ON TRANSITIVE SIMPLE GROUPS OF DEGREE $3 \boldsymbol{p}^{* \prime}$

To Richard Brauer on his sixtieth birthday

NOBORU ITO

Let Ω be the set of symbols $1,2, \ldots, 3 p$, where p is an prime number greater than 3. Let $(\mathcal{S}$ be a transitive permutation group on Ω, which is simple and in which the normalizer of a Sylow p-subgroup has order $2 p$. Our purpose is to prove the following two theorems:

Theorem 1. If \mathfrak{C} is primitive on Ω, then $p=5$ and \mathscr{G} is isomorphic to the alternating group \mathfrak{N}_{6} of degree 6 .

Theorem 2. If \mathbb{G} is imprimitive on Ω, then $(\mathbb{S}$ is isomorphic to the linear fractional group $L F\left(2,2^{m}\right)$ with $2^{m}+1=p$.

Our proof of Theorem 1 is fairly complicated. Theorem 1 implies that such a group © cannot be doubly transitive. This fact will be proved in $\$ 2$. There the irreducible characters of dimension two of the symmetric group on Ω play an essential role as in our previous papers [14], [15]. We need also, however, recent result of Thompson [18] concerning groups of odd order. In § 3 we treat, roughly speaking, the almost doubly transitive case. There a result of Wielandt concerning the eigenvalues of intertwining matrices is very useful [21]. With the help of this theorem of Wielandt, some results of Brauer and Suzuki [4], [17] concerning groups whose Sylow 2 -subgroups are dihedral groups of order either 4 or 8 respectively can be used. In $\S 4$ we consider, roughly speaking, the strongly simply transitive case. For this case we need again some deep results.

Theorem II is a simple consequence of our previous result [14].
Finally, we want to emphasize that we need from beginning to end Brauer's p-block theory of irreducible characters.

[^0]
§ 1. Proof of Theorem 1. Generalities.

1. Since \mathbb{C} is simple, the normalizer of a Sylow p subgroup of \mathbb{B} is a dihedral group of order $2 p$ by the splitting theorem of Burnside. Hence the principal p-block $B_{1}(p)$ of irreducible characters of $(\mathbb{S}$ consists of two nonexceptional characters, the principal character \mathbf{A} and the other character \mathbf{x}, whose degree is congruent to ± 1 modulo p, and a family of $\frac{1}{2}(p-1) p$ conjugate exceptional characters $\mathbf{C}_{i}\left(i=1, \ldots, \frac{1}{2}(p-1)\right)$. The equation

$$
\begin{equation*}
\mathbf{A}(X)+\varepsilon \mathbf{X}(X)-\varepsilon \mathbf{C}_{i}(X)=0 \tag{1}
\end{equation*}
$$

holds for every p-regular element X of $\left(\mathcal{B}\right.$ and for every $i=1, \ldots, \frac{1}{2}(p-1)$, where $\varepsilon= \pm 1$ according as the degree of \mathbf{X} is congruent to ± 1 modulo p. Let P be an element of order p. Then we have

$$
\begin{equation*}
\mathbf{X}(P)=\varepsilon \tag{2}
\end{equation*}
$$

and
(3)

$$
\sum_{i=1}^{\frac{1}{2}(p-1)} \mathbf{C}_{i}(P)=-\varepsilon .
$$

All the other irreducible characters $\mathbf{D}_{j}(j=1,2, \ldots)$ of (3) belong to p-blocks of defect $0([3], \S 1)$.

We consider \mathbb{G} as usual as a linear group consisting of permutation matrices. Let α be the character of $(\mathbb{S}$ in this sense. Then for every element X of \mathbb{B} $\alpha(X)$ denotes the number of symbols of Ω fixed by X. Since \mathscr{B} is transitive on Ω, the decomposition of α into its irreducible components is as follows:

$$
\begin{equation*}
\alpha(X)=\mathbf{A}(X)+x \mathbf{X}(X)+c \sum \mathbf{C}_{i}(X)+\mathbf{Y}(X), \tag{4}
\end{equation*}
$$

where x and c are non-negative integers and \mathbf{Y} is a linear combination of \mathbf{D}_{j} 's with non-negative integers. All the \mathbf{C}_{i} 's have the same coefficient c, because they are algebraically conjugate to one another $\left(i=1, \ldots, \frac{1}{2}(p-1)\right)$.
2. Now we want to show that

$$
\begin{equation*}
\varepsilon=-1, x=1 \text { and } c=0 \text { in (4). } \tag{5}
\end{equation*}
$$

In order to show this, let us assume at first that $p>5$. Put $X=P$ in (4). Then from (2), (3) and (4) we have

$$
\begin{equation*}
c=x+\varepsilon, \tag{6}
\end{equation*}
$$

because \mathbf{Y} vanishes at P by a theorem of Brauer-Nesbitt ([8], Theorem 1). Put $X=1$ in (4). Then from (1) and (6) we have

$$
\begin{equation*}
3 p=1+x \mathbf{X}(1)+(x+\varepsilon) \frac{1}{2}(p-1)(\mathbf{X}(1)+\varepsilon)+\mathbf{Y}(1) . \tag{7}
\end{equation*}
$$

Now assume that $\varepsilon=1$. Then since \mathbb{B} is simple and hence $\mathbf{X}(1) \geqq p+1$, we obtain from (7)

$$
3 p \geqq 1+\frac{1}{2}(p-1)(p+2),
$$

which implies the contradiction $p \leqq 5$. Hence $\varepsilon=-1$. Next assume that $x \geqq 2$. Then since \mathbb{C} is simple and hence $\mathbf{x}(1) \geqq p-1$, we obtain from (7)

$$
3 p \geqq 1+2(p-1)+\frac{1}{2}(p-1)(p-2)
$$

which implies the contradiction $p \leqq 5$. Hence $x=1$ and $c=0$ by (6).
Now let us assume that $p=5$. Though it is a little troublesome to handle with this case from the beginning, all the primitive groups of degree 15 are known. There are 6 types of such groups. Among them only the group, which is isomorphic to \mathfrak{U}_{6}, appears here. Therefore it is easy to check the validity of (5) in this case.

Put $\mathbf{X}=$ B. Then (1), (2), (3) and (4) can be rewritten as follows:

$$
\begin{equation*}
\mathbf{A}(X)+\mathbf{C}_{i}(X)=\mathbf{B}(X)\left(i=1,2, \ldots, \frac{1}{2}(p-1)\right) . \tag{1.1}
\end{equation*}
$$

$$
\begin{gather*}
\mathbf{B}(P)=-1 . \tag{2.1}\\
\sum_{i=1}^{\frac{1}{2}(p-1)} \mathbf{C}_{i}(P)=1 . \tag{3.1}\\
\alpha(X)=\mathbf{A}(X)+\mathbf{B}(X)+\mathbf{Y}(X) . \tag{4.1}
\end{gather*}
$$

3. Let J be an involution in the normalizer of the Sylow p-subgroup 〈P> of \mathfrak{G}. Let g and z denote the orders of \mathfrak{G} and the centralizer of J. Then applying the method of Brauer-Fowler ([7], (23)) we have

$$
\begin{equation*}
p=\frac{g}{z^{2}} \sum_{\mathbf{Z}} \frac{\mathbf{Z}(J)^{2} \mathbf{Z}(P)}{\mathbf{Z}(1)} \tag{8}
\end{equation*}
$$

where Z ranges over all the irreducible characters of \mathbb{C}. Since all the characters of defect 0 for p vanish at P by a theorem of Brauer-Nesbitt ([8], Theorem 1), (8) can be written as follows:

$$
\begin{equation*}
p=\frac{z^{2}}{g} \sum_{\mathbf{Z} \in B_{1}(p)} \frac{\mathbf{Z}(J)^{2} \mathbf{Z}(P)}{\mathbf{Z}(1)} \tag{9}
\end{equation*}
$$

Let $v p-1$ be the degree of B. Then the following equation can be obtained from (9) using (1.1), (2.1) and (3.1):

$$
\begin{equation*}
(v p-1)(v p-2) p z^{2}=g(v p-1-\mathbf{B}(J))^{2} \tag{10}
\end{equation*}
$$

There is just one class of conjugate involutions in \mathcal{E}. In fact let K be an involution which is not conjugate to J. Then the method of Brauer-Fowler yields us $\mathbf{B}(K)=v p-1$, which contradicts the simplicity of \mathbb{B}.

Now since the centralizer of J contains a Sylow 2 -subgroup of \mathbb{B}, the equation (10) tells us something about the order of a Sylow 2-subgroup of ©

According to the degree of \mathbf{B} we distinguish three cases, each of which is handled separately, since we see from (4.1) that v equals either 3 or 2 or 1.
§ 2. The case in which the degree of B is $3 p-1$.
4. Let us assume that the degree of B equals $3 p-1$. Then the equations (4.1) and (10) take the following forms:

$$
\begin{equation*}
\alpha(X)=\mathbf{A}(X)+\mathbf{B}(X) \tag{4.2}
\end{equation*}
$$

$$
\begin{equation*}
(3 p-1)(3 p-2) p z^{2}=g(3 p-1-\mathrm{B}(J))^{2} \tag{10.1}
\end{equation*}
$$

The equation (4.2) tells us in particular that \mathbb{E} is doubly transitive on Ω.
By a theorem of Brauer ([3], Lemma 3) we have

$$
\mathbf{B}(J)=-2 \text { or } 0 \text { or } 2
$$

Since $\alpha(J) \geqq 0$ the case $B(J)=-2$ does not occur by (4.2). Now assume that $B(J)=2$. Then by (4.2) we have

$$
\begin{equation*}
\alpha(J)=3 \tag{11}
\end{equation*}
$$

and (10.1) can be read as follows:

$$
\begin{equation*}
(3 p-1)(3 p-2) p z^{2}=9(p-1)^{2} g \tag{10.2}
\end{equation*}
$$

Since \mathfrak{G} is doubly transitive, $(\$$ contains an involution I with the cycle
structure (12).... Let \bar{X} denote the subgroup of (3) consisting of all the permutations of \mathscr{B} each of which fixes each of the symbols 1 and 2 . Then I is contained in the normalizer of \mathcal{R}. Hence there exists a Sylow 2 -subgroup \mathcal{T} of \mathfrak{R}, whose normalizer contains $I . \quad \mathbb{S}=\mathfrak{T}\langle I\rangle$ is a Sylow 2 -subgroup of \mathbb{C}. In fact otherwise we must have $3 p \equiv 1$ (mod. 4). Then the equality (10.2) shows that g must be odd, which is a contradiction. Since I and J are conjugate with each other, I fixes by (11) just three symbols different from 1 and 2 , say 3,4 and 5 of Ω. Let X be an element of \mathfrak{I}, which is commutative with I. Then since $\alpha(X) \leqq 3$ and is odd, X must fix just one symbol, for instance 5 , of the symbols 3,4 and 5 , and the cycle structure of X is of the form (34)(5) . . . Since every involution fixes just three symbols of Ω, X must be an involution. Let $Y \neq X, Y$ be an element of \mathcal{I}, which is commutative with I. Then Y must fix, like X, just one symbol of 3,4 and 5 . If it is $3, Y$ has the cycle structure (3)(45) . . . Then $X Y$ belongs to I and has the cycle structure (354)... , which is a contradicition. The same holds for 4 , too. Hence Y must fix 5 , and has the cycle structure (34)(5) . .. Then $X Y$ belongs to \mathbb{F} and fixes the symbols $1,2,3,4$ and 5 . This implies that $X Y=1$, and since X is an involution, $X=Y$, which contradicts our assumption on Y. Therefore the centralizer of I in \subseteq has order 4. Thus by a theorem of Suzuki ([18], Lemma 4) \mathfrak{S} contains an element L such that $\subseteq=\langle I, L\rangle$ and $I L I=L^{-1+2^{a-2 \varepsilon}}$, where 2^{a} is the order of \mathfrak{S} and ε equals either 1 or 0 . Let f be the exact exponent of 2 dividing $p-1$. Then we obtain from (10.2) the following equality :

$$
\begin{equation*}
a=2 f-1 \tag{12}
\end{equation*}
$$

The simplicity of \mathfrak{C} implies that a is greater than 1 . This implies by (12) that the order of L is greater than 2. Now it is easy to see that the cycle structure of L is of the form either $L=(1)(2)(i) R$ or $L=(12)(i) R$, where $i \neq 1,2$ is a symbol of Ω and R consists of cycles of order 2^{a-1}. In any case this shows that $p-1$ is divisible by 2^{a-1}, that is, $f \geqq a-1$. Hence we obtain from (12) that $a=3$ and \subseteq is a dihedral group of order 8 .

Let us consider the principal 2-block $B_{1}(2)$ of irreducible characters of \mathbb{E}. By a theorem of Brauer-Tuan ([10], Corollary of Lemma 3) B_{1} (2) contains at least either B or all of the \mathbf{C}_{i} 's $\left(i=1, \ldots, \frac{1}{2}(p-1)\right)$, because there is no element of order $2 p$ from our assumptions. Assume that $B_{1}(2)$ does not contain
any \mathbf{C}_{i}. Then by a theorem of Brauer-Tuan ([10], Lemma 3) we have the congruence

$$
\begin{equation*}
\sum \mathbf{Z}(1) \mathbf{Z}(P) \equiv 0\left(\bmod 2^{a}\right) \tag{13}
\end{equation*}
$$

where \mathbf{Z} ranges over all the irreducible characters of \mathbb{C} belonging simultaneously to $B_{1}(p)$ and $B_{1}(2)$. But the left hand side of (13) equals $1+(3 p-1)(-1)$ $=-(3 \mathrm{p}-2)$, which is a contradicition. Hence $B_{1}(2)$ contains all the \mathbf{C}_{i} 's. On the other hand $B_{1}(2)$ consists of five characters ([5], [17] and for a detailed presentation see [13]). Thus we have obtained the inequality $\frac{1}{2}(p+1) \leqq 5$, which implies that $p=5$. Now again we have only to check six primitive groups of degree 15 and we see that there is no group with required properties. Therefore we must have that $\mathbf{B}(J)=0$ and by (4.2) that

$$
\begin{equation*}
\alpha(J)=1 . \tag{14}
\end{equation*}
$$

Furthermore (10.1) becomes the following form:

$$
\begin{equation*}
(3 p-2) p z^{2}=(3 p-1) g . \tag{10.3}
\end{equation*}
$$

(10.3) tells us in particular that the order of a Sylow 2 -subgroup of \mathbb{B} equals the power of 2 dividing $3 p-1$. Hence \mathbf{B} is a character of defect 0 for 2. In particular by a theorem of Brauer-Nesbitt ([8], Theorem 1) we have

$$
\begin{equation*}
\alpha(X)=1 \tag{15}
\end{equation*}
$$

for every 2 -singular element X of \mathbb{E}.
5. Let \subseteq denote the symmetric group on Ω. Let \mathbf{x} : and \mathbf{X}.. be irreducible characters of \subseteq corresponding to the diagrams

By a theorem of Frobenius (12) we have the formulae

$$
\begin{equation*}
\mathbf{x}:(X)=\binom{\alpha(X)-1}{2}-\beta(X) \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{x} . .(X)=\frac{\alpha(X)(\alpha(X)-3)}{2}+\beta(X), \tag{17}
\end{equation*}
$$

where X ia an element of \subseteq and $\beta(X)$ denotes the number of transpositions
in the cycle structure of X.
Now since \mathfrak{F} is doubly transitive, we have ((11), p. 164)

$$
\begin{equation*}
\sum_{x \in \mathscr{G}} \alpha(X)=g, \sum_{x \in \mathscr{G}} \alpha(X)^{2}=2 g \text { and } \sum_{X \in \mathscr{S}} \beta(X)=\frac{1}{2} g . \tag{18}
\end{equation*}
$$

Using (18) we obtain from (16) and (17)

$$
\sum_{x \in \mathscr{S}} \mathbf{X}:(X)=\sum_{X \in \mathscr{G}} \mathbf{X} . .(X)=0 .
$$

Hence by the reciprocity theorem of Frobenius \mathbf{A} does not appear as an irreducible component of \mathbf{X} : and \mathbf{X}.. restricted to \mathfrak{B}. Let

$$
\begin{equation*}
\mathbf{x}_{:}=b \mathbf{B}+c \sum \mathbf{C}_{i}+\sum a_{j} \mathbf{D}_{j} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{x}_{. .}=b^{\prime} \mathbf{B}+c^{\prime} \sum \mathbf{C}_{i}+\sum b_{j} \mathbf{D}_{j} \tag{20}
\end{equation*}
$$

be the decompositions of \mathbf{x} : and \mathbf{x}.. into irreducible characters of \mathbb{G}.
We want to show that

$$
\begin{equation*}
b=b^{\prime}=c^{\prime}=c-1 \leqq 1 . \tag{21}
\end{equation*}
$$

To this end, we first compare the values of both sides of (19) and (20) at P. Then using (2.1), (3.1) and a theorem of Brauer-Nesbitt ([8], Theorem 1) we obtain from (16) and (17) the equalities $1=-b+c$ and $0=-b^{\prime}+c^{\prime}$.

Next let us observe the generalized character ($\mathbf{X}:-\mathbf{X} .)$.$B . Then we have$

$$
\begin{aligned}
& \sum_{x \in \mathscr{S}}(\mathbf{X}:(X)-\mathbf{X} . .(X)) \mathbf{B}(X) \\
= & \sum_{X \in \mathscr{S}}(1-2 \beta(X))(\alpha(X)-1) \quad(\text { by }(4.2),(16),(17)) \\
= & \sum_{X \in \mathscr{S}}(-1+\alpha(X) 2 \beta(X)-2 \alpha(X) \beta(X)) \\
= & \sum_{X \in \mathscr{S}}(-1+\alpha(X))=0 \quad \text { (by (15)). }
\end{aligned}
$$

This implies $b=b^{\prime}$.
Let us assume that $b>1$. Then we have that $b \geqq 2$ and $c \geqq 3$. Comparing the degrees of the characters on both sides of (19) we have that

$$
\frac{1}{2}(3 p-1)(3 p-2) \geqq 2(3 p-1)+3 \cdot \frac{1}{2}(p-1)(3 p-2),
$$

which implies the contradiction $0 \geqq p$. Therefore we must have that $1 \geqq b$.

Now we distinguish two subcases $b=0$ and $b=1$, though they can be treated rather similarly. In any case, we can use, roughly speaking, the same routine as in the previous paper [15].
6. At first we handle the subcase $b=0$. Then the equations (19) and (20) are read as follows:

$$
\begin{equation*}
\mathbf{x}_{:}=\sum \mathbf{C}_{i}+\sum a_{j} \mathbf{D}_{j} \tag{19.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{x}_{. .}=\sum b_{j} \mathbf{D}_{j} . \tag{20.1}
\end{equation*}
$$

Since \mathbf{B} is orthogonal to $\mathbf{x}:+\mathbf{X}$.. in this case, using (18) we obtain

$$
\begin{equation*}
\sum_{x \in \mathbb{G}} \alpha(X)^{3}=5 \mathrm{~g} . \tag{22}
\end{equation*}
$$

In particular (8) is triply transitive on Ω [21].
Using (15), (18) and (22) we can calculate the norm of \mathbf{x} : and \mathbf{x}.. from (16), (17) and (19.1), (20.1) as follows:
(24)

$$
\begin{align*}
& \sum_{x \in \mathscr{S}}\left(\frac{1}{2}(\alpha(X)-1)(\alpha(X)-2)-\beta(X)\right)^{2} \tag{23}\\
= & \sum_{x \in \mathscr{S}} \frac{1}{4} \alpha(X)^{4}+\sum_{X \in \mathscr{G}} \beta(X)^{2}-3 \\
= & \frac{1}{2}(p-1)+\sum a_{j}^{2} \\
& \sum_{x \in \mathscr{S}}\left(\frac{1}{2} \alpha(X)(\alpha(X)-3)+\beta(X)\right)^{2} \\
= & \sum_{X \in \mathscr{G}} \frac{1}{4} \alpha(X)^{4}+\sum_{X \in \mathscr{G}} \beta(X)^{2}-4 \\
= & \sum b_{j}^{2} .
\end{align*}
$$

Eliminating the expression $\sum_{X \in \mathscr{S}} \frac{1}{4} \alpha(X)^{4}+\sum_{x \in \mathscr{F}} \beta(X)^{2}$ from (23) and (24) we have

$$
\begin{equation*}
\sum b_{j}^{2}=\frac{1}{2}(p-3)+\sum a_{j}^{2} \tag{25}
\end{equation*}
$$

7. Let \mathbf{e} be the principal character of Ω and \mathbf{e}^{*} be the character of \mathbb{B} induced by e. Since \mathbb{S} is doubly transitive, by a theorem of Frobenius [12] we have the following equation

$$
\mathbf{e}^{*}=\mathbf{A}+2 \mathbf{B}+\mathbf{x}:+\mathbf{x} \ldots
$$

Substituting (19.1) and (20.1) into this equation, we have

$$
\begin{equation*}
\mathbf{e}^{*}=\mathbf{A}+2 \mathbf{B}+\sum \mathbf{C}_{i}+\sum\left(a_{j}+b_{j}\right) \mathbf{D}_{j} \tag{26}
\end{equation*}
$$

Let Ω_{2} denote the set of vectors (x, y), where $x \neq y$ and x, y belong to Ω. The basis of our proof rests on the following theorem ([22], 28.4, 29.2): the norm of e^{*} equals the number of domains of transitivity of Ω on Ω_{2}.

By (26) the norm of e^{*} equals

$$
1+4+\frac{1}{2}(p-1)+\sum\left(a_{j}+b_{j}\right)^{2}
$$

Put $T=\Omega-\{1,2\} . \quad T_{2}$ is the set of vectors (x, y), where $x \neq y$, and $x, y \in T$. The vectors $(1,2)$ and $(2,1)$ themselves constitute domains of transitivity of Ω and furthermore the vectors of forms (i, T) and (T, i) ($i=1,2$) each constitute domains of transitivitity of Ω. Therefore we see that the vectors of T_{2} are divided into

$$
\frac{1}{2}(p-3)+\sum\left(a_{j}+b_{j}\right)^{2}
$$

domains of transitivity of Ω. By (25) this number will be transformed into

$$
\begin{equation*}
p-3+2 \sum a_{j}^{2}+2 \sum a_{j} b_{j} \tag{27}
\end{equation*}
$$

Since \mathbb{B} is triply transitive on Ω and hence Ω is transitive on T, every domain of transitivity of Ω from T_{2} contains a vector of the form (3, x) with $x(\neq 3) \in T$.
8. Let \mathfrak{Z} denote the subgroup of \mathbb{B} consisting of all the permutations of $(8$ each of which fixes each of the symbols $1,2,3$. At first assume that $\&$ fixes no symbol from Ω other than 1,2 and 3 . Then since the order of \mathbb{Z} is by (15) odd, every domain of transitivity of Ω from T_{2} contains at least three different vectors of the form ($3, x$) with $x \in T$. Then we see at once that there exist at most $p-1$ domains of transitivity of \mathscr{R} from T_{2}. Then from (27) we have the following inequality

$$
\begin{equation*}
1 \geqq \sum a_{j}^{2}+\sum a_{j} b_{j} \tag{28}
\end{equation*}
$$

If all the a_{j} 's are zero, comparing the values at the identity element of both sides of (19.1) we have the contradiction

$$
\frac{1}{2}(3 p-1)(3 p-2)=\frac{1}{2}(p-1)(3 p-2)
$$

Hence (28) turns out to be an equality. This means that there exist just $p-1$ domains of transitivity of \mathbb{R} from T_{2} and every domain of transitivity of \mathbb{Z} from $T-\{3\}$ has length 3 . The latter fact implies that \mathbb{Z} is an elementary abelian 3 -group. It is easy to check that the normalizer of \mathfrak{Z} in Ω coincides with \mathbb{R}. Therefore by the splitting theorem of Burnside Ω contains the normal 3 -complement \mathfrak{M} of order $3 p-2$. Every element $\neq 1$ of \mathfrak{M} fixes just two symbols of $\Omega, 1$ and 2 . Now let I be an involution of \mathfrak{S} with the cycle structure (12)(3) Then I normalizes Ω and therefore \mathfrak{M}. By (15) I fixes only the symbol 3 from Ω. Hence I centralizes only the identity element of \mathfrak{P}. Therefore \mathfrak{M} must be abelian. Under this circumstances we want to show that the order of \mathfrak{Z} is smaller than $3 p-2$.

Let \mathfrak{Q} be a Sylow q-subgroup of \mathfrak{M} and let \mathbb{Q} be the centralizer of \mathfrak{Q} in Q. Then the factor group $\mathcal{R} / \mathbb{R}_{\mathbb{Q}}$ is isomorphic to an automorphism group of Q. Let q vary over all the prime divisors of $3 p-2$. Then obviously \mathbb{Z} is isomorphic to a subgroup of the direct product of all the $\mathbb{R} / \mathbb{I} \Omega '$. Therefore we have only to show that for every prime divisor q of $3 p-2$ the order of \mathcal{R} / \mathbb{Q} is smaller than that of Ω. Then the ordinary Frattini argument allows us to assume that \mathbb{Q} is elementary abelian (of order q^{n}). So we can assume that \mathbb{Z} is a subgroup of the general linear group $G L(u, q)$. Moreover we can assume that \mathbb{Z} is irreducible in the prime field of characteristic q. This implies that \mathbb{Z} is cyclic (of order 3). There remains nothing to prove.

Let l be the order of \mathcal{E}. Then there holds

$$
g=3 p(3 p-1)(3 p-2) l .
$$

Substituting this value of g into (10.3) we have

$$
z^{2}=3(3 p-1)^{2} l
$$

Hence we can put

$$
\begin{equation*}
3 l=m^{2} . \tag{29}
\end{equation*}
$$

On the other hand by the theorem of Sylow (for p) we have that $m^{2} \equiv 1$ (mod p), which implies $m \equiv \pm 1(\bmod p)$. Since m is odd >1 by (29), we obtain that $m \geqq 2 p-1$. So we have the following inequality

$$
(2 p-1)^{2}<3(3 p-2)
$$

which implies the contradiction $p \leqq 2$.
9. Therefore \mathfrak{Z} must fix at least one symbol from Ω, say 4 different from 1, 2 and 3 . Now we can assume, without loss of generality, that \mathbb{Z} fixes just i symbols, $1,2, \ldots, i(i \geqq 4)$ of Ω. Let $N s \mathbb{Z}$ denote the normalizer of \mathcal{Z} in \mathbb{B}. Put $\varnothing=\{1,2, \ldots, i\}$. Then the factor group $N s \mathbb{Z} / \mathbb{Z}$ is a triply transitive permutation group on \varnothing ([22], 9.4). Clearly every permutation $\neq 1$ of $N s \unrhd / \Omega$ fixes at most two symbols of \varnothing. Hence the order of $N s \mathbb{Z} / \mathbb{Z}$ equals $i(i-1)(i-2)$. The degree i must be odd by (15). Therefore using a theorem of Zassenhaus [24] we obtain that $N s \Omega / \mathbb{Z}$ is isomorphic to $L F\left(2,2^{m}\right)$ with $2^{m}+1=i$.

In these circumstances let us assume at first that $\mathcal{\&}$ has at least one domain of transitivity from T whose length is greater than 3 . Now we can show that

$$
\begin{equation*}
i<\sqrt{p} . \tag{30}
\end{equation*}
$$

To this end let Ψ be a domain of transitivity of \mathfrak{Z} from T with length $f>3$. Let $\mathfrak{N} / \mathbb{R}$ be a Sylow 2 -subgroup of $N s \unrhd / \&$. Then for any involution X of $9 ? \cdots$ have $\Psi \cap \Psi^{X}=\emptyset$. In fact Ψ^{x} is again a domain of transitivity of \mathbb{Z} from T. If $\Psi \cap \Psi^{X} \neq \emptyset$, then we have $\Psi=\Psi^{X}$. But this means that X fixes at least one symbol in Ψ, because the length of Ψ is odd. This contradicts (15). Let Ψ^{*} be the set of all the different Ψ^{x} with any element X from $N s \Omega$. Then we can consider $N s \mathbb{R} / \mathbb{R}$ as a transitive permutation group on Ψ^{*}. Let $\mathfrak{F} / \mathfrak{R}$ be the subgroup of $N s \mathbb{Z} / \mathbb{Z}$ consisting of all the elements of $N s \mathbb{Z} / \mathbb{Z}$ each of which fixes Ψ. Then the order of $\mathfrak{F} / \mathbb{R}$ is, as is shown above, odd. Then we see from a property of $L F\left(2,2^{m}\right)$ that \tilde{F} / Ω is cyclic of order at most $2^{m}+1$. Therefore T^{*} contains at least $f 2^{m}\left(2^{m}-1\right)$ symbols of T. Thus we have obtained the following inequality

$$
2^{m}+1+5 \cdot 2^{m}\left(2^{m}-1\right) \leqq 2^{m}+1+f 2^{m}\left(2^{m}-1\right) \leqq 3 p
$$

Let assume that $i \geqq \sqrt{p}$. Then we obtain from above the following inequality :

$$
\sqrt{p}+5(\sqrt{p}-1)(\sqrt{p}-2) \leqq 3 p
$$

which implies that

$$
p+5 \leqq 7 \sqrt{p}
$$

So we obtain that $p \leqq 37$. Since $p \equiv-1(\bmod 4)$ by (15) we have only the following possibilities $p=7 ; 11 ; 19 ; 31$. Furthermore $3 p-1$ must be divisible by 32 , because m is odd and bigger than 3 . The last fact follows from the fact that any Sylow 3 -subgroup of \mathbb{Z} has index 3 in a Sylow 3 -subgroup of \mathbb{B}. Then we see that only the case $p=11$ is possible. But if $p=11$, we must have that $\mathcal{R}=1$, which contradicts our assumption on \mathbb{R}.

Let j be the number of domains of transitivity of \mathbb{Z} with length 3 from T. Then by a theorem of Bochert [1] we have that

$$
\begin{equation*}
i+3 j \leqq 2 p \tag{31}
\end{equation*}
$$

Now there exist at most

$$
i+j+\frac{3 p-i-3 j}{5}
$$

domains of transitivity of \Re from T_{2}. Here we notice that the number in (27) is not smaller than $p-1$, because it is shown to be impossible in 8 that all the a_{j} 's are zero. Then we have the following inequality

$$
4 i+2 j+5 \geqq 2 p
$$

which implies

$$
10 i+2(i+3 j)+15 \geqq 6 p
$$

So by (30) and (31) we obtain the following inequality

$$
10 \sqrt{p}+15 \geqq 2 p
$$

which implies that $p \leqq 37$. This has already been shown above to be impossible.
Thus we can assume that all the domains of transitivity of \mathfrak{E} from $T-\emptyset$ have length 3 . Then we want to show that we are essentially in the same situation as in 8 . At any rate \mathfrak{Q} is an elementary abelian 3 -group. Let I be an involution with the cycle structure (12) . . . Let q be a prime divisor of $3 p-2$ and Ω be a Sylow q-subgroup of Ω such that the normalizer of Ω contains I. Then we see as in 8 that \mathfrak{Q} is abelian. Hence Ω is an A-group of odd order. Therefore by a theorem of Thompson [187 Ω is soluble. Let \mathfrak{M} be a Sylow 3 -complement of \mathbb{R} such that the normalizer of \mathfrak{P} contains I. Then we see again that \mathfrak{M} is abelian. Let $\underline{\mathfrak{Z}}$ be the largest normal subgroup of Ω contained in \mathfrak{M}. We want to see that $\mathfrak{M}=\underline{M}$. Assume that $\mathfrak{M} \neq \underline{M}$. Then let
us consider the centralizer of \underline{M} in Ω. Since \mathfrak{M} is abelian, this has the form $\mathfrak{M} \mathbb{Q}^{\prime}$ with $\mathfrak{Z}^{\prime} \subseteq \mathbb{R}$. If $\mathfrak{Z}^{\prime} \neq 1$, then \mathbb{Z}^{\prime} becomes a normal 3 -subgroup $\neq 1$ of Ω. This is a contradiction. So we have that $\mathfrak{M}=\underline{M}$. The rest is just the same as in 8. Therefore the subcase $b=0$ cannot occur.
10. Next we consider the subcase $b=1$. In this case the equations (19) and (20) take the following forms:

$$
\begin{equation*}
\mathbf{x}_{:}=\mathbf{B}+2 \Sigma \mathbf{C}_{i}+\sum a_{j} \mathbf{D}_{j} \tag{19.2}
\end{equation*}
$$

and
(20.2)

$$
\mathbf{x} . .=\mathbf{B}+\sum \mathbf{C}_{i}+\sum b_{j} \mathbf{D}_{j} .
$$

Corresponding to (22), (23), (24) and (25) we have now

$$
\begin{equation*}
\sum_{x \in \mathscr{S}} \alpha(X)^{3}=7 \mathrm{~g} . \tag{22.1}
\end{equation*}
$$

$$
\begin{align*}
& \sum_{X \in \mathscr{S}}\left(\frac{1}{2}(\alpha(X)-1)(\alpha(X)-2)-\beta(X)\right)^{2} \tag{23.1}\\
= & \sum_{X \in \mathscr{G}} \frac{1}{4} \alpha(X)^{4}+\sum_{X \in \mathscr{S}} \beta(X)^{2}-6 \\
= & 1+4 \cdot \frac{1}{2}(p-1)+\sum a_{j}^{2} .
\end{align*}
$$

$$
\begin{align*}
& \sum_{X \in \mathscr{S}}\left(\frac{1}{2} \alpha(X)(\alpha(X)-3)+\beta(X)\right)^{2} \tag{24.1}\\
= & \sum_{X \in \mathscr{G}} \frac{1}{4} \alpha(X)^{4}+\sum_{X \in \mathscr{G}} \beta(X)^{2}-7 \\
= & 1+\frac{1}{2}(p-1)+\sum b_{j}^{2} . \\
& \sum b_{j}^{2}=\frac{1}{2}(3 p-5)+\sum a_{j}^{2} . \tag{25.1}
\end{align*}
$$

Furthermore corresponding to (26) we have now

$$
\begin{equation*}
\mathbf{e}^{*}=\mathbf{A}+4 \mathbf{B}+3 \sum \mathbf{C}_{i}+\sum\left(a_{j}+b_{j}\right) \mathbf{D}_{j} . \tag{26.1}
\end{equation*}
$$

Hence the norm of \mathbf{e}^{*} equals

$$
1+16+9 \cdot \frac{1}{2}(p-1)+\sum\left(a_{j}+b_{j}\right)^{2}
$$

Let \mathfrak{F} denote the subgroup of \mathbb{B} consisting of all the permutations of \mathbb{G} each of which fixes the symbol 1 , and let h be the order of $\$$. Let us consider
the norm of \mathbf{B} restricted to \mathscr{S} and put

$$
\begin{equation*}
\sum_{X \in \mathfrak{S}} \mathbf{B}(X)^{2}=\sum_{X \in \mathfrak{S}}(\alpha(X)-1)^{2}=\mathrm{ah} \tag{32}
\end{equation*}
$$

The same equality holds for any conjugate subgroup of \mathfrak{S} in \mathfrak{G}. Adding up (32) over all the conjugate subgroups of \mathfrak{S} in (3), we have

$$
\begin{equation*}
\sum_{x \in \mathscr{S}} \alpha(X)(\alpha(X)-1)^{2}=a g \tag{33}
\end{equation*}
$$

By (18) and (22.1) we see that the left hand side of (33) equals 4 g . Thus we have proved that $a=4$. Therefore by ([22], 28.4, 29.2) $\Omega-\{1,2\}$ is divided into three domains of transitivity of \Re, say $T(i)(i=1,2,3)$. Let t_{i} be the length of $T(i)$. Then we have

$$
\begin{equation*}
t_{1}+t_{2}+t_{3}=3 p-2 \tag{34}
\end{equation*}
$$

By $T(i)_{2}$ is meant the set of vectors (x, y), with $x \neq y, x, y \in T(i)$. Now the vectors $(1,2)$ and (2.1) themselves constitute domains of transitivity of \mathbb{R} and furthermore the vectors of $(i, T(j))$ and $(T(j), i)(i=1,2 ; j=1,2,3)$ each constitute domains of transitivity of Ω from Ω_{2}. Therefore we see that the vectors oi $T(i)_{2}$ and $(T(i), T(j))(i, j=1,2,3 ; i \neq j)$ are divided into

$$
\frac{1}{2} \cdot 3(3 p-1)+\sum\left(a_{j}+b_{j}\right)^{2}
$$

domains of transitivity of Ω from Ω_{2}. By (25.1) this number will be transformed into

$$
\begin{equation*}
6 p-4+2 \sum a_{j}^{2}+2 \sum a_{j} b_{j} \tag{27.1}
\end{equation*}
$$

Let n_{k} be a symbol of $T(k)$ and \mathfrak{R}_{k} be the subgroup of Ω consisting of all the permutations of \mathfrak{K} each of which fixes the symbol $n_{k}(k=1,2,3)$. Let i_{h} and j_{k} denote the numbers of domains of transitivity of $\mathfrak{\Omega}_{k}$ from $T(1)+T(2)$ $+T(3)$ having lengths 1 and 3 , respetively $(k=1,2,3)$. Let us assume at first that for every $k=1,2,3, \Omega_{k}$ has a domain of transitivity of length greater than 3 from Q. Then since \mathcal{B} is doubly transitve, we have, by a theorem of Bochert [2], the following inequalities :

$$
\begin{equation*}
2 p+\frac{2 \sqrt{3 p}}{3} \geqq 2+i_{k}+3 j_{k} \quad(k=1,2,3) \tag{5}
\end{equation*}
$$

Every domain of transitivity of Ω from $T(1)_{2},(T(1), T(2))$ and ($\left.T(1), T(3)\right)$
contains a vector of the form ($n_{1}, *$). Hence there exist at most

$$
\begin{equation*}
i_{1}-1+j_{1}+\frac{3 p-2-i_{1}-3 j_{1}}{5} \tag{36}
\end{equation*}
$$

domains of transitivity from $T(1)_{2},(T(1), T(2))$ and ($\left.T(1), T(3)\right)$. The same holds also for $T(2)_{2},(T(2), T(1)),(T(2), T(3))$ and $T(3)_{2},(T(3), T(1)),(T(3)$, $T(2)$). Adding up three numbers of type (36) we see that there exist at most

$$
\begin{equation*}
\frac{9 p-21}{5}+\frac{4}{5}\left(i_{1}+i_{2}+i_{3}\right)+\frac{2}{5}\left(j_{1}+j_{2}+j_{3}\right) \tag{37}
\end{equation*}
$$

domains of transitivity of \Re from $T(k)_{2}$ and $(T(k), T(1))(k, 1=1,2,3 ; k \neq 1)$.
Let J be an involution whose cycle structure has the form (12) By (14) J fixes just one symbol, say α_{J}, of Ω. Without loss of generality we can assume that α_{J} belongs to $T(3)$ and $\alpha_{J}=\alpha_{3}$. Since J belongs to the normalizer of K, J transfers $T(1)$ into one of $T(i)$'s. $(i=1,2,3)$. If it is $T(1)$, then since J does not fix any symbol of T_{1} the length of $T(1)$ must be even, which is a contradiction. Moreover since J fixes the symbol α_{3}, J fixes $T(3)$. Hence J interchanges $T(1)$ with $T(2)$. In particular we see that L_{1} and L_{2} are conjugate in the normalizer of K. and that $i_{1}=i_{2}, j_{1}=j_{2}$ and $t_{1}=t_{2}$.

Let Φ_{s} be the set of all the symbols of $T(1)+T(2)+T(3)$, each of which is fixed by all the permutations of Ω_{3}.

In the first place, let us assume that $\mathscr{\emptyset}_{3}$ is contained in $T(3)$. We consider the normalizer $N s \mathfrak{R}_{3}$ of \mathfrak{R}_{3} in \mathfrak{C}. Then by a theorem of Witt ([22], 9.4) Ns $\mathfrak{R}_{3} / \mathfrak{Z}_{3}$ is doubly transitive on $\Phi_{3} \cup\{1,2\}$. Furthermore since Ω is transitive on $T(3)$, we see by a theorem of $\operatorname{Jordan}([22], 3.6)$ that $N s \Omega_{3} \cap \Omega$ is transitive on \mathscr{D}_{s}. Hence $N s \Omega_{3} / \mathfrak{L}_{3}$ is triply transitive on $\varpi_{3} \cup\{1,2\}$ and has the order $\left(i_{3}+2\right)\left(i_{3}\right.$ $+1) i_{3}$. Since i_{3} is odd, we obtain by a theorem of Zassenhaus ([24]) that $N s \Omega_{3} / \Omega_{3} \simeq L F\left(2,2^{m}\right)$, where $2^{m}=i_{3}+1$.

Now if $i_{3} \geqq \sqrt{p}$, then we obtain as in 9 . that $p \leqq 37$. Hence again by (14) we have only the following possibilities $p=7 ; 11 ; 19 ; 23 ; 31$. Here $3 p-2$ cannot be a prime number. In fact, otherwise, since the degree of C_{i} equals $3 p-2$, the order of \mathfrak{D} must be divisible by $3 p-2$ by a well known theorem and this implies the triple transitivity of \mathscr{C} contradicting our assumption $b=1$. So it remains only the following two possibilities $p=19$; 31. Furthermore if \mathcal{L}_{3} has the domain of transitivity of length >5, the same method as in 9 assures us that $p<19$. Hence we can assume that \mathbb{Z}_{3} does not possess any domain of
transitivity of length >5. The order of \mathcal{L}_{3} is therefore of the form $3^{\mu} 5^{\nu}$. If $p=31$, then since the order of Ω is, as is noticed above, divisible by 91 , we have that $t_{3} \equiv 0(\bmod 91)$. This contradicts (34), because $t_{1}=t_{2} \geq 1$. So we must have that $p=19$. Let k_{3} denote the number of domains of transitivity of \mathfrak{Z}_{3} with length 5 . Then we have the following equality: $2+i_{3}+3 j_{3}+5 k_{3}=57$. The same method as in 9 shows us that $k_{3} \geqq i_{3}\left(i_{3}+1\right)$. Hence we have that $i_{3}+5 i_{2}\left(i_{3}+1\right) \leqq 55$, whence follows that $i_{s} \leqq 3$. This contradicts our assumption that $i_{3} \geqq 19>4$.

Therefore we can assume that $\mathrm{i}_{3}<\sqrt{p}$. Then using this inequality we have from (27.1), (35) and (37) that

$$
\frac{9 p-21}{5}+\frac{4}{5} \sqrt{p}+\frac{4}{5}\left(4 p+\frac{4 \sqrt{3 p}}{3}\right)+\frac{2}{5}\left(\frac{2}{3} p+\frac{2 \sqrt{3 p}}{9}\right)>6 p-4 .
$$

Then we have easily that $p<19$. This is, as is already shown above, a contradiction.

Next let us assume that $\mathscr{\Phi}_{3}$ is not contained in T_{3}. Then without loss of generality we can assume that $\mathscr{\Pi}_{3}$ contains a symbol of $T(1)$ and namely α_{1}. Then Ω_{3} is contained in Ω_{1}. Since we can choose the symbol α_{2} in such a way that the cycle structure of J has the form $J=(12)\left(\alpha_{3}\right)\left(\alpha_{1} \alpha_{2}\right) \ldots$, we can assume that \mathscr{I}_{3} is also contained in \mathscr{L}_{2}. In particular we have that $t_{3} \equiv 0(\bmod$ $\left.t_{1}\left(=t_{2}\right)\right)$. In this case $\Phi_{1},\left(\mathscr{Q}_{2}\right)$ the sets of all the symbols of $T(1)+T(2)+T(3)$, each of which is fixed by all the permutations of $\mathscr{R}_{1}\left(\mathscr{R}_{2}\right)$, must be contained in $T(1)+T(2)$. Otherwise, for instance, if Φ_{1} is not contained in $T(1)+T(2)$, we obtain that $\mathbb{R}_{1} \subseteq \mathfrak{R}_{3}$ and $t_{1}=t_{2}=t_{3}$. The latter fact contradicts (34). In particular we have that $t_{1}>t_{3}$. If $t_{3}: t_{1}>3$, then we have from (34) that $t_{1}<\frac{3}{7} p-\frac{2}{7}$. Now using the fact $\Phi_{1} \cup \Phi_{2} \subseteq T(1)+T(2)$ we obtain from (27.1), (35) and (37) the following inequality
$\frac{9 p-2}{5}+\frac{4}{5}\left(\frac{12}{7} p-\frac{8}{7}\right)+\frac{4}{5}\left(2 p+\frac{2 \sqrt{3} p}{3}\right)+\frac{2}{5}\left(\frac{2 p}{3}+\frac{2 \sqrt{2 p}}{9}-2\right) \geqq 6 p-4$.
This implies a contradiction that $p<5$. Hence we must have that $t_{3}=3 t_{1}$. Then we have from (34) that $t_{1}=\frac{3}{5} p-\frac{2}{5}$. Finally using again $\mathscr{D}_{1} \cup \mathscr{D}_{2}$ $\leq T(1)+T(2)$ we obtain from (27.1), (35) and (37) the following inequality
$\frac{9 p-21}{5}+\frac{4}{5}\left(\frac{12}{5} p-\frac{8}{5}\right)+\frac{4}{5}\left(2 p+\frac{2 \sqrt{3 p}}{3}\right)+\frac{2}{5}\left(\frac{2 p}{3}+\frac{2 \sqrt{3 p}}{9}-2\right) \geqq 6 p-4$.

This implies a contrudiction that $p<7$.
Hence we can assume that at least one of $\mathfrak{R}_{k}(k=1,2,3)$, say \mathfrak{Z}_{1}, has only domains of transitivity with length either 1 or 3 from Ω. Then \mathbb{R}_{1} must be an elementary abelian 3 -group. On the other hand, $(\mathbb{S}$ qossesses an irreducible character of degree $3 p-2$, for instance, \mathbf{C}_{1}. Therefore by a famous theorem g and hence the order of Ω must be divisible by $3 p-2$. Hence finally t_{1} must be divisible by $3 p-2$. By (34) this is a contradiction.

Therefore the case in which the degree of \mathbf{B} is $3 p-1$ cannot occur.
§ 3. The case in which the degree of \mathbf{B} is $2 p-1$.
11. Now let us assume that the degree of \mathbf{B} equals $2 p-1$. Then the equations (4.1) and (10) read as follows:

$$
\begin{equation*}
\alpha(X)=\mathbf{A}(X)+\mathbf{B}(X)+\mathbf{D}_{1}(X), \tag{4.3}
\end{equation*}
$$

where X is any element of \mathscr{B} and the degree of D_{1} equals p;

$$
\begin{equation*}
2(p-1)(2 p-1) p z^{2}=g(2 p-1-\mathbf{B}(J))^{2} . \tag{10.4}
\end{equation*}
$$

By a theorem of Brauer ([3], Lemma 3) we have

$$
\mathbf{B}(J)=1 \text { or }-1 .
$$

If $B(J)=-1$, then from (10.4) we obtain the following equality

$$
(p-1)(2 p-1) z^{2}=2 p g
$$

which shows that z is divisible by p. This is a contradiction. Hence we must have

$$
\begin{equation*}
\mathbf{B}(J)=1, \tag{38}
\end{equation*}
$$

and (10.4) takes the following form:

$$
\begin{equation*}
p(2 p-1) z^{2}=2(p-1) g \tag{10.5}
\end{equation*}
$$

(10.5) tells us in particular that the order of a Sylow 2 -subgroup of $\mathfrak{C S}$ equals the power of 2 dividing $2(p-1)$, say 2^{a+1}. Therefore every character \mathbf{C}_{i} becomes by (1.1) a character of 2 -defect $0\left(i=1, \ldots, \frac{1}{2}(p-1)\right)$.

We consider the representation \mathscr{D}_{1} corresponding to D_{1} and the matrix $\mathscr{D}_{1}(J)$ corresponding to J. Let us assume that $\mathscr{D}_{1}(J)$ possesses the eigenvalues 1 and -1 in the multiplicities m and n respectively. Then we have that

$$
m+n=p
$$

On the other hand, again by a theorem of Brauer ([3], Lemma 3) we have

$$
\begin{equation*}
\mathbf{D}_{1}(J)=m-n=\varepsilon \tag{40}
\end{equation*}
$$

where ε is either 1 or -1 . From (39) and (40) we obtain that

$$
\begin{equation*}
n=\frac{1}{2}(p-\varepsilon) \tag{41}
\end{equation*}
$$

Now since \mathfrak{B} is simple, the determinant of $\mathfrak{D}_{1}(J),(-1)^{n}$, must be the unity, and hence n must be even. Here it may be convenient to distinguish two subcases, (I) $p \equiv 1(\bmod 4)$ and (II) $p \equiv-1(\bmod 4)$, though the second subcase will be eliminated rather promtly later. Then in the subcase (I) (41) and (40) imply that $\varepsilon=1$ and $D_{1}(J)=1$. Hence by (38) and (4.3) we have that

$$
\begin{equation*}
\alpha(J)=3 \tag{42}
\end{equation*}
$$

In the subcase (II) (41) and (40) imply that $\varepsilon=-1$ and $D_{1}(J)=-1$. Hence by (38) and (4.3) we have that

$$
\begin{equation*}
\alpha(J)=1 \tag{43}
\end{equation*}
$$

12. Now we are in a position to apply a method of Wielandt [21]. By (4.3), $\Omega-\{1\}$ is divided into two domains of transitivity of \mathscr{S}, say $T(i)(i=1$, 2) ([22], 28.4, 29.2). Let t_{i} be the length of $T(i)$ and assume that $t_{1} \leqq t_{2}$. Then we have

$$
\begin{equation*}
t_{1}+t_{2}=3 p-1 \tag{44}
\end{equation*}
$$

and
(45)

$$
t_{1} \leqq \frac{1}{2}(3 p-1) \leqq t_{2}
$$

We define matrices $V(T(i))$ as follows: put $V(T(i))=\left(v_{k}, l\right)$. Then $v_{k, l}=1$, if there exist an element X of $(3$ and a symbol n of $T(i)$ such that $X(1)=1$ and $X(n)=k$ hold, and $v_{k, l}=0$ otherwise. $V(T(i))$ is commutative with every matrix of G, which is as usual considered as a linear group consisting of permutation matrices. By the definition of $V(T(i))$ we have

$$
E+V(T(1))+V(T(2))=W=\left(\begin{array}{ccc}
1 & \cdots & 1 \tag{46}\\
\cdot & \cdots & \cdot \\
\cdot & \cdots & \cdot \\
\cdot & \cdots & \cdot \\
1 & \cdots & 1
\end{array}\right)
$$

where E is the unit matrix of degree $3 p$. Let us bring \mathbb{B}_{3} into the completely reduced form. Then by the lemma of Schur $V(T(i))$ and W become diagonal matrices. Without loss of generality we can assume that the diagonal form of $V(T(i))$ is

Now as in [21] we obtain the following:
(i) $z(i, j)$ is a rational integer $(i=1,2 ; j=1,2,3)$,
and $z(i, 1)=t_{i}, z(i, 2) \neq t_{i}$ and $z(i, 3) \neq t_{i}(i=1,2)$.
(ii) $z(i, 1)+p z(i, 2)+(2 p-1) z(i, 3)=0$.
(iii) $z(i, 1)^{2}+p z(i, 2)^{2}+(2 p-1) z(i, 3)^{2}=3 p t$.

Furthermore since W possesses the eigenvalues $3 p$ and 0 in the multiplicities 1 and $3 p-1$ respectively, by (46) we have the following equalities:

$$
\begin{equation*}
z(1, i)+z(2, i)=-1 \quad(i=2,3) \tag{48}
\end{equation*}
$$

From (i) and (ii) we derive at once that

$$
\begin{equation*}
z(i, 3) \equiv t_{i}(\bmod p) \tag{49}
\end{equation*}
$$

Moreover we obtain from (iii) that

$$
z(i, 3)^{2} \leqq \frac{3 p t_{i}}{2 p-1}<p^{2}
$$

In fact assume that

$$
t_{i} \geqq \frac{(2 p-1) p}{3}
$$

But we have that $\frac{p(2 p-1)}{3} \geqq 3 p$ for $p \geqq 5$, which contradicts (44).
Hence we have that

$$
-p<z(i, 3)<p
$$

From (47) (i), (49), (50) and (45) we have that

$$
-p<t_{1}-z(1,3)<\frac{1}{2}(5 p-1)<3 p
$$

and

$$
\frac{1}{2}(p-1)<t_{2}-z(2,3)<4 p .
$$

Therefore we have

$$
\begin{equation*}
t_{1}-z(1,3)=\text { either } p \text { or } 2 p \tag{51}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{2}-z(2,3)=\text { either } p \text { or } 2 p \text { or } 3 p \tag{52}
\end{equation*}
$$

Among different combinations of (51) and (52) only the following two cases are possible by (48): Case (A) $t_{1}-z(1,3)=p$ and $t_{2}-z(2,3)=2 p$; Case (B) $t_{1}-z(1,3)=2 p$ and $t_{2}-z(2,3)=p$.

At first let us consider Case (A). Then we have from (47) (ii) the following equalities :

$$
\begin{equation*}
z(1,2)=2 p-1-2 t_{1} \text { and } z(2,2)=2(2 p-1)-2 t_{2} \tag{53}
\end{equation*}
$$

Substituting (51), (52) and (53) into (47) (iii) we obtain

$$
\begin{equation*}
6 t_{1}^{2}-3(4 p-1) t_{1}+(2 p-1)(3 p-1)=0 \tag{54}
\end{equation*}
$$

and

$$
\begin{equation*}
6 t_{2}^{2}-3(8 p-3) t_{2}+4(2 p-1)(3 p-1)=0 \tag{55}
\end{equation*}
$$

Similarly in Case (B) we have the following equations:

$$
\begin{equation*}
6 t_{1}^{2}-3(8 p-3) t_{1}+4(2 p-1)(3 p-1)=0 \tag{56}
\end{equation*}
$$

and

$$
\begin{equation*}
6 t_{2}^{2}-3(4 p-1) t_{2}+(2 p-1)(3 p-1)=0 \tag{57}
\end{equation*}
$$

Now we can show that Case (B) cannot occur. To this end let us consider the quadratic form $Q(T)$ in T, which is the left hand side of (57). $Q(T)$ takes its minimum value at $\frac{1}{4}(4 p-1)$. By (45) we have that $Q\left(t_{2}\right)$
$\geqq Q\left(\frac{1}{2}(3 p-1)\right)$. But a simple calculation shows that $Q\left(\frac{1}{2}(3 p-1)\right)$ $=\frac{1}{2}(3 p-1)(p-2)>0$. This contradicts (57).

The equation (55) tells us that t_{2} is divisible by 8 . Since t_{2} is the length of a domain of transitivity of \mathfrak{K}, t_{2} is a divisor of the order of \mathscr{K}, and hence of g. Therefore g must be divisible by 8 .

Now let us assume that the subcase (II) in $\mathbf{1 1}$ does occur. Then we have from (43) that $\frac{1}{2}(3 p-1)$ must be even, because \mathbb{B} is simple and contains no odd permutation. This implies, however, by (10.5) that g cannot be divisible by 8 . This is a contradiction.

Now by (42) we see that $3 p-1 \neq 0(\bmod 4)$. Hence the equations (54) and (55) tells us that the exact powers of 2 dividing t_{1} and t_{2} are 2 and 8 respectively.
13. Let \mathbb{S} be a Sylow 2 -subgroup of \mathfrak{G}, which is contained in 5 . Since $\frac{1}{2} t_{1}$ is odd, $T(1)$ contains a domain of transitivity T_{\subsetneq} of \subseteq with length 2. Without loss of generality we can put $T_{\S}=\{2,3\}$. Let \mathfrak{F}_{1} denote the subgroup of \mathbb{E} consisting of all the permutations of \mathbb{E} each of which fixes each of the symbols 2 and 3 . Then \mathfrak{T}_{1} has index 2 with respect to \mathbb{C}. Let us consider \mathfrak{I}_{1} as a permutation group on $T(2)$. Then by (42) \mathscr{I}_{1} must be semi-regular on $T(2)$. In particular we have that $t_{2} \equiv 0\left(\bmod 2^{a}\right)$. This implies, together with the fact remarked at the end of 12 , that $8 \equiv 0\left(\bmod 2^{a}\right)$. Therefore the order of ' \mathbb{C} equals either 8 or 16 .

Now we want to show that \subseteq contains a cyclic normal subgroup of index 2. At any rate \mathbb{S} contains an element X with the cycle structure (1)(23) . . . Assume that there exists such an element X with order greater than 2 , say $2^{b}(b \geqq 2)$. Let (1)(23) Y be the cycle structure of X. Then by (42) Y consists of cycles of order 2^{b}. Since (B) contains no odd permutation, the number $3(p-1) / 2^{b}$ must be odd. This implies that $b=a$. So we can assume that every element X with the cycle structure (1)(23) ... is an involution. At any rate we have the decomposition $\mathfrak{S}=\mathfrak{T}_{1}\langle X\rangle$ with $\mathfrak{I}_{1} \cap\langle X\rangle=1$. By (42) X fixes just two symbols of Ω, which are different from 1,2 and 3 , say 4 and 5 . Let us consider the centralizer $Z s_{\tilde{\Theta}} X$ of X in \subseteq. Then since by (42) every element $Y \neq 1$ of \Im_{1} fixes no symbol of Ω, which is different from 1,2 and 3 , we see that the order of $Z s_{\mathfrak{J}} X$ equals four. Hence by a theorem of Suzuki
([16], Lemma 4) ङ contains an element of order 2^{a}.
Moreover an ordinary transfer argument (see for example [19]) assures us that \mathbb{E} cannot be abelian. Therefore if \mathbb{E} is of order 8 , we see, using a theorem of Brauer-Suzuki [9], that \mathbb{S} is a dihedral group.

Our next aim is to show that the order of \mathbb{S} cannot be 16. Let us assume that the order of Ξ is 16 . Let us consider \mathbb{E} on $T(2)$. Then \subseteq cannot be semi-regular on $T(2)$. In fact, otherwise, we have the congruence $t_{2} \equiv 0(\bmod$ 16), which implies the contradiction $8 \equiv 0(\bmod 16)$. Hence there exists a symbol of $T(2)$, say 4 , and an element $B \neq 1$ of \subseteq such that B fixes 4. Let \mathfrak{F}_{2} denote the subgroup of \Subset consisting of all the permutations of \Subset each of which fixes the symbol 4. Then since t_{2} is even, \mathfrak{I}_{2} fixes at least, and by (42) just, one more symbol of $T(2)$, say 5 . Moreover by (42) we have $\mathfrak{I}_{1} \cap \mathfrak{I}_{2}=1$, which implies that the order of \mathscr{I}_{2} equals 2 . Hence B generates \mathfrak{I}_{2}. B has the cycle structure (1)(23)(4)(5) . . . Let A be an element of \Subset of order 8. Then the cycle structure of A must have the form (1)(23) A^{*}, where A^{*} consists of cycles of order 8 . In fact, otherwise, it must have the form (1)(2)(3) A^{*}, which contradicts the simplicity of \mathfrak{G}, because $(p-1) / 8$ is odd. Let us assume that \mathfrak{S} is not a dihedral group. Then by a theorem of Suzuki ([16], Lemma 4) we have that $B A B=A^{3}$. Then \mathscr{f} contains just two classes of involutions, namely the class of A^{4} and that of B. Let z_{1} and z_{2} denote the orders of centralizers of A^{4} and B in \mathscr{I} respectively. Let $g(2)$ and $h(2)$ denote the numbers of involutions in \mathfrak{S} and in $\mathscr{5}$ respectively. Then by (42) we have the following equality

$$
g / z=g(2)=p h(2)=p\left(h / z_{1}+h / z_{2}\right),
$$

which implies the equality

$$
\begin{equation*}
3 / z=1 / z_{1}+1 / z_{2} . \tag{58}
\end{equation*}
$$

If the centralizer $Z s A^{4}$ of A^{4} in $\mathfrak{C S}$ contains an element with the cycle structure (123) ..., we have $z=3 z_{1}$. Then (58) implies that $1 / z_{2}=0$, which is a contradiction. $Z s A^{4}$ contains B. Hence if $Z s A^{4}$ contains no element with the cycle structure (123) \ldots, then we have $z=z_{1}$. Then (58) implies that $z_{1}=2 z_{2}$. But the indices of the centralizers of involutions in \subseteq with respect to \mathbb{S} are either 1 or 4 . This contradicts that $z_{1}=2 z_{2}$. Thus \subseteq must be a dihedral group of order 16 .

Let us consider $\mathfrak{5}$ on $T(2)$ ．Then since B（or A ）is odd on $T(2)$ ， $\mathscr{5}$ contains a normal subgroup $\mathfrak{夕}^{*}$ of index 2 ，which consists of even permutations of \mathscr{J}^{2} on $T(2)$ ，A Sylow 2 －subgroup $\subseteq \cap \mathfrak{S}^{*}$ of \mathfrak{g}^{*} is generated by A^{2} and $A B$ ．A^{4} and $A B$ are not conjugate in \mathfrak{g}^{*} ．Then since $\mathbb{C} \cap \mathfrak{夕}^{*}$ is a dihedral group of order 8，an ordinary transfer argument assures us that $\mathscr{夕}^{*}$ contains a normal subgroup of index 2 ．Then since 5 contains a normal subgroup of index $4, \mathfrak{y}$ contains the normal Sylow 2－complement \mathfrak{H}（for instance see［13］，Lemma 8）． Let Ω_{1} denote the subgroup of $\mathscr{~}$ consisting of all the permutations of \mathscr{J}^{2} each of which fixes the symbol 2 ．Similarly let Ω_{2} denote the subgroup of \mathfrak{g} cor－ responding to 4 instead of 2．Moreover let $5^{\prime}(2)$ denote the 2 －commutator subgroup of \mathfrak{K} ．Then since \mathfrak{J} is 2 －nilpotent，the index of $\mathscr{夕}^{\prime}(2)$ in $5 ু$ equals 4 ． It is easy to see that the indices of $\mathscr{夕}^{\prime}(2) \Omega_{i}$ with respect to $\mathscr{\delta}^{2}$ are equal to 2 （ $i=1,2$ ）．Therefore Ω is divided into 5 domains of transitivity of $\mathscr{\Omega}^{\prime}(2)$ ．Then we have the following equation：$\sum_{H \in \mathfrak{S}^{\prime}(2)} \alpha(H)=5 h_{2}^{\prime}$ ，where H ranges over all the elements of $\mathscr{S}^{\prime}(2)$ and h_{2}^{\prime} is the order of $\mathscr{S}^{\prime}(2)$ ．Obviously $\sum_{H \in \mathfrak{S}^{\prime}(2)} \mathbf{A}(H)=h_{2}^{\prime}$ ． Furthermore since \mathbf{C}_{i} is a character of 2 defect $0\left(i=1,2, \ldots, \frac{p-1}{2}\right)$ ，we have by（1．1） $\mathbf{B}(S)=1$ for every 2 －singular element S of $(\mathbb{G}$ ．Then since every element H outside $\mathfrak{S}^{\prime}(2)$ is 2 －singular，we have that $\sum_{\mathfrak{j} \in \mathfrak{S}^{\prime}(2)} \mathbf{B}(\mathfrak{y})=h_{2}^{\prime}$ ．Therefore using（4．3）we obtain the following equation

$$
\begin{equation*}
\sum_{n \in \mathfrak{S}_{2}^{\prime}(2)} \mathbf{D}_{1}(H)=3 h_{2}^{\prime} . \tag{59}
\end{equation*}
$$

Let e and f_{1} be the principal characters of $\mathscr{S}^{\prime}(2)$ and \mathscr{J} respectively．Let $f_{i}(i=2,3,4)$ be the linear characters of 5 containing $\mathscr{S}^{\prime}(2)$ in their kernels and different from f_{1} ．They can be indexed so that the following character table hold．

Let e^{*} and f_{i}^{*} be the characters of \mathfrak{B} induced by e and $f_{i}(i=1,2,3,4)$ ．Then we have the equations：

$$
e^{*}=f_{1}^{*}+f_{2}^{*}+f_{3}^{*}+f_{4}^{*}
$$

and

$$
f_{1}^{*}=\boldsymbol{\alpha}=\mathbf{A}+\mathbf{B}+\mathbf{D}_{1} .
$$

Furthermore by the reciprocity theorem of Frobenius we have from (59) the following equation:

$$
e^{*}=\mathbf{A}+\mathbf{B}+3 \mathbf{D}_{1}+\sum_{\lambda>1} d_{\lambda} \mathbf{D}_{\lambda}
$$

where D_{λ} ranges some irreducible characters of \mathbb{C} of p-defect 0 . (We assume that $d_{\lambda}>0$). From these equations we have the following equation:

$$
f_{2}^{*}+f_{3}^{*}+f_{4}^{*}=2 \mathbf{D}_{1}+\sum_{\lambda>1} d_{\lambda} \mathbf{D}_{\lambda} .
$$

No $f_{k}^{*}(k=2,3,4)$ has the form : $f_{k}^{*}=2 \mathbf{D}_{1}+\cdots$. In fact, otherwise, we have that $f_{k}^{*}=2 \mathbf{D}_{1}+D_{2}$, where the degree of \mathbf{D}_{2} equals p. Then we must have, as is shown in 11, that $\mathbf{D}_{2}(J)=1$ for every involution J of \mathbb{B}, and therefore that $f_{k}^{*}(J)=3$. Let X_{i} be a permutation of \mathbb{G} which transfers the symbol 1 to $i(i=1,2, \ldots, 3 p)$. Then we have a decomposition of \mathbb{E} into the cosets of $\mathfrak{g}: \mathscr{B}=\sum_{i=1}^{n} \mathfrak{g}_{i}$. Now from the definition of induced characters we have that $f_{k}^{*}(J)=f_{k}^{*}(B)=f_{k}(B)+f_{k}\left(X_{4}^{-1} B X_{4}\right)+f_{k}\left(X_{5}^{-1} B X_{5}^{-}\right)$, which is less than 3 if $k=3$ or 4 , and that $f_{k}^{*}(J)=f_{k}^{*}(A B)=f_{k}(A B)+\cdots$, whch is less than 3 if $k=2$. Anyway this is a contradiction.

Therefore either f_{2}^{*} or f_{3}^{*} takes the form: $f_{l}^{*}=\mathrm{D}_{1}+\cdots(l=2$ or 3$)$.
Since f_{l}^{*} cannot be decomposed into characters of degree p from the same reason as above, we have that $f_{l}^{*}=\mathbf{D}_{1}+\mathbf{D}_{2}$, where the degree of D_{2} equals $2 p$. Using again a theorem of Brauer [3], Lemma 3, we have that $D_{2}(J)=2$ or -2 for every involution J of \mathbb{B}. The case $D_{2}(J)=0$ can be eliminated from the simplicity of \mathbb{E}. Since $f_{l}^{*}(J)<3$ we must have here that $D_{2}(J)=-2$, and thetefore that $f_{l}^{*}(J)=-1$. Now from the definition of induced characters and from the fact that A^{4}, B and $A B$ are conjugate with each other, we have that $f_{l}^{*}(J)=f_{l}^{*}\left(A^{4}\right)=f_{l}\left(A^{4}\right)+f_{l}(B)+\cdots$, which is not less than 1 if $l=2$ and that $f_{l}^{*}(J)=f_{l}^{*}\left(A^{4}\right)=f_{l}\left(A^{4}\right)+f_{l}(A B)+\cdots$, which is not less than 1 if $l=3$. This is a contradiction.
14. Since \mathbb{E} is a dihedral group of order 8, there exists an involution B of \mathbb{E} such that the cycle structure of B has the form (1), (23) Let A
be an element of Ω with order 4. Then since $\frac{1}{4} \cdot 3(p-1)$ is odd, the cycle structure of A has the form (1), (23) A^{*}, where A^{*} consists of cycles of order 4.

Now we are in a position to use in full some excellent results of Brauer and Suzuki concerning the groups which satisfy the following two conditions: (i) Their Sylow 2 -subgroups are dihedral groups of order either 8 or 4 . (ii) They contain no normal subgroup of index 2 ([4], [17] and [13]).

Our group $\mathbb{\$}$ with a dihedral Sylow 2 -subgroup of order 8 certainly satisfies these two conditions. Hence the principal 2-block of irreducible characters of (5) consists of five characters \mathbf{A} and $\mathbf{x}_{i}(i=1,2,3,4)$, whose degrees satisfy the following equalities:

$$
\begin{equation*}
\mathbf{X}_{4}(1)=\varepsilon+\mathbf{X}_{1}(1)=\mathbf{X}_{2}(1)+\varepsilon^{\prime} \mathbf{X}_{3}(1) \tag{60}
\end{equation*}
$$

where ε and ε^{\prime} equal either 1 or -1 . Since every \mathbf{C}_{j} is a character of defect 0 for 2, we have $\mathbf{C}_{j} \neq \mathbf{X}_{i}$. Then it is easy to see from (60) that $\mathbf{X}_{1}=\mathbf{B}, \varepsilon=1$ and $\varepsilon^{\prime}=1$.

Put $z=8 y$. Let $Z s A, Z s A^{2}, Z s B, Z s A B$ and $Z s \subseteq$ be the centralizers of A, $A^{2}, B, A B$ and \subseteq in © . Furthermore we denote by $2 l, 4 l u, 4 l u_{1}$ and $4 l u_{2}$ the orders of $Z s \Xi, Z s A \cap Z s A^{2}, Z s B \cap Z s A^{2}$ and $Z s A B \cap Z s A^{2}$. Then the first formula of Suzuki concerning the order of \mathscr{B} is as follows:

$$
\begin{equation*}
g=\frac{32 y u^{2}\left(u_{1}+u_{2}\right)^{2} p(2 p-1)}{(p-1)^{2}} \tag{61}
\end{equation*}
$$

Now we want to show by means of a contradiction that 5 contains a normal subgroup of index 2. So let us assume that \wp contains no normal subgroup of index 2. Then since $ઈ$ also satisfies the above two conditions, we have the equality analogous to (61). It is clear from our choice of the elements A and B that $Z s \Xi, Z s A \cap Z s A^{2}, Z s B \cap Z s A^{2}$ and $Z s A B \cap Z s A^{2}$ are contained in §. Let $8 y^{\prime}$ be the order of $Z s A^{2} \cap \oiint$ and let \mathbf{X}_{1}^{\prime} be the irreducible character of § corresponding to $\mathbf{X}_{1}=\mathbf{B}$ of \mathfrak{B}. Then the first formula of Suzuki for $\mathfrak{5}$ is as follows:

$$
\begin{equation*}
\frac{g}{3 p}=\frac{64 y^{\prime} u^{2}\left(u_{1}+u_{2}\right)^{2} \mathbf{X}_{1}^{\prime}(1)\left(\mathbf{X}_{1}^{\prime}(1)+\varepsilon^{\prime}\right)}{\left(\mathbf{X}_{1}^{\prime}(1)-\varepsilon^{\prime}\right)^{2}} \tag{62}
\end{equation*}
$$

where ε^{\prime} equals ± 1. Furthermore all the involutions in $\wp 5$ are conjugate to one another. Hence corresponding to (58) we have here that $y=3 y^{\prime}$. Then
we obtain from（61）and（62）the following equality ：

$$
\begin{equation*}
\frac{\mathbf{x}_{1}^{\prime}(1)\left(\mathbf{x}_{1}^{\prime}(1)+\varepsilon^{\prime}\right)}{\left(\mathbf{X}_{1}^{\prime}(1)-\varepsilon^{\prime}\right)^{2}}=\frac{2 p-1}{2(p-1)^{2}} \tag{63}
\end{equation*}
$$

（63）implies at once that $\varepsilon^{\prime}=-1$ ．Furthermore it is easy to check that the right－hand side of（63）is smaller than $\frac{1}{2}$ and that the left－hand side of（63） is greater than $\frac{1}{2}$ ．In the latter case we use the congruence $\mathbf{X}_{1}^{\prime}(1) \equiv \varepsilon^{\prime}(\bmod$ 8）due to Brauer and Suzuki．This is a required contradiction．Hence \mathscr{L} contains a normal subgroup \mathfrak{F}^{*} of index 2.

Then we want to show that $\mathscr{\Sigma}^{*}$ contains no normal subgroup of index 2. Assume that $\mathscr{夕}^{*}$ contains a normal subgroup of index 2．Then $\$ 2$ is 2 －nilpotent． Let $\S_{夕}^{\prime}(2)$ denote the 2 －commutator subgroup of $\sqrt{\prime}$ ．Then the index of $\mathfrak{夕}^{\prime}(2)$ in 5 equals 4 ．It is eas to see that Ω is divided into either 5 or 7 domains of transitivity of $\mathscr{夕}^{\prime}(2)$ ．But if Ω is divided into 5 domains of transitivity of $H^{\prime}(2)$ ， we obtain the same contradiction as at the end of 13 ．So let us assume that Ω is divided into 7 domains of transitivity of $\mathscr{夕}^{\prime}(2)$ ．Then it follows that \Subset is semi－regular on $T(2)$ ．Anyway we can use the same notation as in 13. （Instead of A^{4} there we must consider here A^{2} ）．Then we have the equations：

$$
\begin{equation*}
e^{*}=\mathbf{A}+\mathbf{B}+5 \mathbf{D}_{1}+\sum_{\lambda>1} d_{\lambda} \mathbf{D}_{\lambda} \tag{64}
\end{equation*}
$$

and

$$
f_{2}^{*}+f_{3}^{*}+f_{4}^{*}=4 \mathbf{D}_{1}+\sum_{\lambda>1} d_{\lambda} \mathbf{D}_{\lambda}
$$

Then some $f_{k}^{*}(k=2,3,4)$ must have the form：$f_{k}^{*}=3 \mathbf{D}_{1}$ or $f_{k}^{*}=2 \mathbf{D}_{1}+\cdots$ ， which gives us a contradiction as in 13．Thus \mathfrak{g}^{*} contains no normal subgroup of index 2 ．

Now the group $\mathscr{\Sigma}^{*}$ with an elementary abelian Sylow 2 －subgroup of order 4 satisfies the two conditions at the beginning of this section．The principal 2 －block of irreducible characters of $\mathscr{\delta}^{*}$ consists of four characters $\mathbf{X}_{i}^{*}(i=0,1$ ， 2,3 ），where \mathbf{X}_{0}^{*} is the principal character of \mathscr{S}^{*} ．Let $4 l^{*}$ be the order of the
 in $Z s A^{2} \cap \mathfrak{S}^{*}$ ．Then we have the following formula of Brauer concerning the order of \mathfrak{S}^{*} ：

$$
\begin{equation*}
\frac{g}{6 p}=\frac{32 u^{* 3} l^{*} \mathbf{X}_{1}^{*}(1) \mathbf{X}_{2}^{*}(1) \mathbf{X}_{3}^{*}(1)}{\left(\mathbf{X}_{1}^{*}(1)+\delta_{1}\right)\left(\mathbf{X}_{2}^{*}(1)+\delta_{2}\right)\left(\mathbf{X}_{3}^{*}(1)+\delta_{3}\right)} \tag{5}
\end{equation*}
$$

where o_{i} equals ± 1.
Further we need the second formula of Suzuki concerning the order of $(\mathfrak{G}$, which is, using the facts $\mathbf{X}_{1}=\mathbf{B}, \varepsilon=1$ and $\varepsilon^{\prime}=1$ in (60), stated as follows:

$$
\begin{equation*}
g=\frac{128 u y^{2}(2 p-1) p}{l(p-1)^{2}} \tag{66}
\end{equation*}
$$

From (61) and (66) we obtain the equality

$$
\begin{equation*}
y=\frac{1}{4} l u\left(u_{1}+u_{2}\right)^{2} \tag{67}
\end{equation*}
$$

On the other hand, it is easy to see that $Z s A^{2}$ contains a normal Sylow 2 . complement \mathfrak{H}. Let us consider $\Xi /\left\langle A^{2}\right\rangle$ as usual as an operator group of \mathfrak{U}. Then among the orders of subgrops which consist of all the elements of \mathfrak{H} each of which is fixed by $A\left\langle A^{2}\right\rangle, B\left\langle A^{2}\right\rangle, A B\left\langle A^{3}\right\rangle$ and $\subseteq /\left\langle A^{2}\right\rangle$ respectively, there holds the following identity of Brauer-Wielandt ([23]), (1.1)) :

$$
\begin{equation*}
y=l u u_{1} u_{2} \tag{68}
\end{equation*}
$$

From (67) and (68) we obtain at once that

$$
\begin{equation*}
u_{1}=u_{2} \tag{69}
\end{equation*}
$$

Since \mathscr{S} contains a normal subgroup of index 2 , there are more than one class of involutions in \mathfrak{S}. Therefore the same considerations which led us to (58) yield here that $Z s A^{2}$ is contained in \mathscr{S}. Now since every 2 -regular element of \mathscr{S} is contained in \mathscr{S}^{*}, we have together with (69) the following

$$
\begin{equation*}
l^{*}=l u_{1} \tag{70}
\end{equation*}
$$

and

$$
\begin{equation*}
y=l u_{1} u^{*} \tag{71}
\end{equation*}
$$

Now using (68), (69), (70) and (71) we obtain from (65) and (66) the following equality:

$$
\begin{equation*}
\frac{2(2 p-1)}{(p-1)^{2}}=\frac{3 \mathbf{X}_{1}^{*}(1) \mathbf{X}_{2}^{*}(1) \mathbf{X}_{3}^{*}(1)}{\left(\mathbf{X}_{1}^{*}(1)+\delta_{1}\right)\left(\mathbf{X}_{2}^{*}(1)+\delta_{2}\right)\left(\mathbf{X}_{3}^{*}(1)+\delta_{\mathbf{3}}\right)} \tag{72}
\end{equation*}
$$

Obviously the right-hand side of (72) is not smaller than $3 / 8$. Therefore we have the following inequality

$$
0 \geqq 3 p^{2}-38 p+19
$$

This implies that $p \leqq 11$. Since $p \equiv 1(\bmod 4)$, we can conclude that $p=5$. Thus again we have only to check six primitive groups of degree 15 and will find that only the group isomorphic to \mathfrak{H}_{6} satisfies our requirements. It may be convenient to refer to some data: $p=5 ; t_{1}=6, t_{2}=8 ; z(1,2)=-3, z(2,2)$ $=2, z(1,3)=1, z(2,3)=-2 ; y=u=u_{1}=u_{2}=1=1 ; \mathbf{X}_{1}^{*}(1)=3, \mathbf{X}_{2}^{*}(1)=\mathbf{X}_{3}^{*}(1)$ $=1, \delta_{1}=-1, \delta_{2}=\delta_{3}=1$.
§4. The case in which the degree of \mathbf{B} is $p-1$.
15. Now let us consider the case in which the degree of \mathbf{B} equals $p-1$. Then (4.1) takes one of the following forms:

$$
\begin{equation*}
\boldsymbol{\alpha}(X)=\mathbf{A}(X)+\mathbf{B}(X)+\mathbf{D}_{1}(X), \tag{4.4}
\end{equation*}
$$

where \mathbf{D}_{1} is an irreducible character of \mathbb{B} with degree $2 p$;

$$
\begin{equation*}
\alpha(X)=\mathbf{A}(X)+\mathbf{B}(X)+\mathbf{D}_{1}(X)+\mathbf{D}_{2}(X) \tag{4.5}
\end{equation*}
$$

where D_{1} and D_{2} are different irreducible characters of \mathbb{C} with degree p;

$$
\begin{equation*}
\alpha(X)=\mathbf{A}(X)+\mathbf{B}(X)+2 \mathbf{D}_{1}(X) \tag{4.6}
\end{equation*}
$$

where D_{1} is an irreducible character of (B) with degree p. Moreover (10) becomes the following form:

$$
\begin{equation*}
(p-2)(p-1) p z^{2}=g(p-1-\mathbf{B}(J))^{2} . \tag{10.6}
\end{equation*}
$$

By a theorem of Brauer ([3], Lemma 3) we have that $\mathbf{B}(J)=0$. Therefore we obtain from (10.6) the following

$$
\begin{equation*}
(p-2) p z^{2}=g(p-1) \tag{10.7}
\end{equation*}
$$

(10.7) tells us in particular that the order of a Sylow 2 -subgroup of \mathbb{B} equals the power of 2 dividing $p-1$, say 2^{a}. Therefore \mathbf{B} becomes a character of defect 0 for 2. Hence as in 4 by a theorem of Brauer-Tuan ([10], Corollary of Lemma 3) we see that every $\mathbf{C}_{\boldsymbol{i}}$ belongs to the principal 2 -block $B_{1}(2)$ of irreducible characters of $\left(i=1, \ldots, \frac{1}{2}(p-1)\right)$.

Assume that $a=2$. Then by a theorem of Brauer-Feit ([6], Theorem 1) $B_{1}(2)$ contains at most 5 characters. Therefore we have the inequality $5 \geqq \frac{1}{2}(p+1)$, which implies that $p=5$. So we have only to consider again 6 types of primitive groups of degree 15 . It is easy to check that there is no group among them with required properties. Therefore we can assume that
$a \geqq 3$.
Since $p \equiv 1(\bmod 4)$, we obtain, as in $(39)-(41)$, that $\mathbf{D}_{\mathbf{i}}(J)=2$ in Case (4.4); $\mathrm{D}_{i}(J)=1 \quad(i=1,2)$ in Case (4.5) and $\mathrm{D}_{1}(J)=1$ in Case (4.6). Hence we have
(73)

$$
\alpha(J)=3 .
$$

16. First of all we want to deal with Case (4.4). Then by (4.4) $\Omega-\{1\}$ is divided into two domains of transitivity of \mathfrak{F}, say $T(i)(i=1,2)$ ([22], 28.4, 29.2). Let t_{i} be the length of $T(i)(i=1,2)$. Then we have

$$
\begin{equation*}
t_{1}+t_{2}=3 p-1 \tag{44.1}
\end{equation*}
$$

We see at once from (44.1) that t_{1} and t_{2} are simultaneously even or simultaneously odd. Assume that t_{1} and t_{2} are odd. Let $x \neq 1$ be any symbol of Ω and let $\mathscr{\Re}$ denote the subgroup of \mathbb{B} consisting of all the permutations of \mathbb{B} each of which fixes each of the symbols 1 and x of Ω. Then it follows from our assumption that \AA contains a Sylow 2 -subgroup of \mathbb{C}. Hence \mathbb{C} cannot contain an involution whose cycle structure has the form ($1 x$) ... Since $x \neq 1$ is an arbitrary symbol of Ω, every involution must fix the symbol 1 of Ω, which contradicts the simplicity of $\left(\mathbb{G}\right.$. Therefore t_{1} and t_{2} are even.

Since $p \equiv 1(\bmod 4)$, we see by (44.1) that either t_{1} or t_{2} is semi-odd, say t_{1}. Let \mathfrak{S} be a Sylow 2 -subgroup of \mathfrak{G}, which is contained in \mathfrak{K}. Let. us consider \subseteq as a permutation group on $T(1)$. Then $T(1)$ contains a domain of transitivity of \mathfrak{S} with length 2 , say $\{2,3\}$. Let X be any element of \mathfrak{S} whose cycle structure has the form (1), (23) Assume that the order of X is 2^{b} with $b>1$. Then we see by (73) that the cycle structure of X has the form (1) (23) Y, where Y consists of cycles of order 2^{b}. Since $(\mathbb{S}$ is simple and hench X must be even, $3(p-1) / 2^{b}$ must be odd. This implies that $b=a$ and hence that Θ is cyclic. This is a contradiction. Thus X must be an involution. By (73) X fixes just two symbols of $\Omega-\{1\}$, say 4 and 5 . Now let \mathscr{I} denote the subgroup of \mathfrak{S} consisting of all the permutations of \mathbb{S} each of which fixes the symbol 2. Then the index of \mathfrak{I} in \subseteq equals 2 . Let us consider the centralizer of X in \mathfrak{I}. Then since by (73) every element $\neq 1$ of \mathfrak{I} does not fix the symbol 4, the centralizer of X in \mathfrak{I} has order 2 . Therefore by a theorem of Suzuki ([16], Lemma 4) \mathbb{E} contains an element Z such that $\mathbb{E}=\langle X\rangle\langle Z\rangle$. Since $X Z$ is an involution, we have $X Z X=Z^{-1}$. Therefore Θ is a dihedral
group of order 2^{a} with $a \geqq 3$.
Let $B_{1}(2)$ be the principal 2 -block of irreducible characters of \mathfrak{F}. Then using a method of Suzuki ([13], (42)-(43)) we see that $B_{1}(2)$ contains two irreducible characters \mathbf{X}_{1} and \mathbf{X}_{4} whose degrees satisfy the equality

$$
\begin{equation*}
1+\delta_{1} \mathbf{X}_{1}(1)=\delta_{1} \mathbf{X}_{1}(1) \tag{74}
\end{equation*}
$$

where \hat{o}_{1} equals ± 1. We see at once from (74) that either \mathbf{X}_{1} or \mathbf{X}_{4} must be equal to some \mathbf{C}_{i}. But since \mathbf{B} is a character of defect 0 for 2 , (74) gives us a contradiction. This contradiction shows that Case (4.4) does not occur.
17. Next let us consider Case (4.6). Then by (4.6) $\Omega-\{1\}$ is divided into five domains of transitivity of \mathscr{J}, say $T(i)(i=1, \ldots, 5)([22], 28.4,29.2)$. Let t_{i} be the length of $T(i)(i=1, \ldots, 5)$. Then we have

$$
\begin{equation*}
t_{1}+t_{2}+t_{3}+t_{4}+t_{5}=3 p-1 \tag{44.2}
\end{equation*}
$$

We see from (44.2) and (73) that either every t_{i} is even or just two of them, say t_{1} and t_{2}, are odd. Assume that the former case occurs. Then the method in 16 can be applied and we obtain a contradiction. Therefore we can assume that the latter case occurs.

Then Ξ fixes at least one symbol, say 2 , of $T(1)$ and at least one symbol, say 3 , of $T(2)$. By (73) every element $\neq 1$ of \Subset fixes only the symbols 1,2 and 3. Let X be an element of $(\mathbb{B}$ whose cycle structure has the form ($21 \ldots$) Then $X^{-1} \subseteq X$ fixes the symbol 1 and is contained in \mathscr{F}. Therefore by Sylow's theorem there exists an element Y of \mathscr{J} such that $Y^{-1} \subseteq Y=X^{-1} \Subset X$. Then $Y X^{-1}=Z$ is contained in the normalizer $N s \subseteq$ of \subseteq in \mathscr{S} and has the cycle structure ($12 \ldots$) . . . Since \subseteq fixes only the symbols 1,2 and 3 , the cycle structure of Z must have the form (123). . . Assume that there exists an involution W in \subseteq which is commutative with Z. Then since the cycle structure of $W Z$ has the form (123)..., we have by (73) that $\alpha(W Z)=0$. Moreover since $W Z$ is 2 -singular, we have by a theorem of Brauer-Nesbitt ([8], Theorem 1) that $\mathbf{B}(W Z)=0$. Therefore we obtain from (4.6) that $\mathrm{D}_{1}(W Z)$ $=-\frac{1}{2}$. But since $\mathbf{D}_{1}(W Z)$ must be an integer, this is a contradiction. Thus there is no such an involution.

Let V be a central involution in \subseteq. Then the above argument implies that V and $Z^{-1} V Z$ are not conjugate in 5 . Thus there exist more than one class
of involutions in \mathfrak{y}. Assume that $t_{1}=1$. Then the normalizer $N s 5$ of \mathfrak{F} in \mathfrak{G} contains an element whose cycle structure has the form (21...)... and is bigger than $\mathfrak{~}$. Then by the primitivity of \mathfrak{G} we must have $\mathfrak{G}=N s \mathfrak{y}$, which implies by the simplicity of © that $\mathfrak{J}=1$. Then the order of (3) equals $3 p$, which contradicts the simplicity of \mathbb{G}. Thus we have that $t_{1}>1$. Now $T(1)$ contains at least one symbol, say 4 , different from 2. Since $T(1)$ is a domain of transitivity of \mathfrak{N}, there exists a Sylow 2 -subgroup \mathbb{E}^{*} of $\mathfrak{5}$ such that \mathbb{C}^{*} fixes the symbols 1,4 and x, where x is a symbol of $T(2)$. Let U be an involution in \mathbb{C}^{*}, which is not conjugate to V. Then by a theorem of BrauerFowler ([7], Lemma (3A)) there must exist an involution I of \mathscr{J} which is commutative with U and V. Since every permutation $\neq 1$ of a Sylow 2 -subgroup of \mathfrak{y} fixes the same symbols, this implies that I must fix at least four symbols $1,2,3$ and 4 contradicting (73). This contradiction shows that Case (4.6) does not occur.
18. Finally let us consider Case (4.5). Then by (4.5) $\Omega-\{1\}$ is divided into three domains of transitivity of \mathfrak{F}, say $T(i)(i=1,2,3)$ ([25], 28.4, 29.2). Let t_{i} be the length of $T(i)(i=1,2,3)$. Then we have

$$
\begin{equation*}
t_{1}+t_{2}+t_{3}=3 p-1 \tag{44.3}
\end{equation*}
$$

We see from (44.3) that either every t_{i} is even or just two of them, say t_{1} and t_{2}, are odd. Assume that the former case occurs. Then the method in 16 can be applied and we obtain a contradiction. Therefore we can assume that the latter case occurs.

If there exist more than one class of involutions in \mathfrak{F}, then the method in 17 can be applied and we obtain a contradiction. Therefore we can assume that all the involutions in \mathscr{J} are conjugate one another in $\delta_{\text {. }}$.

Now it follows from the argument in $\mathbf{1 7}$ that there exist in \mathbb{C} an involution W and a 3 -element Z, which satisfy the following two conditions: (i) W and Z are commutative with each other. (ii) W and Z have the cycle structures (1) (2)(3) . . and (123) . . . respectively.

Next let us consider the matrices $V(T(i))(i=1,2,3)$ as in $\mathbf{1 2}$. Without loss of generality we can assume that the diagonal form of $V(T(i))$ is

Then as in [21] we obtain the following:
(47.1)
(i) $z(i, j)$ is an algebraic integer $(i=1,2,3 ; j=1,2,3,4)$. In particular, $z(i, 1)$ and $z(i, 2)$ are rational integers $(i=1,2,3)$. Furthermore we have that $z(i, 1)=t_{i}$ and $z(i, j) \neq t_{i}(i=1,2,3 ; j=2,3,4)$.
(ii) $z(i, 1)+(p-1) z(i, 2)+p z(i, 3)+p z(i, 4)=0$.
(iii) $z(i, 1)^{2}+(p-1) z(i, 2)^{2}+p|z(i, 3)|^{2}+p|z(i, 4)|^{2}=3 p t_{i}$.

Let us assume that D_{1} and D_{2} are rational characters. Then using a method of Wielandt ([22], p. 82) we see that every $z(i, j)$ is a rational integer. We consider (47.1) for $i=1$. Then since from our assumptions t_{1} is odd, we have from (ii) that $z(1,3)+z(1,4) \equiv 1(\bmod 2)$ and from (iii) that $z(1,3)^{2}+z(1,4)^{2}$ $\equiv 0(\bmod 2)$. This is a contradiction. Now by (4.5) we see that \mathbf{D}_{2} (and only \mathbf{D}_{2}) is an algebraically conjugate character of \mathbf{D}_{1}.

Here let us consider the element $W Z$. Assume that $\mathbf{D}_{\mathbf{1}}(W Z)$ is rational. Then since D_{1} and D_{2} are algebraically conjugate, we have that $D_{1}(W Z)$ $=D_{2}(W Z)$. On the other hand, since the cycle structure of $W Z$ has the form (123) . . . we have by (73) that $\alpha(W Z)=0$. Moreover since $W Z$ is 2 -singular and \mathbf{B} has 2 -defect 0 , we have by a theorem of Brauer-Nesbitt ([8], Theorem 1) that $\mathbf{B}(W Z)=0$. Therefore by (4.5) we have that $\mathbf{D}_{1}(W Z)=-\frac{1}{2}$. Since $\mathbf{D}_{1}(W Z)$ must be an integer, this is a contradiction.

Let the order of Z be 3^{Z}. Then $\mathrm{D}_{1}(W Z)$ belongs to the field of the 3^{Z}-th roots of unity over the rational number field \mathbf{Q}. But this field is a cyclic field
over \mathbf{Q} and $\mathbf{D}_{1}(W Z)$ has degree two over $\mathbf{Q}, \mathbf{D}_{1}(W Z)$ belongs to the field of the cubic roots of unity over $\mathbf{Q}: \mathbf{Q}(\omega)$ with $\omega^{3}=1, \omega \neq 1$. Furthermore since D_{1} and D_{2} are algebraically conjugate only with each other, we see that the field of \mathbf{D}_{i} over \mathbf{Q}, namely the field generated by all the numbers $\mathrm{D}_{i}(X)$, where X ranges over all the elements of \mathfrak{F}, is $\mathbf{Q}(\omega)(i=1,2)$. Then again using the method of Wielandt ([25], p. 82) we see that all the $z(i, j)$'s belong to $\mathbf{Q}(\omega)$ and that $z(i, 3)$ and $z(i, 4)$ are complex-conjugate numbers $(i=1,2,3)$. The latter fact follows from the complex conjugacy of \mathbf{D}_{1} and \mathbf{D}_{2}.

Now the numbers 1 and $\frac{1}{2}(1+\sqrt{3} \mathfrak{i})$ constitute an integral basis of $\mathbf{Q}(\omega)$. Therefore we cal put

$$
\begin{equation*}
z(i, 3)=\frac{1}{2}\left(n_{i}+m_{i} \sqrt{3} i\right) \text { and } z(i, 4)=\frac{1}{2}\left(n_{i}-m_{i} \sqrt{3} i\right), \tag{75}
\end{equation*}
$$

where n_{i} and m_{i} are rational integers ($i=1,2,3$).
Choose a Sylow 2 -subgroup \mathbb{C} of \mathbb{B} as in 17 . Then by (73) \subseteq is semiregular on $T(1)-\{2\}, T(2)-\{3\}$ and $T(3)$. Hence we have the congruences:

$$
\begin{equation*}
t_{i} \equiv 1\left(\bmod 2^{a}\right) \quad(i=1,2) \text { and } t_{3} \equiv 0\left(\bmod 2^{a}\right) . \tag{7}
\end{equation*}
$$

Furthermore we see as in 17 that

$$
\begin{equation*}
t_{i}>1 \quad(i=1,2,3) \tag{77}
\end{equation*}
$$

Now we obtain from (47.1) (ii) and (75) the following congruences :

$$
n_{i} \equiv-1\left(\bmod 2^{a}\right)(i=1,2) \text { and } n_{3} \equiv 0\left(\bmod 2^{a}\right)
$$

Therefore we can put

$$
\begin{equation*}
n_{i}=A_{i} 2^{a}-1(i=1,2) \text { and } n_{3}=A_{3} 2^{a}, \tag{78}
\end{equation*}
$$

where A_{i} is a rational integer ($i=1,2,3$).
At any rate we heve by a theorem of Brauer-Feit ([6], Theorem 1) the following inequality :

$$
\frac{1}{2}(p+1) \leqq 2^{2 a-2}
$$

which implies in particular that

$$
\begin{equation*}
2^{2 a}>2 p \tag{7}
\end{equation*}
$$

Now we want to show that (1) $t_{i} \geqq p+2(i=1,2)$ and (2) $t_{3} \geqq p-1$, which
yield us a contradiction $t_{1}+t_{2}+t_{3} \geqq 3 p+3$ to (44.3). We deal only (1), because (2) can be dealt with quite similarly as (1). At first let us assume that $\left|A_{i}\right|$ $\geqq 3$ or $A_{i}=-2$. Then we have from (78) and (79) that

$$
\begin{aligned}
n_{i}^{2} & =A_{i}^{2} 2^{2 a}-A_{i} 2^{a+1}+1 \\
& >8 p .
\end{aligned}
$$

Assume that $A_{i}=2$. Then we have similarly that

$$
\begin{aligned}
n_{i}^{2} & =2^{2 a+2}-2^{a+2}+1 \\
& >\frac{1}{2} \cdot 7 \cdot 2^{2 a} \\
& >7 p .
\end{aligned}
$$

Hence if $\left|A_{i}\right| \geqq 2$, then we have from (47.1) (iii), (75) and (78) that

$$
\begin{aligned}
t_{i} & >\left(|z(i, 3)|^{2}+|z(i, 4)|^{2}\right) / 3 \\
& >\boldsymbol{n}_{i}^{2} / 6 \\
& >7 \boldsymbol{p} / 6 \\
& >p+2 .
\end{aligned}
$$

Now we can assume that $\left|A_{i}\right| \leqq 1$. If $A_{i}=0$, then we have by (47.1) (ii) that

$$
t_{i}=p-(p-1) z(i, 2),
$$

which implies by (77) that $t_{i} \geqq p$. But t_{i} cannot be equal to p, because t_{i} is a divisor of the order of $\mathscr{5}$. Since t_{i} is odd, thus we have that $t_{i} \geqq p+2$. If $A_{i}=1$, then we have by (47.1) (ii) that

$$
t_{i}=-(p-1) z(i, 2)-p\left(2^{a}-1\right)
$$

Let us consider a linear form $L(X)=(p-1) X-p\left(2^{a}-1\right)$ in X on the domain of rational integers. $L(X)$ attains its least positive value $p-2^{a}$ at $X=2^{a}$. The next least positive value of $L(X)$ is certainly not smaller than p. So let us assume that $t_{i}=p-2^{a}$ and $z(i, 2)=2^{a}$. Then we have by (76) and (77) that $p>2^{a+1}$. But since 2^{a} is an exact power of 2 dividing $p-1$, we have that $p \geqq 3.2^{a}$. Then we have further that $\left(2^{a}-1\right)^{2} \geqq 4 p / 3$. Then finally we have by (47.1) (iii) and (79) that

$$
\begin{aligned}
t_{i} & \geqq\left(\left(t_{i}^{2}+(p-1) 2^{2 a}+\frac{1}{2} p\left(2^{a}-1\right)^{2}\right) / 3 p\right. \\
& >4 p / 27+2 p / 3-2 / 3+2 p / 9 \\
& >28 p / 27-2 / 3 \\
& >p .
\end{aligned}
$$

The case of $A_{i}=-1$ can be handled quite similarly.
§5. Proof of Theorem 2.
Let \mathfrak{F} denote the subgroup of \mathbb{C} consisting of all the permutations of \mathscr{G} each of which fixes the symbol 1 of Ω. Since \mathbb{C} is imprimitive on Ω and since \mathbb{B} is simple, $\overline{(3)}$ contains a subgroup \mathfrak{M} of index p containing $\mathscr{5}$. Hence by a previous result [14] \mathfrak{G} is isomorphic to a linear fractional group $L F\left(2,2^{m \prime}\right)$ with $p=2^{m}+1(m \geqq 2)$, and \mathfrak{M} becomes the normalizer of a Sylow 2 -subgroup of \mathcal{B}. Conversely let us consider any $\operatorname{LF}\left(2,2^{m}\right)$ such that $p=2^{m}+1$ is a prime number greater than 3. Let \mathfrak{M} be the normslizer of a Sylow 2 -subgroup of $L F\left(2,2^{m}\right)$. Then since m is even, the order of $\mathfrak{l l}$ is divisible by 3 . Hence $\mathfrak{l l}$ contains a (uniquely determined) subgroup of index 3 , because the factor group of \mathfrak{M} by its Sylow 2 -subgroup is cyclic. Therefore such an $L \mathcal{L}\left(2,2^{m}\right)$ can always be represented (uniquely) as an imprimitive permutation group of degree $3 p$.

References

[1] A. Bochert, Ueber die Classe der transitiven Substitutionengruppen, Math. Annalen 40 (1892), pp. 176-193.
[2] A. Bochert, Ueber die Classe der transitiven Substitutionengruppen II, Math. Annalen 49 (1897), pp. 134-144.
[3] R. Brauer, On permutation groups of prime degree and related classes of groups, Ann. of Math. 44 (1943), pp. 57-79.
[4] R. Brauer, On the structure of groups of finite order, Proceedings of the International Congress of Mathematicians, Amsterdam (1954).
[5] R. Brauer, Number theoretical investigations on groups of finite order, Proceedings of the International Symposium on Algebraic Number Theory, Tokyo-Nikko (1955).
[6] R. Brauer and W. Feit, On the number of irreducible characters of finite groups in a given block, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), pp. 361-365.
[7] R. Brauer and K. Fowler, On groups of even order, Ann. of Math. 62 (1955), pp. 565-583.
[8] R. Brauer and C. Nesbitt, On the modular characters of groups, Ann. of Math. 42 (1941), pp. 556-590.
[9] R. Brauer and M. Suzuki, On finite groups whose 2 -Sylow group is a generalized quaternion group, Proc. Nat. Acad. Sci. U.S.A. 43 (1959), pp. 1757-1759.
[10] R. Brauer and H. Tuan, On simple groups of finite order. I, Bull. of Amer. Math.

Soc., 51 (1945), pp. 756-766.
[11] R. Carmichael, Introduction to the theory of groups of finite order, Boston (1937).
[12] G. Frobenius, Ueber die Charaktere der symmetrischen Gruppe, Sitzungsber. der Preuss. Akad. der Wiss. (1900), pp. 516-534.
[13] D. Gorenstein and J. Walter, On finite groups with dihedral Sylow 2-subgroups, to appear.
[14] N. Ito, Zur Theorie der Permutationsgruppen vom Grad p, Math. Zeitschr. 74 (1960), pp. 299-301.
[15] N. Ito, On transitive simple groups of degree $2 p$, Math. Zeitschr. 78 (1962), pp. 453-468.
[16] M. Suzuki, A characterization of simple groups $L F(2, p)$, J. Fac. Sci. Univ. Tokyo. Sect. I, 6 (1951), pp. 259-293.
[17] M. Suzuki, Applications of group characters, Proceedings of Symposia in Pure Mathematics, 1, American Mathematical Society, (1959), pp. 88-99.
[18] John Thompson wrote to the author that he does not intend to publish this "special" result, but he and Walter Feit are preparing to publish a proof of the full Burnside conjecture.
[19] W. Turkin, Kriterium der Einfachheit einer endlichen Gruppe, Math. Annalen, 111 (1935), pp. 281-284.
[20] T. Tsuzuku, On multiple transitivity of permutation groups, Nagoya Math. J. 18 (1961), pp. 93-109.
[21] H. Wielandt, Primitive Permutationsgruppen vom Grad $2 p$, Math. Zeitschr. 63 (1956), pp. 478-485.
[22] H. Wielandt, Vorlesungen über Permutationsgruppen. Ausarbeitung von J. André, Tübingen, (1955).
[23] H. Wielandt, Beziehungen zwischen den Fixpunktzahlen von Automorphismengruppen einer endlichen Gruppe, Math. Zeitschr. 73 (1960), pp. 146-158.
[24] H. Zassenhaus, Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen, Abh. Math. Sem. Univ. Hamburg 11, 17-40 (1935).

Department of Mathematics

Cornell University
Ithaca, New York, U.S.A.
and
Mathematical Institute
Nagoya University
Nagoya-Chikusa, Japan

[^0]: Reseived September 5, 1961.
 *) This work was supported by the United States Army under Contract No. DA-ARO(D)-31-124-G 86 monitored by the Army Research Office.

