simplified by the following lemma, whose easy proof

is omitted.

LEMMA. Let S be a subalgebra of Γ* and X*, . . . elements of S. Then

S = J^(X*, . . .) if, and only if S/ΠS= J*(X* + ES, . . . ) .

Consider now the elements a*. The α-th coordinate of a/ is

α Λ - l = (1 + /7Γ*-1= ΣKyO/F.

It follows that
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a? = Σ 07 )"1 Π {ΉKΐ - kΠ) + Πphΐ,

where { ) " i denotes the inverse in i2* and b/ is a vector in Γ whose α-th

coordinate depends only on or/. From the /7-adic expansion of b/, we deduce

that /7^bf e/7j^(77Af). It follows that a?e= J^(77A*). Further, since

a? Ξ ΣO'lΓHffA,*)'' (mod ΠJ?(ΠA?)),

we have

- 1 /-W) y (mod
3 = 1

whence, by the lemma, J*(ΠA*) = JP{a*).

By similar arguments, we get

JHΠAf, 77A/, 77AΓ, 77A/2, ΠAΐAf) = JP(af9 a/, a* , a j , a$),

whence (A) follows.

By (A), and because of the symmetry of the set of vectors I V; f\ with

respect to index transformations α->αD + t, it is sufficient to prove (B) when

Cn-i is the particular coset defined by the equation <xι = 0. Now the 77-adic

expansion shows that tCn-iT is a polynomial of degree <p in A*. It follows

that Π^^ίCn-iT^JPiΠA?, 77AΓ) and therefore, since 77 * (P"1]Ω - ΘΩ, that

ϊ*, 77A?2). This proves (B) and (4.1.5).

There is a similar 77-adic characterization of Λ(2) Let L(2) denote the set

of X G Γ such that

(4.1.9) degree © < 2 i + l (t = 0, 1, . . . )

then

(4.1.10) L(2) = ,l(2).

This is proved by showing that

(C) \Γ: L{l)\\Γ: L ( 2 ) | = \Γ: θnΓ\,

(D) x y = 0 (mod θn) whenver x e L(1), y e L(2).

(C), (D) imply that La\ Li2} are dual modulo θn and thus that L(2) = Λi2\ as

required.
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It is an easy combinatorial problem to show that

1L(1): OnΓ\=p\ |L ( 2 ): θnΓ\=p\

where

(4.1.11) *, = \ln(p- 1) + (pn - 1)], k2 = ~-ίn(p - 1) - ( * " - 1 ) 1

Since |Γ: 0nΓ| = £ i ^ " 1 ^ a n d ^1 + ^ 2 = -jn(p-l)pn, we get (C) and

(4.1.12) |Γ: L{i)\=.pki (* = 1, 2).

It is sufficient to prove (D) when

x = 77λ Ajλl Ain, y = TZ^Aί1 A£n,

where

0<λi<p< 0<μi<p,

We may suppose that λ + /u< -jnip- 1), for (D) is obvious otherwise. Let k

be the integral part of (p- 1)"XS(>1/ + A*) Since

we have

(4.1.13) ^

Let r be the number of indices i such that λi + μi*(p -1 ) . Clearly

(Λ - r ) ( ί - 1) < Σ (λ + μd, so that

(4.1.14) r>n-k.

Now x y = ΠXΠ* Σ α r { W l ' a'nλn+μn

= Ϊ7 λ /7 μ s λ l + μ i s λ n + μ n ,

where

Since, for ^>0, ŝ  = - 1 or 0 (mod ί)) according as ( £ - 1 ) | A or not, we have

x y = 0 (mod πx+»+r{p-1}).

(D) now follows from (4.1.13), (4.1.14). This proves (4.1.10).

4.2. The real metric. E, as defined in §2.2, is a j£>Λ-dimensional metric space
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over P. We now describe a natural way of defining it as a (p — 1) /^-dimen-

sional metric space over i?0.

Consider first the degenerate case n = 0, where E = P and Γ = Ω. P is a

(p — 1)-dimensional vector space over i?0. It becomes a metric space over RQ

if we define the real scalar product by

(4.2.1) λ*μ = trλμ.

Since the Galois group G of P over Ro is abelian,

(4.2.2)

whence Λ*Λ« is positive definite.

Ω becomes a (/> - 1)-dimensional lattice in the usual sense. The roots of

unity ω'( 1 <*</>-1) form a lattice basis. By evaluating detίtr ωι~ht we get

(4.2.3)

The inequality of the arithmetic and geometric means shows that (p—l)\N(λ)\2

<λ*λ, with equality if, and only if, all conjugates of λ have the same modulus.

Hence the minimal vectors of Ω are the roots of unity ± ω% and

(4.2.4) A f ( f i ) = ί - 1 .

In the general case, E is a vector space over RQ of dimension N=(p- l)pn,

and we define the real metric x * y by

(4.2.5) (x.)*(ym)= ΊjXm*y. =

Γ is an ΛΓ-dimensional lattice with basis ωιea (αe V, 1 < ί <Lp- 1). By (4.2.3),

(4.2.4),

(4.2.6) D(Γ) =p{*'2)*n, MiΓ) ~p - 1.

Hence, by (4.1.12),

(4.2.7) D{Aβ)) = ^ - 2 ^ 2 * < (f = 1, 2),

where hi is given by (4.1.11).

The following results are noted for future reference. Let λ e Ω and let k

be the rational integer in [0, p-ϊ\ such that λ = k (mod 77). By (4.2.2), λ * A

is even and s —&2 (mod />). Hence
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>2p if * = 0, λ*0,

(4.2.8) λ*λ >p-\ if* = 1.^-1

>p+l otherwise.

In particular, when p = 5 and k = 2, 3, equality holds if, and only if, λ is one

of the 20 numbers ±(«/ + α/) (0 <*<./< 4).

4.3. Minima, minimal vectors. We now determine the minimal vectors of

Aa\ ΛΛ\ Let x = /ΓyeΛ ( 2 ) (s>0), where yeΛ ( 2 ) but TΓ^y S Λ(2). By the

original definition of Λ{2\ there is an I G Ή^ such that z = I y $ Z7T. Let

and let

Qiictu . , «rn) = Σβλ1...λnαriλl an

λn (f =

be the unique standard polynomial over GFip) such that

If Y is the transformation (2.2.5), Yw = z and

W - Σ Λ U i , , An)//',
o

then

After applying such a transformation we may therefore suppose that either

(a) Qύ = kl (**0) or (b) Q0 = A1. Notice that z $ / ! in case (b), by (4.1.4).

(a). Every coordinate za is non-zero, whence by (4.2.4),

x * x = (TΓz) * {Πs%) > (p - l)pn

with equality if, and only if, s = 0 and za is a (2^>)-th root of unity for each

a. Suppose that equality holds. After replacing z by - z if necessary, we

have k = 1 and z = LF; / ] for some standard polynomial /(αi, . . . , an). Then,

expanding zα = (1 + ΠΫ by the binomial theorem, we get

U = l , . . . ,p-2).

Therefore, since Qi and / are standard, ζ>i(?i, . . . , ξn) = /(£i, . . . , ? « )

identically in independent variables ?/. After applying a suitable transforma-
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tion (2.2.5), we may suppose that all terms in / of degree <2 are zero.

Suppose now that x e Λ{1). Then Z G / ' and so, by (4.1.4), the degree of

0 i < 2 . Hence / = 0 and z = [FJ. Suppose secondly that x^A{2\ xΦΛ(1).

Then, by (4.1.9), the degree of Qi<3, so that/ is a homogeneous cubic. If

since the latter is standard. This is impossible because ί ? ) has degree 6, Q2

degree < 5. Hence p = 3 or 5. We need not consider the case p = 3, because

case (b) shows that z*z>M ( 2 ) = 4.3n"1. Suppose then that i> = 5. After a

suitable transformation (2.2.5), we may suppose that

f(ctu - - > ocn) = oc\ + ociqiaz, . . . , an) + r(α:2, . . . , an),

where q, r are homogeneous of degrees 2, 3 respectively. Then, after reduction

to standard form, (ζ) contains the sextic terms aiq + alr, so that q-r^O.

Thus z = [ F ; aU. It is easy to see that this vector is actually in Λ(2>.

Case (b). We have za = a[ (mod 77), whence, by (4.2.8),

x*x>(p-l)pnx2p = 2{p-l)pn if s>0

x * x > (p - S ) ^ " 1 x (p + 1) + 2j£
n-1 x (/> - 1) = (i>2 - δ)^""1 if 5 = 0.

By case (a), x cannot be a minimal vector of Λ{2) unless s = 0 and ^ = 3 or 5.

Notice that in these cases x $ J ( 1 ) because s = 0 and z$ Λa). Let Cλ denote

the (w- 1)-dimensional coset in V defined by the equation ai = λ. Suppose

first that p = 3 and x * x = (32 - 5)3""' = 4.3n"1. By (4.2.4), and since Qo = Ai,

z = [ C 1 ; / ] - C C - 1 ; g\

where /, g are standard polynomials in ̂  an. Using the equations

! C1! = 2 A: - Aj, IC"11 = - ί (Aί - Aα),

we get

Qi = oc\(g-f)-κΛg+f),

whence the degrees of g — f, g+f are < 1, 2 respectively. Then the element
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of "€S maps z onto

EC1] - EC"1] = Ax + 3/2(Ai - A?).

The 77-adic expansion shows that this vector is in Λ(2).

Suppose now that p = 5 and x * x = (52 - 5)5M"1 = 4.5". By (4.2.8), and since

Qo = A,,

z = EC1; / 3 - E C Γ 1 ; gi+dC2; fcJ + EC2; fe])-(ECΓ2; fcH-EC"2; fc])

where / , # , . . . are standard polynomials in ατ2, . . . , α» and neither &i- fei

nor & — fe assumes the value 0. Then

where ft = ftj + ft2, k = kι -f fa. Since the degree of Qi < 3, the coefficient of

αί = 0 and those of al, al, cci have degrees < 0 , 1, 2 respectively- After apply-

ing the transformation

Yea =* co 2 2 eβ,

where c is the constant ft+ 2 / + g, we have / = ̂ = f t = ^, so that fti= -ftϋ,

Λ?i = - f e . The next term of the 77-adic expansion now gives

Since the functions hi — fe = 2ftj and kι — kz-2kι do not assume the value

0, it follows that h\y h\ are functions of degree < 2 which can assume only the

values 1, — 1. It is easy to see that every function of degree 1 or 2 assumes

at least 3 values, so that hi, h\ are constants. Hence, after applying the

transformation Yea = — e-α if necessary, z becomes one of the 4 vectors '

vr.. = EC1] - EC"1] + (ω r + αΓΊEC2] - (ωs + αΓ ' ΪKΓ 1 ] ,

where (r, s) = (1, 1), (1, 2), (2, 1) or (2, 2). The 77-adic expansion shows

that \rts^A{2\ The transformation

y β λ = ί Σ ω μ ) e ( )

belongs to ^ J / and maps vi2, v2i into vectors with all coordinates non-zero.

Hence the minimal vector pairs ±ίV; aU> ± vi2, ±v 2 i are equivalent under

It can be shown, though we omit the proof, that no two of the pairs
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±ίV; all, ±vn, ±V22 are equivalent under "tg.T.

We have proved

THEOREM 4.3.1. The minimal vector pairs of Λ{t) are given by (4.1.1).

except when i=*2 and p = 3 or 5. When i = 2, p = 3, every minimal vector pair

is equivalent under "€,7 to ± ([C1] - [C"1]), where Cλ is the (n- 1)-dimensional

coset defined by ax = λ. When i = 2,p = 5> every minimal vector pair is equivalent

under ¥><^ to one, and only one, of the pairs ± [ Fj, ±ίV; all and

± {[C1] - [C-χ3+ (ωf"+ co"1')(EC2] - W2!)} (ί = 1, 2).

where Cλ has the same meaning as in the case p-%.

THEOREM 4.3.2. The relative minima r(1), rt2) of Λa\ Λ{2) are given by

We can compare our forms with the original ones in 2n variables by com-

puting pi(p) = lim r{i)/{γN)^ . We have:

= 2lδ/85"δ/3^1.03,

l i m ( - J - ί ) τ " p / C ί ) = l ( » = 1 , 2) .

The lowest values of (p-1) pn are 6, 18, 20 corresponding to pn = 3,9,5

respectively. The forms in 6 variables are the absolutely extreme and "next

best" extreme. The relative minima of the forms in 18, 20 variables for i = 2

are

These are comparable with the value 8 2 ^2.8 for the 16-variable form of EF.

4.4. Extreme Forms. Two points can be made at once.
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(1) Λιn is invariant under the 2?0-irreducible12) group c€'Jr. Therefore it

is eutactic (Coxeter [4], p. 402).

(2) Let S be the automorphism of P such that ω 5 =ω 2 and let a be any

element of V. Then it is easily verified that, if β>3, every vector (4.1.1)

satisfies the quadratic relation

Therefore, if p>3, Aκi) cannot be perfect when the vectors (4.1.1) and their

negatives are its minimal vectors i.e., Alι) cannot be perfect unless £ = 3 or

p = 5, i =3 2. We shall see, however, that A{i) is perfect in a modified sense now

to be denned.

Let A be a sublattice of the Λr-dimensional lattice Γ. Let G(x, y) stand

generically for an A-bilinear function defined on E and with complex values.

Then, according to the usual definition, A is perfect if the equations

(4.4.1) G(m, m) =0 for all minimal vectors m of Λ,

imply that

(4.4.2) G(x, x) =0 for all X G £

We may, without loss of generality, suppose in the definition that the values

of G(x, y) are in RQ.

Let now t( #0) e GF{p) and let T be the automorphism of P such that

ί/ = α/. We call A t-perfect if the implication (4.4.1) =»(4.4.2) holds for

functions of the form

(4.4.3) G(x, y) = "Σga^βxlyβ (ga,β^P).

Clearly, if A is perfect it is ί-perfect for all t. The converse is also true. In

fact, let G be as in the previous paragraph. Then

/~* ί \ "V \ ~tt—J s~\ / i 1 \

Lrt\X, y) = 2~Λ 0) (jr\Cΰ X, 0) V)

has the form (4.4.3), and

p*G(x, y) = ίr(ΣG/(x, y))

1 2 ) ^f^7 is i?o-irreducible because it is P«irreducible (CGT, theorem 1) and contains
the scalars o>L
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Therefore the implication (4.4.1) ~* (4.4.2) is valid for G if it is valid for

each Gt.

We call A P-perfect if it is 1-and ( — 1)-perfect, i.e., if it is perfect with

respect to symmetric P-bilinear, and Hermitian, forms. We now prove

THEOREM 4.4. Λ[ι) is eutactic and P-perfect. It is perfect only for p-'d>

i = l, 2 and p = 5, 2 = 2.

Proof. Let G be the function (4.4.3). We seek the conditions that

G(x, x) = 0 for all vectors x = I V; φ\, where ψ has the form

= Σ

The equation G(x, x) ^ 0 gives

(4.4.4) Σ ^ ί ω ί r f ( β ) + f t ί Λ ί = 0.

If 3T(α) = Σ ^ <*/ αy + Σ bi a;,

we write

where summation is over the a, β such that

(4.4.5) taiccj -f βifo = ^7, ίαr/ + &;. = ̂ , (all ί, )

and where <§v = 0 when (4.4.5) has no solutions. Then (4.4.4) becomes

Σ ^ : V £ Ψ = 0 (all φ).
"Ή

The matrix (ω***) is non-singular, being a direct power of the pxp matrix

(ωtJ), and so the vector («\Γ) is zero. If f- - 1, (4.4.5) has at most one solu-

tion α, β whence G(x, y ) = 0 . If t ~ I, it has either no solution or a unique

solution a, a or exactly two solutions α, β and /3, α. Hence gΛ,β -\- g8,a - 0 for

all α, jS and so G(x, x) = 0.

We have now proved that .1 ' is P-perfect whenever the [V\ ψ] are minimal

vectors, i.e., except when p = '•, z - 2 . The conclusion is still true in this case.

In fact, let v, = ίC ', ψ] (z = 0, 1, 2) with 9 as above and C as in §4.::>>.

Then it is easily seen that because G(x, x) vanishes for
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Vo — ωιVi, vj — α/v 2 , V2 — ωιv0 (/ = 1, 2, 3 ) ,

it also vanishes for vo + Vi-f v2 ~ ίV; ψ]. The previous argument now shows

that G(x, x) =0. Hence Λ(l) is P-perfect in all cases.

When p = 3, Λ(ί) is 1-and ( - l)-perfect and so perfect. It remains to prove

only that Λ(2) is 2-and ( -2)-perfect when β-o. This is done by applying our

previous argument to LV; al + ψl instead of IV; φ]. It is readily seen that

the solution of (4.4.5) plus the equation tal+βl^b is unique if either α, a

is a solution or there is a solution α, β with <*,ĉ |3<. Therefore ga,e = 0 unless

aκ = ft* and a^β. Since this holds for all K, ga, $ = 0 for all α, 5 and so

G(x, x) =0. This proves the theorem.
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