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Last year when I was preparing for course lectures the work of Ahlfors

[1] which establishes that the Bloch constant is at least as large as V-3/4, it

appeared to me that the resources of the theory of metrics of negative curva-

ture offered rich possibilities from a function-theoretic point of view. The

parallelism between certain properties of subharmonic functions and those of

the metrics introduced by Ahlfors [1] is so striking that we are led to ask

whether one can introduce a class of metrics including the metrics of Ahlfors

for which not only does a Schwarz-Pick-Ahifors lemma hold, but also require-

ments of differentiability disappear, as in the modern theory of subharmonic

functions. We shall define such a class. To it part of the apparatus of the

theory of subharmonic functions, including the use of Perron families, may be

transplanted. Among the results that we obtain is the conclusion that the

inequality of the Schwarz-Pick-Ahlfors lemma is strong throughout for an

admitted metric distinct from the hyperbolic metric [§ 71 This theorem will

permit us to show that the Bloch constant is actually greater than V 3/4 [§36].

A metric of special interest from the point of view of the theory of con-

formal maps of Riemann surfaces is one having constant curvature — 4 save

for a discrete set at each point of which it vanishes. Metrics induced by a

conformal map from a hyperbolic metric are of this type. We shall see that

the distribution of the zeros of the derivative of a non-constant bounded

analytic function with domain A = {| z I < 1} may be characterized in terms of such

a metric [§ 29]. In this connection, the following result deserves mention

The distribution*of points in Δ at which a Lindelδfian map with domain Δ is

ramified, multiplicities being taken into account, is no more general than the

distribution of the ramification points of a non-constant bounded analytic func-

tion with domain J[§30].
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It does not appear to be desirable to summarize other results of the present

study without the benefit of a preliminary statement of the terms and concepts

we shall employ. For this reason, we turn directly to our study.

Chapter 1. S-K metric

1. Our first step will be to pass from the formulation of Ahlfors to a more

general one that looks to the theory of subharmonic functions for its model.

Let F denote a Riemann surface, and let S denote the basic family of homeo-

morphisms a of plane regions into F which defines the conformal structure of

F. We adopt a general point of view and define a conformal metric λ on F to

be a non-negative density of degree one. We do not impose any continuity

restrictions. To be precise, we mean that λ is a map with domain S which

has the following two properties:

(a) λσ, the image of σ^S with respect to λ, is a function having the same

domain as a and taking finite non-negative values.

(b) Let ( . Γ G S and let their images have intersection O # 0 . Let 0 denote

the univalent analytic function connecting a and r, defined by

(1.1) d = {(σ~\p)t τ

Then

(1.2) λn(z)=λ,lθ(z)l\θ'(z)\

for each z in the domain of 0.

Given a uniformizer φ of F ( = univalent conformal map of a plane region

into F), there exists a unique extension of λ to SU {φ} which is a conformal

metric relative to SU {φ}. We denote the image of ψ with respect to this ex-

tension by λφ and term it the ψ scale of λ.

If for some uniformizer φ satisfying φ(a)~p, Λ«,(α)=0, then for every

uniformizer ψ whose image contains p, λ*(b)=O, ψ{b)=p. In this case, we

say that λ vanishes at p.

If μ is also a conformal metric on F and λφ(a) < M?(a)} then λ*(b) <μ*(b).

In this case, we say that λ does not exceed μ at p. To say "λ does not exceed

μ on F" denoted "λ ^ μ" means that λ does not exceed μ at each point of F.

The strong inequalities at a point and on F are similarly defined.

By max {λ, μ) is meant the map with domain S which assigns to σ the
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function max{λσ, μ^}. max {Λ, μ) is a conformal metric, and if <f is a uni-

formizer, max {̂ , μ}9=max{λ?, μφ}.

If P is a non-negative finite-valued function on F, then Pλ will denote the

function with domain S which assigns to a the function {P°σ)λo. It is a con-

formal metric.

If λφ is upper semi-continuous at a, then λ* is upper semi-continuous at b.

In this case, we say that λ is upper semi-continuous at ^. If λ is upper semi-

continuous at each point of F, we say that λ is upper semi-continuous on F.

Similarly, if λ7 is of class Cίk) (or real analytic) in some neighborhood of a,

the same holds for Λψ in some neighborhood of b, and correspondingly, we say

that λ is of class C(ki (resp. real analytic) in a neighborhood of p. It is obvious

what is meant by saying that λ is of class C(k) (resp. real analytic) on F.

If λ enjoys adequate smoothness properties relative to a point p&F, then

we may introduce the Gaussian curvature of λ at p as follows. Suppose that

λ is of class C" in some neighborhood of p and that λ does not vanish at p.

Then for every uniformizer ψ for which p lies in the image of ψ and ψ(a) =p>

the value of

is independent of <£ and is termed the Gaussian curvature of λ at p. It will

be denoted by K^p λ). Metrics λ that are C" and such that Ki'p i) = - 4 ,

i>eF, are of particular interest from a function-theoretic point of view. The

hyperbolic metric λ on {U|<l} given by λc(z) = (1 — Ul2)"1 is of special im-

portance. It is a metric of constant curvature - 4.

We are now in a position to define an S-K metric. C'S-K" is intended to

convey "curvature subordinate to — 4". The significance of this nomenclature

will become clear after Theorem 2.1.) We should indicate that we are con-

cerned with metrics that reduce in the C" case to metrics with curvature no

greater than - 4 at points that are not zeros of the metrics. We say that a

metric / is an S-K metric provided that the following two conditions are ful-

filled :

(a) λ is upper semi-continuous on F.

(b) Let ψ denote a uniformizer with domain {U|<1}, let u~logλΰt and

let m(r'yu) denote the circumferential mean
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Then, when Λ,,(0)>0,

(1.4) lim inf r"2[m(r u) - «(0)] > DL (0)]2.
r-»0r-»0

It is to be observed that the left-hand side of (1.4) is just one fourth of the

lower generalized Laplacian of u at 0. If λ9 is of class C" in a neighborhood

of 0, the condition (1.4) is equivalent to

2. We now turn to the study of properties of S-K metrics. This part of

our investigation is strongly motivated by the analogy between S-K metrics

and subharmonic functions. We seek to adapt methods of the theory of sub-

harmonic functions to our class of metrics. A first task confronting us is the

extension of Ahlfors's maximum principle to S-K metrics.

Suppose that Ω is a relatively compact region of F and that λ is an S-K

metric on Ω(Ω itself being considered as a Riemann surface). Let μ denote a

C" conformal metric on Ω which vanishes nowhere and has constant Gaussian

curvature taking the value - 4. The following is a very evident generalization

of the maximum principle used by Ahlfors [1, p. 360].

THEOREM 2.1: If

(2.1) limsupΛ//*<l, p^ίτΩy

P

then

(2.2) λ<μ.

Here λ/μ is the scalar function on Ω defined by

(2.3) — = ( λφOψ , φ a uniformizer for Ω)

The possibility that ίx Ω may be empty is allowed. Thanks to the boundary

condition (2.1) and the upper seini-continuity of λ/μ, we see that if (2.2) did

not hold, then λ/μ would possess a maximum greater than one at a point q e Ω.

Let φ denote a uniformizer with domain {|z.|<l}, ψ(0) =q, and let w = \ogλφ

- log μφ. Now w has a positive absolute maximum at 0. Hence
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lim sup r~2ί?n(r;ιv) - w(0)]<0.
r->0

On the other hand, from (1.4) and the hypothesis on μ we have

lim inf r'2ίm(r zυ) - M>(0)] > Cλ.(0)]2 - Γ^(0)]2 > 0.

The contradiction is immediate.

3. We pursue the suggestive analogy between the theory of subharmonic

functions and S-K metrics and first ask whether the property stated in Theorem

2.1 serves as a basis for an equivalent definition of an S-K metric.

Given an arbitrary conformal metric λ on a Riemann surface F and a non-

empty set EC-F, it will be convenient to introduce λF\ the restriction of λ to E,

defined as follows. Given <?eS, let σ denote the restriction of a to a~\E) and

let λE denote the map whose domain is the set of the non-empty a which maps

σ onto the restriction of λo to the domain of σ. If E is a region, then /''' is

a conformal metric on E considered as a Riemann surface. For a general

Ey by a conformal metric on E is meant the restriction to E of some conformal

metric on F. The meanings of continuity and non-vanishing for such a metric

are obvious.

Let us now suppose that λ is a conformal metric on F and that λ satisfies

the following two conditions* (a) λ is upper semi-continuous on F. (b) For

each j)GF, there exists a relatively compact neighborhood V of p such that,

whenever μ is a C" conformal metric with constant Gaussian curvature - 4

on a region J?, p e Q c V, and μ satisfies

lim sup ΛQ/μ < 1, q e fr £,
<7

then

Under these conditions we have

THEOREM 3.1 Let ψ be a uniformizer for F whose domain contains 0 and

let u = log λa. If u(Q) > - oo, then

for sufficiently small positive r. λ is an S-K metric.

In order to establish Theorem 3.1, we shall use results concerning the
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solvability of the equation

(3.1) Ju = 4e2u,

exactly as we should use the Poisson integral and its properties to treat the

counterpart of Theorem 3.1 for subharmonic functions. An account of existence

theorems for the cognate equation

including a report on Bieberbach's investigations E2], is to be found in [4, pp.

286 287]. Since the special results that we shall want concerning (3.1) are

rapidly developed, for the sake of completeness we shall establish them.

4. Given a region Ω in the finite plane. It is immediate that if w3 and «2

are both continuous and take finite values on ~Ω [the closure being taken in

the sense of the topology of the extended plane], satisfy (3. l) in Ω, and coincide

on fr Ω} then u\ = w2. It suffices to note that if ux — uι is positive anywhere,

it attains a positive maximum at a point α e Ω. On applying (3. l) we conclude

that the Laplacian of uL - uι is positive at α. However, since ui — u% has an

absolute maximum at α, its Laplacian is not positive at α. Contradiction. Thus

u\ — Uz < 0. Similarly u% - u\ < 0. Consequently Uι = w2.

It is to be observed that all the maximum principles developed for S-K

metrics and their specializations have proofs hinging on the fact that at a point

of relative maximum the (upper generalized) Laplacian is not positive.

We now establish a very limited existence theorem for (3.1). Later [§lβ]

we shall see how Perron methods will permit us to obtain global existence

theorems adequate for applications. In this paper there will be no concern for

refinements. Suppose then that 4(0; r) = {\z\ <r) and that / is a given finite,

real continuous function on C(0 r) = {| z \ = r). Let 9(2, C) denote Green's func-

tion for A(0 r) relative to the Laplace equation, i.e.

Let

A(r) = max if <j(zf C)dSζt

the integration being with respect to euclidean area. It is easily seen that
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lim A(r) = 0. Let B = max expo (2/). We have
r-»0

THEOREM 4.1: If

(4.1) 4ττ"1A(r)B<l,

exists a unique continuous function v on J(0;r) which is of class C"

r), reduces to f on C(0 r), αwd satisfies (3.1) tw 4(0 r).

We establish this result as follows. Given υ continuous on J(0;r), we denote

by Tίvl. Now let /̂  denote the solution of the Dirichlet problem (relative to

the Laplace equation) with boundary function /. If υ is a function meeting

the imposed conditions, it satisfies

(4.2) v=h-TZ4e2vl

This suggests the introduction of a sequence of approximants defined as

follows •*

1 vn+ι = h - TL4e2Vnl, n = 1, 2,

It follows from (4.3) and

tfn,2 - Vn+t = ~ T[4(^ 2 ϋ n + 1 - ^ 2 t ; ' l)l II = 1, 2,

that with Mn = max | VΠΛΛ — ̂ « I,

It is immediate by the Weierstrass M-test that (vn)ΐ converges uniformly in

J(0;r). Let # = limt/n. Then v satisfies (4.1). It now follows from standard

potential-theoretic results that v fulfills the imposed conditions. We refer to

theorems concerning differentiability properties of logarithmic potentials and

the Poisson equation. Cf. [4, pp. 228-230].

We note that for Q<t<r, m(t) -rn(t v) satisfies the differential inequality

(4.4) m"(O-fΓ 1 w ; (f)>4^ 2 m ( ί ) >:4

It follows that

m'(t)>2e2m0)t, 0<t<r.
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Hence

(4.5) m(r)-v(0)>:e2v(Q)r2.

5. Proof of Theorem 3.1. Let B{r) denote maxίλφίz)!2. It is assumed
\z\-r

that d(O r) lies in the domain of <f. We consider ro>O so small that

4 7r~1Λ(ro)i5(ro)<l and that ψίJ(0;n)l lies in the neighborhood V associated

with f(0) in §3. For given r, 0<r<n, let v/ denote the solution of (3.1)

whose existence is asserted in Theorem 4.1, / being a continuous function

satisfying the condition

(5.1) u(reiθ)<f(reiθ)< -~logB(r).

It follows from the condition imposed on λ that

u(z)<v/(z)t \z\<r.

Consequently by (4.5) we infer that

m(r;vf)-u(0)>e2u{0)?*.

Since u is upper semi-continuous, there exists a monotone non-increasing

sequence (fn) of functions continuous on C(O r) which tends pointwise to uon

C(O r), each/« satisfying the condition (5.1) imposed on/. Hence

(5.2) m(r;u)-u(0)>:e2u{0)A

Theorem 3.1 follows. We remark that (5.2) is stronger than (1.4). It will

follow from subsequent developments [§16] that (5.2) holds for all r such that

J{Q;r) is contained in the domain of ψ.

6. In Ahlfors's paper there are given criteria guaranteeing that a

given conformal metric on J(O l) is dominated by the hyperbolic metric

(1 — I z j 2 )" 1 ! dz |. Actually, the conditions in question considered from our present

point of view are simply sufficient conditions for a conformal metric to be an

S-K metric. Following the labelling of Ahlfors's paper [1 pp. 360-361], we

introduce the following two definitions'.

A1. A conformal metric / will be said to satisfy the condition A 1 at a

point j > e F provided that λ does not vanish at p and that for some uniformizer

<ft φ(0) =/>, there exists a regular arc γ lying in the domain of φ, r ( 0 ) - 0 ,

which satisfies
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lim

where w=*

A 2. A conf ormal metric λ will be said to satisfy the condition A 2 at a

point p&F provided that for some uniformizer ψ, ψ{0) ~pt there exists a C"

function v that has the same domain as ψ and satisfies Δυ > 4 e2 v, v < u = log Λ9,

1,(0) = »(0).

The theorem A 2 of Ahlf ors asserts (essentially) that a continuous conf ormal

metric λ on J(0; 1) which satisfies the condition A 2 at each point is dominated

by the hyperbolic metric. Since the differential inequality (4.5) holds for υ of

A 2 when r is small, we conclude that an upper semi-continuous metric satisfy-

ing the condition A 2 2X p also satisfies the second condition imposed on an

S-K metric for each φ, ψ(0) -p. The theorem A l of Ahlf ors states that a

continuous conformal metric λ on J(0; l ) is dominated by the hyperbolic metric

if for each point z where w = logΛ< is finite (r = identity map), either there

exists a neighborhood of z in which u is C" and satisfies Δu>.ke2u or else n

satisfies at z a condition involving directional derivatives which implies that /

satisfies Al at 2. It is to be observed that the criteria of these theorems are

given from the point of view of the immediate applications of the cited paper.

We shall see that basically the theorems A1 and A 2 of Ahlf ors give sufficient

conditions for a conformal metric to be an S-K metric.

It will be convenient to introduce one more condition of a local character.

B. An upper semi-continuous conformal metric λ will be said to satisfy

the condition B at p provided that either λ vanishes at p or else for some uni-

formizer φ, ψ(0) =p,

(6.2)

It is to be observed that the condition A 2 implies the condition B.

We now give two sufficient conditions for a conformal metric to be an S-K

metric.

THEOREM 6.1* (a) An upper semi-continuous conformal metric λ on F is

an S-K metric if λ satisfies either the condition AI or B at each p where λ does

not vanish.

(b) A continuous conformal metric λ on F is an S-K metric if the condition
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B is fulfilled at each point of the set where λ does not vanish save on an

arbitrary subset E of zero rapacity.

Proof, (a) It suffices to verify that the hypotheses of Theorem 3.1 are

satisfied. We consider such μ and Ω and suppose that λa/μ attains a value

greater than one at some point of Ω. It follows that λa/μ has an absolute

maximum greater than one attained at say a e Ω. Hence λ cannot satisfy the

condition A 1 at a. The condition B must be satisfied at a. With φ a uni-

formizer for Ω satisfying ψ(0) = a, u = log λ,?i v = logμφ, w-u — v,

lim sup r~2ίm( r\w)~ iv(0U > DM0)]2 - L^(0)] 2> 0.
r->0

On the other hand, m(r;w)<w(0) for r sufficiently small since λΩ/μ attains

its maximum at a. The contradiction is apparent, (a) follows.

(b) Given p&F. Take V as a relatively compact region satisfying:

jζ?e Vc V*F. Consider an admitted pair iμ, Ω). Let S denote a negative

subharmonic function ( * - °°) on Ω which takes the value - °o at each

point of EΓiΩ. Let -η denote a positive number. Then

(6.3) eΛλQ/μ)£l.

Otherwise, the left hand side of (6.3) attains a maximum > 1 at apointf le iλ

We note that λ satisfies the condition B at a. Let ψ be a uniformizer for Ω,

ψ(0) —#, such that (6.2) is satisfied. Let v-\ogμ?, s = S°φ, iv = u — v + ̂ 5.

Then w has a positive maximum at 0, so that

On the other hand, from the subharmonicity of s,

m<r;tv)- ιv(0) = ίmir u) - «(0)] -f ylmir s) - s(0)3 - [ιw(r; v) -

> Cwi(r u) - u(0)l - ίm(r v) - e>(0)l

Consequently,

lim sup r"2Cm(r «;) - ?ι;( 0)] > U ?(0 )]2 - ίμ?{0)I
0

Contradiction. Hence (6.3) holds. On letting η -»0, we see that λΩ/μ<.l thanks

to the continuity of λ. (b) follows.

It is worth remarking that (b) has a "Phragmen-Lindelδf" character.
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7. In pursuing analogies with the theory of subharmonic functions, we are

led to ask whether an SK metric λ that is dominated by a C" metric μ of

constant curvature — 4 is equal to μ if λlμ takes the value 1 somewhere. That

this is actually so will be established with the aid of the following lemma.

LEMMA 7 . 1 : Let ux and th denote C" real solutions of Δu = 4#2 W on Δ(0 \n).

If Ui>U2 and uΛO) = Wo(0), then uι == u*.

Proof: Let v = u\ — u2. Given r, 0 < r < r 0 , let hk denote the solution of

the Dirichlet problem (relative to the Laplace equation) for Δ\Q\r) which

agrees with Uk on C(O r), k = 1, 2. By (4.2) we have

(7.1) -2- if log Ύyτίe
2ih{ζ) - Su*(ζ}ldS> = /MO) - *.«».

7Γ •/•/ |£|-β I ζ j

Consequently,

(7.2) m(r;v)<.8B

for 0<r<r1<nf where J3 = maxe2Ml.

We have

m(r)<SBm(r)[ (log ~-
J<Λ t

It follows that 0(2) =0 for z sufficiently small. The proof of the lemma now

follows from the connectedness of J10 ro) and the fact that the set where v = 0

and the set where v>0 are both open. The proof that {# = 0} is open parallels

the argument just given.

THEOREM 7.1 ' Let λ denote an S-K metric and let μ denote a C" metric of

constant curvature —4 on a Riemann surface F. If λlμ has maximum value

one, then λ = μ.

Proof: Suppose that λ*μ: By the upper semi-continuity of λ/μ, the set O

where λ/μ takes values less than one is open. It is not empty and is a proper

subset of F. Hence there exists a point α e f r O . At a the value of λ/μ is 1.

Let ψ denote a uniformizer, ψ(0)=a, let u-\ogλφ, and let v-\ogμ?. For

r(>0) sufficiently small, the condition (4.1) is fulfilled if B is replaced by

max expo (2 v). We fix such an r for which u(ret0) -~v(ret0)$0. Let w denote
l z | = >

a continuous function on Δφ',r) which satisfies Δw-Ae210 in zf(O;;), u(retθ)
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<,tι(reiQ)<v(re^)y and the condition that w(rei0) £υ(reiQ). Since w(0) = v(Q),

by Lemma 7.1 we have wiz) -v(z), \z\<r. Hence wiz) -viz), \z\ <r. Con-

tradiction. Theorem 7.1 follows.

8. Induced metric. Let / denote a conformal map of a Riemann surface

F into a Riemann surface G and let A denote a conformal metric on G. Then

there exists a unique conformal metric μ on F satisfying the following condi-

tions : if a and r are uniformizers for F and G respectively, and if further the

image of/><x is contained in the image of τ, then

μΊ=λτ*θ\d'\

where 0 — τ~ι°if°o). We term μ the conformal metric on F induced from λ

by f and denote it by [Λ, / ] . The following properties of induced metrics are

readily verified.

(a) If λ!<λ2t then ίλu / ] < D>2, f\

(b) If μ is a conformal metric on a Riemann surface H< g is a conformal

map of G into H, and / is as above, then

lμ.g°fl=lZμ,glfl

(c) If / is locally simple, f(F) = Gy and ίλu / ] < [Λ2, / ] , then Ai<;ι2.

<d) If λ is S-#, then so is [/I, / ] .

(e) Let / be a covering of G and let F be simply-connected. If μ is a

conformal metric on F satisfying tμ, a] = μ for each conformal automorphism

α leaving / fixed, then there exists a unique conformal metric λ on G satisfying

μ = D, / ] . If μ is an S-K metric, then so is /.

9. Let λ denote an S-K metric on F and let / denote a conformal universal

covering of F the domain of which is one of the standard simply-connected

regions » JίO lΛ the unite plane, the extended plane. Let μ = ΓΛ, / ] . Let c

denote the identity map on J(0 1) when the domain of / is J(0; 1), and other-

wise let c denote the identity map of the finite plane onto itself. It follows

from Theorem 2.1 that

19.D ^(2)£_J^... \z\<Ty

where 0 < r < l when the domain of / is JίO l ) and otherwise r is finite and

positive. Consequently, we obtain
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THEOREM 9.1: If a Riemann surface F possesses an S-K metric that is not

identically zero, then the domain of a conformal universal covering of F is

hyperbolic.

Further, when the domain of / is J(O l), (9.1) yields

(9.2) μc(z)<(l-\z\2Γ\ \z\<l.

There is a unique conformal metric γ on F such that

(9.3) cr /iω^d-iβi2)"1, uι<i,

as follows from §8(e). Further, if/i and/2 are conformal universal coverings

of F with domain J(Q; 1) and if

in, fklt(z) = (l-\z\*Γι, UKl,

then, as follows easily from § 8(b), (e), n = Tz- The common conformal metric

associated with the conformal universal coverings of F is termed the hyperbolic

metric. It will be denoted by γ. We note that γ has constant curvature - 4.

From (9.2) and §8(c), we obtain

THEOREM 9.2: Let λ denote an S-K metric on a Riemann surface F and

let the domain of a conformal universal covering of F be hyperbolic. Then

(9.4) λ<γ.

This theorem generalizes the lemma of Schwarz-Pick-Ahlfors [1]. Two

comments should be made. First, the inequality (9.1) and its consequence

(9.2) are the essential steps in the argument of Ahlfors for the case of the

unit disk. Second, the inequality (9.4) shows that γ is the maximal C" metric

of constant curvature - 4 on F.

10. General properties of S-K metrics. The first two properties, (a) and

(b) below, are easily verified.

(a) If λ1 and λ2 are S-K metrics on F, then so is max {λ\ λ2}.

(b) If λ is an S-K metric on F and s is a negative subharmonic function

on F, then (exp°s)A is an SK metric on F.

The essential part of the proof of (b) is already implicit in the proof of

Theorem 6.1 (b). It suffices to employ the mean-value property for subharmonic

functions and the fact that s<0.
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Sequences. It is immediate how notions of "pointwise convergence", uniform

convergence", etc. are introduced for sequences of conformal metrics by re-

ference to the behavior of the functions that the metrics assign to uniformizers.

The following holds:

(c) If (λn) is a monotone non-increasing sequence of S-K metrics on a

Riemann surface F, then the pointwise limit is also an S-K metric on F. If

(λn) is non-decreasing and λ is its limit, then the "regularization" J of λ given

by o -* Io, Jσ being the upper limit function of λo in the sense of Carathέodory,

is an S-K metric (λ need not be upper semi-continuous).

Let λ1, . . . , λn denote n given conformal metrics on a Riemann surface F,
n

and let 771, . . . , ηn denote n positive numbers, Σ^fe = 1. Let λ be defined on

S b y

(10.1) λ,= ΠU5)η*.

It is immediate that i is a conformal metric on F. It will be denoted by
n

Π ( λ * ) η * ( w e i g h t e d g e o m e t r i c m e a n o f λ \ . . . , λ n ) .
1

(d) If λ\ . . . , λn are S-K metrics, then so is λ = Π U*)η*.
1

The upper semi-continuity property of λ is immediate. The mean-value

property of λ at a point where λ does not vanish is readily concluded with the

aid of the inequality of the arithmetic and geometric means. In fact, if λ does

not vanish at a, let ψ denote a uniformizer, φ(Q) = a> let ŵ  = logA*, and let

v = *ΣykUk- Then for r > 0 sufficiently small

m(r v) - 2/(0) = *Σykίm(r «*) - Uk(0)l

Another way of constructing an S-K metric arises from the property (e)

that will be stated below. Let μ denote a euclidean metric on F. By this we

mean that μ is continuous and that for each ( G S , logμ0 is harmonic save for

a set of zero capacity at each point of which μ-s vanishes. Suppose that λ is

an S-K metric on F which satisfies the condition that there exists a positive

number A such that

λ > Aμ.
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Then

(e) For each v> 0<τ?<l, there exists a positive constant B such that

is an S-K metric on F.

To see that this is so, it suffices to verify the mean-value property at a

point a e F at which neither λ nor μ vanishes. Let ψ denote a uniformizer,

ψ(0) = a let u = log λ9, υ - log μφ, and iv = (1 - y)u + yv. For r> 0 sufficiently

small

v) - w ( 0 ) > ( l - :

It is now immediate that (e) follows when B satisfies

11. Sequences of metrics of constant curvature — 4. The basic result that

we shall establish here is

THEOREM 11. l The family of the C" conformal metrics of constant curva-

ture - 4 on a given Riemann surface F is normal in the sense of Montel. The

limit of a convergent sequence of such metrics is either a metric of the same

type or else is identically zero.

The proof of the theorem will be based upon the following lemma.

LEMMA 11.l Let (un)ΐ denote a sequence of real-valued functions, each

belonging to C"[J(0;D] and satisfying

(11.1) Ju = 4e2u.

If Un(0)~* — °°, then un~>. — °° uniformly in J(0; l ) . If liminf« r t(0)> - °°,

then (un)\ is equicontinuous in J(0; 1) and is bounded on each compact subset

of J(0 1). // (un)? is pointwise convergent to a finite-valued function u, then

w e C " [ J ( 0 ; l ) ] and satisfies (11.1).

We remark that "uniformly in" = "uniformly on each compact subset of"

and "equicontinuous in" = "equicontinuous on each compact subset of".

The proof of the lemma will be based on the observation [Schwarz-Pick-
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Ahlfors lemma for J ( 0 ; D ] that

(11.2) « » ( * ) £ - l o g ( 1 - I z | 2 ) , | * | < l ; * = l, 2,

and the use of potential-theoretic identities satisfied by the Un* Let us fix

r, 0 < r < l , and let hn denote the least harmonic majorant of the restriction of

un to J(O r). Using the notation of §4 we have

(11.3) Un(z)'=-pn{z) + hn(z), \z\<T,

where pn = Γ[4expo(2 un)l

If w»(0)-» ~ °°> then, as we see from (11.2) and (11.3), hn(0)~* - °°. Since

/*wU)< -log (1 - r 2 ) , Ul<r , it follows that hn -» - °° uniformly in 4(0; r).

Hence #Λ -> — °o uniformly in 4(0 r\ The first assertion of the lemma follows.

If lim inf un(0) > — oo, then (hn^T is equicontinuous in 4(0 r) and is bounded

on each compact subset of J(0,'r). Since

(11.4) ^(^-^(^l^-^

|2^l<r, where Q is Green's function for J(O r), we infer that (pn)ΐ is equi-

continuous in J(0 r ) . Hence (un) is equicontinuous in J(O l ) . It is-also

bounded on each compact subset of J(O l ) .

It now follows from (11.3) that if un-^u pointwise in J(O l ) , then u

satisfies

(11.5) u(z) = ~ Tl4expo{2u)l + h(z), \z\<r,

where h is the harmonic function on J(O r) with continuous boundary values

equal to u. From (11.5) we conclude that « ε C"[J(0; 1)] and satisfies (11.1).

The proof of the lemma is complete.

It is now easy to see how Lemma 11.1 leads us to the normality properties

of the family of C" conformal metrics of constant curvature - 4 on a given Rie-

mann surface. It is well to state that by the normality of the family we mean

that for each sequence (λn) of such metrics there exists a subsequence (λmn))

such that for each <?eS the sequence (λ™ίn)) is uniformly convergent in the

domain of a. Theorem 11.1 is now readily concluded on introducing a countable

family of uniformizers, each with domain J(O l) whose images cover F. It

suffices to apply Lemma 11.1 and the selection principle to establish the first
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assertion and to use a standard connectedness argument to establish the second

assertion.

We remark that a sequence UM) of C" conformal metrics of constant cur-

vature - 4 converges uniformly in F when it converges pointwise, in particular,

when (λn) is monotone. Further, we mention the following result that depends

upon the fact that a C" solution of (11.1) is actually real analytic [4,

pp. 339-342], a property that we shall not use elsewhere in this paper: If a

sequence (λn) of C" (alias real analytic) conformal metrics of constant curvature

— 4 converges pointwise on a non-empty open set, then (λn) converges on F.

12. Modification. One of our objects is to apply the method of Perron to

the study of S K metrics and their majorants of constant curvature — 4, A

tool that we shall want to develop is the modification of an S-K metric. It is

the counterpart of the Poisson modification of a subharmonic function in the

original Perron theory. We first prove

THEOREM 12.1: Let λ denote an S-K metric on F and let ψ denote a unifor-

mizer the domain of which contains 4{0;R). Then there is at most one S-K

metric μ on F satisfying:

U) λ* = μE, where-E=*F-ψlJ(O;R)1;

(b) u, the restriction of \ogμφ to J(O R), belongs to C"[J(0 R)l and

satisfies Ju = 4?e2u.

Proof' Let v also denote an S-K metric on F meeting the conditions im-

posed on μ, and let w denote the restriction of logvφ to J(OlR). To establish

the theorem it suffices to show that u = w. Given r, 0<r<R, we have

(12.1) u{z)= -Γ[4exp°(2w)] + M2), -\z\<r,

where h is the harmonic function on 4(0 r) given by the Poisson integral for

A(Q',r) with boundary function w, as well as a corresponding identity for w.

We let r-*R and infer that the counterparts of (12.1) hold for u and w on

J(O;2t?), as may be concluded by using the subharmonicity of \ogμφ and logzv

Hence u — w vanishes continuously at each point of {\z\ = R}. Now \u — w\ is

subharmonic and hence vanishes. The theorem follows.

We shall agree to term an S-K metric μ meeting the conditions of Theorem

12.1 the (ψ, R) modification of λ. More simply, we shall say that an S-K metric
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is a modification of λ provided that it is the (<f, R) modification of λ for some

(φ, R).

We now establish an existence theorem for modifications.

THEOREM 12.2: Let ψ denote a uniformizer for F, the domain of ivhich

contains 0. There exists ro>O for which jΓό n) is contained in the domain of

ψ such that each SK metric λ on F which does not vanish everywhere admits

a (φ, r) modification, 0 < r < r 0 .

Proof- Given an admitted λ, from the subharmonicity of the JogΛσ, we

conclude that cap {λ = 0} = 0. We fix R>0 such that J(O R) is contained in

the domain of ψ. For \z\<R and each λ we have

λφ(z)<R{R2-\z\2Γ\

We now fix r0, 0<ro<R, such that the condition (4.1) is fulfilled with

and r-n. We now consider a given admitted λ and let u = logλφ. Let (/«)

denote a monotone non-increasing sequence of continuous functions on {\z\ = r},

0 O < r 0 , which tends pointwise to u on {\z\ = r}, the sequence being so chosen

that max/r< (logB)/2. Let vn denote the solution of the boundary value

problem for Δv = 4e2υ on J(O R) with boundary function / w . The sequence

(vn) is monotone non-increasing and tends to a function t ι ε C " [ J ( 0 ; r ) ] satis-

fying: j# = 4β 2 v and v(z) >u(z), \z\<r.

Now let μ denote the unique conformal metric on F satisfying: (a) μp' = λE>

where E= F- ψίJ(0 r ) ] , and (b) logμ?<z) = ι;(2), | « | < r . We verify that # is

an S-K metric and is, in fact, the (φ, r) modification of λ. The upper semi-

continuity of μ at a point not on ψ{\z\-r) is obvious. To show that μ is

upper semi-continuous at each point of φ{\z\=r} it suffices to show the upper

semi-continuity of logμφ at each point of { U | = r } . But \ims\ip\ogμφ<fn{z)y

z

\z\ = r, n = 1, 2, . . . . Hence limsuplog/^<log^9(2). It suffices to check the
z

mean-value property only for points of ψ{\z\ = r } . Here, just as in the case of

subharmonic functions, the desired mean-value property is verified thanks to the

fact tjiat λφ <. μ? and λφ(z) - μ?(z), I z | = r.

13, Perron family of S-K metrics. A family Φ of S K metrics on F will
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be termed a Perron family provided that the following two conditions hold:

(a) If λ, μ<EΦ, then maxU, μ}<Ξφ. (b) If μ is a modification of i($0)GΦ,

then //e Φ. Our main concern in the present section will be to study the upper

envelope of a given Perron family and to show that it is a C" metric of constant

curvature — 4 whenever the family contains members that do not vanish every-

where. Of course, by the upper envelope of a family ψ(^-ίό) of conformal

metrics on F such that some conformal metric dominates every member, we

mean the unique conformal metric μ on F satisfying: (a) λ < μ, i e f , (b) if

λ < v, λ&ψ then μ<v. Before we turn to this question, let us remark that

the set of all S-K metrics on F is a Perron family, and further that if Ψ is an

arbitrary family of S-K metrics on F, there is a minimal Perron family ΦίΨl

containing Ψy namely the intersection of all Perron families containing Ψ.

The fundamental theorem is

THEOREM 13.1: If φ is a Perron family containing a metric not vanishing

everyivhere, then the upper envelope of Φ is a C" metric of constant curvature

- 4 .

Proof- The proof runs parallel to that for the subharmonic situation, the

major variant lying in the use of Theorem 12.2 in place of the corresponding

theorem for subharmonic functions. We fix a uniformizer ψ with domain con-

taining 0 and choose r(>0) so small that every S-K metric (=£0) on F admits

a Λ-ψ, r) modification. We proceed by showing that \ogμ? is C" in J(O r) and

satisfies there du-ie2", μ being the upper envelope of Φ. To that end, let

(λk) denote a monotone non-decreasing sequence of members ( £ 0) of Φ

such that each λk is its own (ψ> r) modification and lim λ%(0) = μ?(0) let

u = lim log λφ let a( * 0) e j(0 r) and let ί Jk) denote a non-decreasing sequence

of members of Φ such that (a) lim Jt{a) = μ?(a)> <b) Ik>λk, ft==l, 2, . . . , (c)

each Jk is its own {<f, r) modification; let e; = limlog^. Then v>u and v(0)

= u(0). #It follows from Lemma 7.1 that v(z) = u(z), \z\<r. Consequently,

\ogμ?(z) = u(z), \z\<r. We conclude that μ is a C" conformal metric of con-

stant curvature — 4.

Theorem 13.1 is rich in consequences. We note that if v is a C" conformal

metric of constant curvature — 4, then the family of S-K metrics λ satisfying

Ά<v is a Perron family. We conclude
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THEOREM 13.2* // Ψ is a family of S-K metrics containing a member that

does not vanish everywhere, then the upper envelope of ΦίΨl is the least C" con-

formal metric of constant curvature - 4 dominating each member of Ψ.

Of course, Ψ may reduce to a single element. In this case we have in the

upper envelope of ΦίΨl the counterpart of the least harmonic majorant of a

subharmonic function.

An application of Theorem 13.2. Suppose that λ is an S-K metric on F which

does not vanish everywhere. The set where λ vanishes is a Gs of zero capacity.

If a Riemann surface admits a non-trivial S-K metric, there exists an S-K

metric with the property that the set on which it vanishes is a given Gs of

zero capacity [cf. §15]. For the present we consider a problem concerning the

existence of an S-K metric that is C" and of constant curvature — 4 on the

complement of a closed set E of zero capacity, the behavior on E being

restricted in a manner that will be made explicit.

To be precise, let λ denote an S-K metric on F. We suppose that for each

uniformizer ψ with domain J(0; l ) there exists rΨ> 0 < r 9 < l , and a function Pφ

with domain J(Q rφ) satisfying.* (a) Pφ is non-negative and is harmonic save

at the points of a compact set of zero capacity (possibly empty) at each point

of which Pv takes the value -f co and is continuous, (b) P9 vanishes conti-

nuously on C(0 rφ)t (c)

(13.1) \Qgλφ(z) + Pφ(z) + log{l-rl) = 0(1),

for Z G J ( 0 ; rφ) satisfying Pφ{z) 4 + °°.

The motivation for (13.1) lies in the fact that we wish to impose a fairly

simple local behavior on λ at the points where it vanishes. The condition (13.1)

and the subharmonicity of logΛ^ imply that the left-hand side of (13.1) is non-

positive. Because of condition (13.1) the set of points at which λ vanishes is

a closed set E of zero capacity. Let Ω = F-E. We introduce two Perron

families on Ω. Let ΦΛ be the Perron family generated by λΩ. Let Φ2 denote

the family of S-K metrics μ on Ω satisfying

(13.2) 0>log^(2) + P,<2) + logU-r£)

for ZG J(0; rφ) satisfying Pφ(z) *t + °°, μΨ denoting the image of μ with respect

to the restriction of ψ to {P?(z) # + oo}.
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Now Φi is not empty since ΛΩ G 02. The maximum of two members of Φ2

belongs to Φ2. Let /iGft and let μ denote a modification of μ. With μφ denot-

ing the image of μ with respect to the restriction of ψ to {P?(z) *? + °°}, we

have

(13.3) μφ(z)<-τ^'rT2 -
1 I ZI

It now follows that (13.2) is satisfied when μ is replaced by μ. Consequently

Φ2 is a Perron family.

Let λk denote the extension of the upper envelope of Φk(k = 1, 2) to F which

vanishes on E. Then the λk are continuous and satisfy

(13.4) λ<λ!<λ27

and (13.2) is satisfied when μ is replaced by λ2. On Ω the λk reduce to C"

conformal metrics of curvature - 4 . It is to be observed that Λ and λ2 may

very well be distinct. We are led to the following theorem.

THEOREM 13.3 Let E denote a discrete set c F and let a positive number

a (a) be assigned to each point a&E. If there exists an S-K metric λ on F

satisfying', (a) its restriction to F—E is C" and of constant curvature —4, (b)

(13.5) logΛσ(z)-α:U)logUI = O(l),

z small, <s being a uniformizer, <r(0) =0, then there is a maximal S-K metric

meeting the conditions imposed on λ.

The proof is easy. Given <p, we have for some ry 0 < r < l ,

(13.6) "logA,U)<ςlog T ^ - Γ - r t p ( 0 ) ] l o g - | J p \z\<r,

where δ(a) = cc{a) if a^E and otherwise δ(a) =0. We take P ? to be

oΓ^(0)]log (r/\z\). We then see that λ2 is the maximal λ satisfying the imposed

conditions.

Theorem 13.3 will play a useful role when we consider function-theoretic

questions later.

It is worth remarking that if 0<β(a) < a(a), a^E, then under the hypo-

theses of Theorem 13.3 there exists an S-K metric meeting the conditions

imposed on λ with β(a) replacing cc(a).

14, Metrics with assigned zeros. It is of interest to inquire whether there
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exists on a given Riemann surface F admitting a hyperbolic metric a continuous

conformal metric that vanishes at an assigned point flGF, its restriction to

F—{a) being C" and of constant curvature - 4 .

The existence of such a metric is very easy to establish when F is hyper-

bolic (i.e. when Green's function exists). To see this, let g denote Green's

function for F with pole « E F , and let a denote a given positive number. Then

(14.1)

is an S'K metric with a zero of order a at a, γ being the hyperbolic metric of

F. It follows from the consideration of the Perron family Φ generated by the

restriction of (14.1) to F-{a} that there exists a continuous conformal metric

on F having a zero of order a at a whose restriction to F—{a) is C" and of

constant curvature — 4. This conclusion follows readily on noting that if ψ

satisfies ^(0) -«, ψ being a uniformizer with domain J(0; l) , then

(14.2) ^( 2 ) ^^JLll i« l l , | 2 | < i , eφ.

It is to be observed that even the order of the zero is controlled.

If F is a compact Riemann surface of genus > 1 then, as we shall see, there

do exist admitted conformal metrics vanishing at an assigned point, but the

order of the zero is severely restricted in terms of the genus. [The latter

remark will become clear in the light of §21 where the conformal metrics of

Schwarz and Picard are considered.] There also exist admitted conformal

metrics when F is a non-compact parabolic Riemann surface, however it is not

known to me how far the order of the zero can be controlled in this case.

We start with an obvious lemma that will permit us to construct an S-K

metric leading to a conformal metric of the desired type. Let

where R>0, a>l,0<p<R. We have

LEMMA 14.1: Let r, η denote given positive numbers. Then there exist

R>r and a>l such that

(14.3) μ(rϊ<v.9 μ'M/μirX-η.

Suppose now that Γ is a Fuchsian or Fuςhsoid group operating on J(0;.l)<
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We allow Γ to contain elliptic transformations. Let r, 0 <r <1, be so chosen that

the disks τίd{θ;r)l, τ e Γ, are mutually disjoint if there is no elliptic member of Γ

with fixe"d point 0, but are disjoint or coincide if there is an elliptic member

with fixed point zero. We first construct an S-K metric λ on J ( 0 ; l ) invariant

with respect to the transformations of Γ, i.e. satisfying Zλ, r ] = i , r e /'. To that

end, we take

min{2r, 1}
71 - 1-r2

and choose R and a to satisfy Lemma 14.1 with reference to this value of η.

Let ίi = / i ( r ) ( l - r 2 ) < l . Since we are concerned with the unit disk, we may

harmlessly use the same notation for a conformal metric and its scale function

associated with the identity. We define

(14.4) λ(τz) = μi\z\)\τ'(z)\~\ \z\<r, r e Γ .

This definition is consistent in the case where an elliptic transformation with

fixed point zero is present in Γ. For z e J ( O l ) - ϋ r[Z(()Tί)] we define

(14.5) J(z)= - 1 4 i | 2

It is now easily verified that λ is an S-K metric on J(0 1) thanks to the choice

of R and cc. Further λ has a zero of order a -1 at each point of the orbit

{rOKer and is invariant with respect to the transformations of Γ. It follows

from the results of § 13 that there exists a maximal continuous conformal

metric 1 on J(0; l) which has zeros of order a — I at each of the points rθ

and is such that its restriction to J(0; 1) - {rθher is C" and has constant

curvature - 4. [When we say that I has a zero of order a — 1 at a, we mean

\ogZJ(z)\z-a\i'al = 0(1) for z near a. Cf. however §18.] For each r e Γ w e

have

(14.6) [1, r]<J.

From §8 (a), (b) we conclude that

(14.7) [ I , r 3 = J.

Applying §8 (e), we conclude, on considering the case where,Γ is the group of

conformal automorphisms leaving invariant a conformal universal covering of
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a Riemann surface F with domain JlO l), that there exists a continuous con-

formal metric on F which vanishes at just one assigned point and elsewhere is

C" and of constant curvature - 4.

15. The zero set of an S-K metric. The method of § 14 permits us to

characterize the set where an S-K metric vanishes. We have seen that the set

is a Gδ of zero capacity when the metric does not vanish identically. We shall

now see that if X is a Gδ of zero capacity lying in a Riemann surface F ad-

mitting a hyperbolic metric, then there exists an SK metric on F whose zero

set is X

Thanks to a result of Deny [5], if 0<p<r<l and E is a Gδ of zero capa-

city lying in J(Q;p)t there exists a Green's potential P (relative to

generated by a mass distribution in J(θ pi), ρ<pι<r, whose infinities consist

precisely of the points of E. Given ε>0, there exist y>0 and R>1 such that

the maximum of the outer normal derivative along C(0',r) of

is less than e. The argument of § 14 may now be applied to construct an S-K

metric on J(θ l) satisfying: (a) it is invariant under the transformations of

a given Fuchsian or Fuchsoid group acting on J(0;D, (b) the set on which it

vanishes is of the form U χ<=Γτ{E) where E is a Gδ of zero capacity contained in

a non-euclidean disk of sufficiently small radius and invariant under re/"leaving

the disk fixed. It suffices to consider the case where the non-euclidean disk is of

the form J(0 p) and for some r, p<r<1, J(0 r) satisfies the condition relative

to Γ stated in § 14. We replace k of § 14 by

R2-r2

and take ε = 2 r( 1 - r2)" 1. We replace μ(\z\) by

in (14.4). Finally, we suppose that P is invariant under the transformations

r e Γ with fixed point 0.

If Γ has a compact fundamental domain and E is a Gδ in J(0; l) , of zero

capacity, and invariant under the transformations of Γ, then there exist S-K
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metrics μu . . . ,£*«, each invariant under the transformations of Γ, such that

the union of the sets on which the μk vanish is E. It follows that

is an S-K metric invariant under the transformations of /' and that the set on

which it vanishes is E.

The case where the fundamental domain of Γ is not compact admits a

parallel treatment save that here convergence questions arise. They may be

handled by the proper use of weighted means. To treat this case, we start by

observing that there exists a sequence of S-K metrics (μn)T on J(O l) having

the following properties: (a) each μn is invariant under the transformations

of Γ, (b) the union E of the sets where the μn vanish is a given Gs of zero

capacity in 4(0 l) invariant under the transformations of Γ, (c) for each

r, 0 < r < l , the set on which μn vanishes lies outside of J(0;r) and μn is conti-

nuous at each point of J(0;r) for n sufficiently large. Of course, we put aside

the trivial case where E-fS. The existence of (μn) may be established as

follows. We first introduce a locally finite covering of the fundamental domain

D of Γ [here the set of z in J (0; l ) whose non-euclidean distance to 0 does

not exceed its distance to τθ, r e Γ —it will be assumed that Γ does not pos-

sess a member distinct from the identity having 0 as a fixed point] by non-

euclidean disks δ with centers in D satisfying: (1) only a finite number of the

δ have a non-euclidean radius exceeding a given positive number, (2) the closure

of each δ lies in a non-euclidean disk with the same center in which two points

are equivalent only if they differ by a non-euclidean rotation of Γ having the

given center as fixed point. For each δ such that EΠ ( U ~erτδ)#0we construct

as above an S-K metric invariant with respect to the transformations of 7", the

set on which it vanishes being £ Π ( U τe=rrδ). [We assume that there are in-

finitely many such δ. The finite case may be treated in the same manner as

the case where the fundamental domain of Γ is compact] We take (μn)T as

a univalent enumeration of the so constructed metrics. It has the stated pro-

perties. The convention of §14 concerning conformal metrics on J(0; l) will

be understood to prevail.

For each positive integer k let n{k) denote the smallest n such that for

m>n the closure of the set where μm vanishes does not intersect J(0;l-2~*),



26 MAURICE HEINS

and μm is continuous on J(0; l-2" f e ) . We note that {n(k))T is non-decreasing

and that limn(k) = «>. For each k satisfying n(k)<n(k+l) we choose a

positive number pk<2"k such that

(15.1) I Σ l o g ^ ( Z ) | < - w - ^ ± ^ - ^ - , 1*1*1-2"*.

Let / be such that »(/+ 1) > « ( / ) > 1. We introduce

(15.2) Λ = ( Π /ι»)»(/)-! ΠC( Π

where the k are taken as the positive integers satisfying: k>l, n(k + l)>n(k).

It is readily verified that thanks to (15.1), the right-hand side of (15.2) is

convergent for | z \ < 1 and defines an upper semi-continuous function whose

zero set is E and which yields a conformal metric invariant under the trans-

formations of Γ. There remains to be considered the mean-value property.

To that end, we consider a point a for which λ(a) = 0̂ and set v(z) = log λ(a + z).

For r>0 sufficiently small we have

ί i ( l ) - l

(15.3) m(r;υ)*Σ

iT-

On applying the weighted form of the theorem of arithmetic and geometric

means, we see that for r sufficiently small

(15.4) mir υ) - υ(0) ^ [ / ( a ) ] 2 .

We conclude that λ defines an S-K metric.

It is now easy to see that if a G$ of zero capacity, say X, is given on a

Riemann surface F that admits a hyperbolic metric, then there exists an SK

metric on F which vanishes precisely on X. It suffices to introduce a con-

formal universal covering f of F with domain J(0; 1) and to note that <p~*(X)

is a Gδ of zero capacity invariant under the conformal automorphisms of J(0 1)

which leave ψ fixed. The argument is completed by applying the construction

of the present section and §8 (e).

16. Boundary problems. The Perron method may be employed to treat
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boundary problems for C" conformal metrics of constant curvature - 4. We

consider the following situation. Let Ω denote a region contained in a compact

Riemanri surface F. The frontier of Ω is to consist of a finite number ( > 1)

of mutually disjoint Jordan curves γu - . - , r«. For the sake of simplicity we

suppose that UT*s=fr (F-Ω) although we may easily treat by the present

methods boundary problems in the case of two-sided approach to a given

boundary component. Let β denote a continuous non-vanishing conformal

metric on fr Ω. We ask: Does there exist a continuous non-vanishing con-

formal metric λ on Ω satisfying: (a) its restriction to frΩ is β, (b) λΩ is C"

and of constant curvature — 4. Of course, Theorem 2.1 assures us that there

is at most one such conformal metric. We turn to the existence problem.

To that end, let Ak denote a Jordan annutus, γk c Ak c F, which has the

property that γk separates in Ak the components of fr Ak, k = 1, . . . , n. We

suppose as we may that the Ak are mutually disjoint. Let τ& denote a univalent

conformal map of Ak onto a plane annulus. The boundary components of

τk(Ak) are separated by τk(γk) Let βk denote the continuous function induced

on τk(γk) from β by rϊ1. There exists a Jordan annulus Bk^τkiAk) whose

frontier contains τk(γk) such that r i 1 (5*)c i j and the boundary value problem

with respect to Bk for J# = 4g2M and continuous boundary function with maxi-

mum < max log βk admits a solution.

In this connection we note that we may choose Bk in such a manner that

(16.1) maxff Q U ζ)dSζ

does not exceed a given positive number, $ being Green's function for Bk. Such

a choice of Bk may and will be made by considering first the harmonic measure

Uk of τk(γk) with respect to τk(AkΠΩ) and taking Bk as {l>Uk>l-y} where

η> 0<7/<L is taken so small that (16.1) is fulfilled. The reasoning of §4 is

now applicable. It is to be observed that the integral in (16.1) vanishes con-

tinuously on ίτ Bk.

To continue, we introduce a C" conformal metric μ of constant curvature

~ 4 on a region containing Ώ and choose a positive number c ^ l so that the

values induced from cμ by τlι on τkiγ) are less than min/fc, k= 1, . . . , n.

There exists a continuous conformal metric ak on τ^KBk) satisfying: (a) the

restriction of au to τ^ίBk) is C" and of constant curvature —4, (b) the restric-
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tion of an to γk is equal to the restriction of β to γk, (c) the restriction of <sk

to ή, the other component of frτΐHB*), is less than the restriction of cμ to

γ'k. Consequently, there exists a continuous conformal metric on Ω whose

restriction to ίτ Ω is β and whose restriction to Ω is S K. Such a conformal

metric is the conformal metric v on Ω whose restriction to Ω— UrίHBjfe) is the

restriction of cμ to this set and whose restriction to TΪHBΛ) is the maximum

of ok and the restriction of cμ to r*HB*), k = 1, . . . , n.

Let α: denote the continuous non-vanishing conformal metric on Ω whose

restriction to fr Ω is β and whose restriction to Ω is euclidean. The uniqueness

of a follows from the maximum principle for harmonic functions. To establish

the existence, we introduce an analytic differential ω on Ω which does not

vanish and note that there exists a continuous function h on Ωt harmonic in

Ω and reducing to log(β/|ω|) on fr 42. The obvious notational gloss is to be

made. We have: a = (expoft)|ω|.

We note that a majorant principle prevails for S-K metrics and non-vanish-

ing euclidean metrics dominating them on the boundary— the domination ex-

tending to the interior.

Now let λ denote the upper envelope of the Perron family generated by the

restriction of v to Ω. The desired existence result follows from

(16.2) vΩ<λ<ccΩ.

17. Convexity properties. In the theory of subharmonic functions the con-

vexity properties of the maximum or mean on a circumference are of interest.

Corresponding properties in the case of S-K metrics yield useful information,

especially in the study of the local behavior of an S-K metric near an isolated

singularity. Even sharper information may be obtained in the case of a C"

conformal metric of constant curvature — 4. As far as I am aware, such results

have not hitherto been explicitly stated. They complement in one respect the

formulation of the Schwarz-Picard problem [cf. Ch. 2, § 19], for it is not at all

evident from the work of Picard to what extent the nature of the possible

isolated singularities of C" conformal metrics of constant negative curvature

was taken into account by him.

Let us start with the elementary non-linear differential equation

(17.1) y = 4e2*



ON A CLASS OF CONFORMAL METRICS 29

—its significance for our fundamental equation Ju = 4e2u is obvious—and note

certain basic properties of the solutions. We fix a point (a, b) in the plane,

and for a real we let y* denote the solution of (17.1) whose domain is a semi-

closed interval with lefthand endpoint a [possibly {#<#}], satisfying y(a)=b,

yf(a)=a, and having a maximal domain of the stated type. Given ξ>a, -η

arbitrary real, there exists a unique a such that

(17.2) J> ( £ ) = * .

If oc > — 2 eb, the domain of ya is bounded. Its right hand endpoint may even

be determined by quadratures. If a < — 2eb, the domain is unbounded. If

a = - 2 e\

(17.3) j> (*)==log-ί + c + o(l), * large,

while if α: < -

(17.4) ^ ( * ) ^ - W α ί - 4 « l * + o U ) , x large.

These are only preliminary observations. For our local studies we shall be

concerned rather with

F' 4e 2 r(17.5) V+

and shall consider solutions with domain of the form {<0< )B<r< A), A = e~a,

satisfying YKA) -b-{-a, the domain being maximal. The mapping, Y-»y,

specified by

(17.6)

maps the set of solutions of (17.5) taken into account onto the set of the y*.

The antecedent, Yat of ya satisfies K(A) = - ( α + l )/A If a> ~2eb, the

lefthand endpoint of the domain of Ya is positive. Otherwise it is zero. From

(17.3) and (17.4), we conclude

(17.7) YJr) - l o g - -logflog-M + c + od), a = ~2e\
T \ T '

and

(17.8) Ya(r) = {l-ja2-4e2b)\og l +o(log- ), a< ~2e\

Let / denote a real-valued function whose domain is of the form {0 <r< A}.
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We say that/ is convex relative to the family of solutions of (17.5), or more

simply, that / is *-convex provided that whenever 0<B<C< A and Y is the

solution of (17.5) with domain {B<r<C} which satisfies

then

B<r<C.

[We define *-convexity analogously for a function with domain {0<r< A}.]

We now introduce for each B> 0<B<A the unique solution of (17.5) with

domain {B<r<A} which satisfies

Y(A)=f(A),

and denote it by ZR. We note that for B<r<A, B-+ZB(r) is non-increasing.

Letting £~*0, we conclude that / is dominated by a solution of (17.5) on

{0<r<,A} which agrees with / at A. We let αo be the least value of oc for

which Ya > f. We have a0 <> - 2 ef(Λ). Let β = 1 - ίal - 4 e2/U)31/2. We assert

that

(17.9) l i m l
log-

To see this, we note that from Γ O 0 > / and (17.7), (17.8) we have

On the other hand, if

lim inf
lOg y

on taking a < an satisfying

liminf f{r] <β,
1

V i m i n f / ( r ) .
r-»0 , 1

logy

we see t h a t / ^ y β and the minimal character of ao is violated. We conclude

(17.9).

Suppose now that u is a C" solution of Δu-Ae2u on J(0;J?)-{0}. We

propose to study
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and

mir) = -s—\ u(reiθ)dθ, 0<r<R.
u Tζ J 0

If 0 < n < r 2 < i ? , the solution of (17.5) on {/Ί< r<^ n) taking the value M(n)

at rfe(ft = l, 2) dominates ΛΛr) on { r i<r^r 2 } . Hence r-^M(r) is *-convex on

{0<r<R}. To treat the mean, we note that mir) satisfies

7 Δ K Jo

an inequality that implies the *-convexity of mir) on {0<r<R} [11].

Suppose now that λ is an S-K metric on F— {a). Let φ denote a univalent

conformal map of 4(Q;R}~-{0} into F-{a) which satisfies limfU) =* α and
z->0

let w-logλφ. Then, if λ does not vanish identically, Mir) and ra(r) are

* -convex. For Mir) the proof is the same as that indicated in the preceding

paragraph. For m(r) we note that if 0<rχ<r2<R, and v is continuous on

{n < IzI < n)> is C" and satisfies Ji; = 4 β2v in {rx < \ z | <r2}, and dominates w on

C(O rjfe), A = l, 2, then v dominates u throughout {n<\z\ < n). Hence m(r)

is dominated on { r i^r<r 2 } by the solution of (17.5) which reduces at n to

the mean of v on C(0;^) , Λ? = 1, 2. Now by the existence theorem for the

boundary problem for C" conformal metrics of constant curvature - 4 there

exists v continuous on {n < Iz \ < r2}, C" and satisfying Δυ = 4e2 v in (ri< I«1 <r2},

and reducing to a given continuous function on C(θ n ) , £ = 1, 2. Thanks to

the upper semi-continuity of «, there exists a sequence of such v, say (#n)Γ,

which is monotone decreasing and tends pointwise to u on C(O n ) , A = l, 2.

These remarks taken together imply that ;n(r) is dominated on { r i < r ^ r 2 } by

the solution of (17.5) which reduces at r* to w(n), ft = l, 2.

It is to be observed that there is a marked contrast between the behavior

near zero of u and that of an unrestricted subharmonic function in J(0 R) — {0}.

In fact (17.9) yields for our present u

(17.10) lim M(r) < 1 ,
r->Q . 1

l o s r

a r e s t r i c t i o n t o w h i c h n o t al l s u b h a r m o n i c f u n c t i o n s o n Ji0;R)-{0} a r e

sub jec t .
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18. isolated singularities of solutions of du~4rβ2u. Let u denote a con-

tinuous function on J(O l) - {0} which is a C" solution of Ju~4e2u in

J(0; 1) - {0}. We propose to study the behavior of u near 0.

Case 1. lim M(r)/log (r"1) < 1. Let a denote lim m(r)/log (r"1) and observe

that u admits a representation of the form

(18.1) u(z) = h(z) 4-αrlog^y -7T4e 2 w], 0 < | z | < l ,

(cf. §4, r = l), where h is harmonic on J(0; l ) . Thanks to the fact that

u(z)<a\og~τjr Λ-c

for z small, we conclude that Tί4e2u] is continuous at the origin. Hence we

have

(18.2) w ( z ) = α : l o g π -f-Ci + od), z small,

a consequence of which is:

Mir)
a = lim

logy

Note (18.2) refines (17.8)

It is easily seen that if υ satisfies the same conditions as u and in addition

v< u and lim (v — u) = 0, then v = u, It suffices to employ the argument of
0

Lemma 7.1 with obvious modifications.

Case 2. limAf(r)/log (r"*1) = 1 . Here the treatment is somewhat more

delicate. At all events, the developments of Case 1 show that lim m(r)/log (r"1)
r->Ό

-j

We observe that there is a unique u that takes a given constant value c on

C(0;l) and satisfies lim m(r)/log (r"1) = 1. The existence follows from the
r->0

remarks concerning the solutions of (17.5). If υ is a second such function, we

have

so that

(18.3) (υ~~u)+ <Tl4e2ul
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On the other hand, (v~u)h is subharmonic in J(0; l)-{0} and T[4e2M] is a

Green's potential in J(0 ," 1). Hence (v - u)+ - 0 and by symmetry u = υ.

We return to an unrestricted u of Case 2 and introduce α = min#(gί<9) and

for each r, 0 < r < l , we introduce zv[resp. Vr\ the continuous function on

{ r < | 2 l < l } reducing to a [resp. Mil)] on C(O l) and to u on CίOlr) which

further is C" and satisfies JM;-=4£2 M ; in {r<\z\<l}. Let vU) = limMz) and
r->0

VrU)=lim VrU), O<UI<1. We have

v<u<V.

Further v and F a r e both of the form

(18.4) l o g-]Y| ~lo

since each is a function of the type considered in the previous paragraph. We

next observe that u - v and V - u are subharmonic and bounded on J(0 1) — {0}

and consequently admit subharmonic extension to J (0 ; l ) . Since V—v

= ( V — u) -f (u- v) admits continuous subharmonic extension to zί(O l), it

follows that u — υ and V-u both possess a limit at 0. Hence u admits a

representation of the form (18.4).

Let i be a Cn conformal metric of constant curvature —4, on F~E where

E is a discrete subset of F. Let a^E. Let Ω denote a plane region for which

0 is an isolated frontier point. Let ψ denote a univalent conformal map of Ω

into F-E satisfying \\m<ρ — a. Then logΛ9 admits a representation of the
0

form (18.2) or (18.4) and the coefficient of log (Id" 1) is independent of ψ. We

term the common value of the coefficient of logίUΓ1) the index of λ at a and

denote it by ιλa\ λ),

[The index of a euclidean metric λ at a point a is analogously defined as

the coefficient of log (| z Γ1) in the expansion of logΛ9 about 0 and will be

denoted by v(a λ) as above. It is to be observed that for euclidean metrics

the index may assume arbitrary real values. The index of a euclidean metric

will be employed only in the case where log λ? is of the form oc log ( U Γ ^ + Ms),

h harmonic at 0J

It is now easy to see that if F- {a) possesses a hyperbolic metric γ, then

jΛa γ) =1. The property is wτell-known. For plane regions cf. [10]. Suppose

that via γXl, Then we may modify γ to obtain an S-K metric μ for which
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/ι/r takes a value greater than one somewhere. In fact, if ψ is a univalent

conformal map of j(0;2)-{0} into F-{a) satisfying lim^ = α, it suffices to
0

introduce a C" solution v of Δv = ke2v in J(0 1) - {0} taking constant boundary

values less than minlogr? on C(0;l) and of the form (18.4). We let μ denote
C ( 0 ; l )

the metric obtained when log γφ(z) is replaced by max {log7-9(2), viz)} for

0 < U | < l . However it is not possible for such a metric μ to exist. Hence

v(a)γ)-l.

This result may be viewed as a corollary of the following theorem.

THEOREM 18.1: Let F denote a non compact Riemann surface admitting a

hyperbolic metric r> and let Ω denote a component of the complement of a

compact subset KaF, let n denote the hyperbolic metric oj Ω. Then rΩ/n has

a positive lower bound in Ω — V, where V is a neighborhood of K.

Chapter II. The problem of Schwarz-Picard

19. The problem proposed by H. A. Schwarz and treated by Picard [133

may be stated in the language of the present paper as follows:

Given a compact Riemann surface F, n distinct points aίy . . . , an on F and

real numbers vk< 1, k = 1, . . . , n. Does there exist a C"conformal metric λ

of constant curvature — 4 on F— {au - . . , an) which satisfies

v(ak\λ) =*£, k = 1, . . . , n ?

To be exact, Picard envisages an equivalent problem for squares of metrics.

Further, he treats the problem corresponding to that formulated here when

vk<l It is also to be remarked that a local representation of the form (18.2)

is assumed outright by Picard as an expression of the local behavior of the

metric in the neighborhood of a singularity.

An elementary construction of a C" conformal metric in the plane with

singularities of the type considered by Picard and of curvature < - l at the

non-singular points was given by R. M. Robinson [15].

We now give an account of the above formulated Schwarz-Picard -problem

in terms of the methods and ideas of the present paper.

20. Uniqueness. The unicity question may be handled very rapidly. Sup-

pose that λ and μ satisfy the specified conditions. Then λ/μ admits a continuous
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t-

non-vanishing extension to F and log U/μ) is subharmonic and consequently

constant since F is compact. The constant value is not positive, for otherwise

the curvature would not be - 4 for both λ and μ. Hence λ < μ. By symmetry

λ = μ.

21. The Λ-area of F—{au . . . , an). It is classical that the area of

F—{alt . . . , an) in the sense of a metric λ meeting the conditions of the

problem is simply

(21.1)

where X(F) is the Euler characteristic of F( = 2g-2, g being the genus of F).

Hence since the Λ-area is positive, we obtain

THEOREM 21.1: A necessary condition for the problem of Schwarz-Picard to

possess an affirmative answer is that

(21.2) t

22. The condition (21.2) is sufficient for the problem of Schwarz-Picard to

have an affirmative ansiver. This aspect of the solution of the problem is, as

might be expected, more difficult. We first establish several lemmas. In these

lemmas we understand that w > l .

LEMMA 22.1: Given (vl, . . . , v%) such that there exists a Cn conformal

metric λ of constant curvature — 4 on F— {ai, • . , an) satisfying v(ak\λ) = u\y

k = 1, . . . , n. Then for each n-tuple (vlt . . . , vn) satisfying v\ < vk < 1, k = 1,

. . . , n, there exists a C" conformal metric μ of constant curvature — 4 on

F - {αi, . . . , an) satisfying v(au I μ^ = vk, k = 1, . . . , n.

Proof: We modify λ locally near ak, if vk>Λ, to obtain an S-K metric A*

on F-{ai, . . . , an) whose restriction to a deleted neighborhood of an is C",

of constant curvature - 4 , and such that v(aklλ*) =vk. Such a modification

is easily constructed on noting that there exists a C" solution of Jw = 4e2w on

J(0; 1) - {0} which takes an assigned constant boundary value on C(0;l), and

is of the form (18.2) with vk = oc if vk<h and is of the form (18.4) if vk = 1.

[cf. last paragraph of §18.]

Now let ψk denote a univalent conformal map of J(0i2) into F, ̂ (0) =ak,
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the ψkΐ.MO',2)'} being mutually disjoint. Let μk denote the maximal C" con-

formal metric on ^ [ J ( 0 1) — {0}] of constant curvature — 4 satisfying v(ak \ μk)

= vk- The existence of μk is readily established with the aid of a suitable solu-

tion of (17.5), i.e. Yon {0<r<l} satisfying lim Y(r) = -f oo, γ(r) = **log(l/r)
? ->l

+ c-fo(l) if vk<l, and otherwise Y(r) = log (1/r) -logDog (1/r)] + c + o(l),

r small.

The Perron family generated by A* has the property that μk dominates the

restriction to <PkZd(O',l) -{0}] of each member of the family. The upper en-

velope of the family is the desired μ.

LEMMA 22.2: Under the hypotheses of Lemma 22.1 there exists a C" con-

formal metric μ of constant curvature — 4 on F- {aίf . . . , an) satisfying

viakl μ) <Λ, k = 1, . . . , n.

Proof: Let δ satisfy Σ ( 4 - < ? ) = -7(F), so that <5>0. From standard

properties of abelian differentials on F and the fact that there exists a harmonic

function h on F less two given distinct points at which h has logarithmic

singularities it follows that there exists a non-vanishing euclidean metric ω on

F — {au . . . , an) which satisfies v(ak ω) = yjfe - δ, & = 1, . . . , n. Using property

(e) §10 we infer the existence of an S-K metric A* on F - {au - - , an) which

satisfies for small z the condition

(22.1) log;? Λ (^=α*log-|^-i9Alo

Here ψk is a univalent conformal map of J(0;2) - {0} into F - {au . . . , an)

satisfying lim ψk(z) ̂  ak and ak<v\. By a paraphrase of the argument of
0

Lemma 22.1 we see that the upper envelope of the Perron family generated

by A* is an admitted μ. It suffices to replace μk of that lemma by a conformal

metric meeting all the same conditions save that its index at ak is to be cck.

LEMMA 22.3: Let (αri, . . . , an) denote an n-tuple of real numbers satisfying

Σ # £ = —YAF) and ak<l, k = 1, . . . , n. Then for each n-tuple (pit . . . , vn)

satisfying

(22.2) ak<vk<l> ft = l, . . . , n,

there exists a C" conformal metric λ of constant curvature — 4 on F- {au . . . ,

an) satisfying
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This is the essential lemma for the sufficiency theorem.

Proof: Let E denote the set of ^-tuples (vι, . . . , vn) satisfying (22.2).

Clearly E is convex. A fortiori E is connected. We employ an argument based

on the connectedness of E. Let A denote the set of ^-tuples (υu . . . > vn) ^ E

for which there exists λ meeting the specified conditions. Now (1 1 ) G A

[If YΛF) = - 2 , Λ > 3 3 . Further Lemmas 22.1 and 22.2 show that A is open

in the sense of the relative topology of E.

It remains to show that A is closed in the sense of the relative topology

of E. To that end, we consider a sequence {{v{y . . . , v{))? of members of A

tending to (v\, . > v%) <B E and show thatU?, . . . , vn) e A. It then follows

that A is closed in the sense of the relative topology of E. Let λj denote the

C" metric of constant curvature - 4 on F - {ait . . . , <zrt} which satisfies

u(ak Λy) = viy k = 1, . . . , n. By the normal family property of the C" conformal

metrics of constant curvature — 4 there exists a subsequence of {λJ), which we

may as well take to be Q') itself, converging uniformly in the sense defined

earlier in F - {au . . . , an) to either the identically zero metric or a C" metric

of constant curvature - 4 . The ̂ -area of F-{au . . . , # « } namely

n

Ύ

has a positive lower bound independent of j . If (λJ) tended to the zero metric,

the Λy-area of F - {au . . . , an) would tend to 0 as j -> °°. In fact, let ̂  denote

a univalent conformal map of J(0;2) into F, ̂ (0)=«jfe', Λ = 1,. . . . , Λ, the

^L^(0;2)3 being disjoint. Then given r, 0 < r < 2 , for j sufficiently large the

Λarea of F - {au . . . , « « } would be less than twice the sum of the areas of the

ψkίd{0; r)3 ~ {cik} in the sense of the hyperbolic metric of F—{άίt . . . , a?ι).

This is impossible for r sufficiently small.

Hence (λJ) tends to a C" conformal metric A of constant curvature - 4 on

F-{aίt . . . , an). Using the ^ of the preceding paragraph, we put down

conformal metrics μί and μϊ on <fkl4{O;ϊ)Ί- {an) satisfying the following

conditions: (a) each be continuous; (b) the restriction of each to ψkίd(0; 1)3

- {an) be C" of constant curvature - 4 ; (c) iλa k \ μί) <v%<v{ak \ μi) if Λ<1,

and otherwise v{ak μk)<Λak\ μi) = 1 (d) μ'k<λ<μ'k on ^[CίO D ] , the
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obvious gloss concerning restrictions being made. It follows that for j

sufficiently large

βk <λJ < βi

on ψkΐJ(Q;ΐ]i— {ak} Hence we have on the same set

We conclude that

v(ak > βk) < viak I λ) < viak ί β'k)>

and hence, that

v(akI λ) = v*k, k = 1, . . . , n>

using the arbitrariness of v(ak\ βk) and v(aklβk)- Lemma 22.3 follows.

The solution of the Schwarz-Picard problem is now readily completed. We

put aside the case where n~0< It is cared for by the hyperbolic metric.

Given (vu . ...... , »„)., vk< 1, k= 1, . . * , n, satisfying (21.2), we take (αri, . . . ,

an) satisfying Σ ^ = — X(F) and cck<Pk, Λ = l, . . . , w, and thereupon apply

Lemma 22.3.

Chapter III. Applications to Conformal Mapping

23. From this point on our central interest will be the application of con-

formal metrics, generally C" with constant curvature - 4 , to the study of

conformal maps of Riemann surfaces, and more particularly to conformal maps

and meromorphic functions with domain J(O l) .

24. Nehari's generalization of the lemma of Schwarz. We quote Nehari's

theorem [9] :

"Let zv = f(z) be a non-uniform function, regular for | z l < l apart from a

finite number of algebraic branch points and let f'(z) be finite everywhere in

\z\ < 1 let further, for all determinations of f(z), \f(z) I <, 1 for \z\ < 1 . Then

we have

for all the different values / ' ( 0 ) may assume. The case | / ; ( 0 ) | = l can only

happen for f(z) s Kz, \K\= 1."

Nehari's theorem will now be considered from the point of view of our present

study. It will be seen to admit considerable generalization, The following



ON A CLASS OF CONFORMAL METRICS 39

reworking of Nehari's theorem indicates the nature of our approach >

Let / denote an w-sheeted conformal map of a Riemann surface F onto

J(0 1) and let g denote an analytic function of modulus <1 on F which satisfies

the condition nip /) <, nip ; ^ ) J e F. [Here "nip / ) " denotes the multiplicity

of / at pj Let γ denote the hyperbolic metric of J(0 1\ Then lγ, gl < Er, / ] .

If the two sides are equal, g- T°f where T is a conformal automorphism of

We remark that Cr, /J is the maximal conformal metric on F whose re-

striction to F less the points at which / is ramified is C" of constant curvature

- 4 and which has index 1-nip f) at each point p with nip\f)>l. This

is the essential fact of the part of the theorem concerning the inequality. It

suffices to consider for r less than but sufficiently near one the metric induced

from the hyperbolic metric of J(θ r) by the restriction of / to /"ΐJvO r)],

only r such that / is not ramified over C(O r) being taken into account.

More generally, a theorem of this type is available when we have (as above)

a maximal conformal metric induced from a hyperbolic metric. We have

THEOREM 24.11 Let fk denote a conformal map of a Riemann surface F

into a Riemann surface Gk possessing a hyperbolic metric γk, k = 1, 2. Suppose

that nip /i) < n{p ;/ 2), i>ef, and that Iru.fil is the maximal conformal metric

on F whose restriction to F~ {nipl/O >1) is C" of constant curvature - 4

with index 1 — nip /i) at p satisfying nip)fχ)>l. Then

(24.1) in. ΛJ^ίrufil

In addition, if Gi and G2 are conformally equivalent to ΔiO'Λ) and equality

holds in (24.1), /2 = T°fu where T is a univalent conformal map of d onto G2.

We need only verify the last assertion. We assume, as we may, that

Gi = Gi = AiO 1). Let po e F be such that n(polfι) - 1 and let T be analytic

on a region containing fι(po), be of modulus less than one, and satisfy Tίf%(p)1

=A(p)> P near p0. Then

for z near fi(po). The equality (24.2) implies that T is the restriction of a

conformal automorphism of J(O l) and the assertion follows.

[For the sake of completeness we indicate a proof. Cf. [9]. We may assume
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that/i(^o)=O and 7X0) =0. The equality (24.1). then yields the result that

the hyperbolic distance between 0 and T(z) is equal to the hyperbolic distance

between 0 and z for z small. Hence | Γ U ) | = \z\ for z small and T is the

restriction of a conformal automorphism of J ( 0 ; l ) . This argument will be

used later [§29].]

We now see that interest centers on determining a comprehensive class of

conformal maps that induce maximal metrics.

25. A class of conformal maps. An interior transformation / of a surface

F into a surface G will be said to be locally of island type (inselartig im kleinen)

provided that for each q^G there exists a disk J, ^ G J , such that each com-

ponent of f~ι(Δ) is relatively compact. It is obvious that the class of maps

that are locally of island type embraces the class of maps of constant finite

valence as well as many frequently considered interior transformations (such

as branched coverings).

We first prove

THEOREM 25.1: Let f be a conformal map of a Riemann surface F intσ a

Riemann surface G and suppose that f is locally of island type. Then

(a) If G possesses a hyperbolic metric γ, Er, / ] is the maximal conformal

metric on F whose restriction to F— {nip; f)>l} is C" of constant curvature

— 4 and has index 1 - nip f) at p satisfying nip /) > 1.

(b) // there does exist a C" conforπίal metric of constant curvature — 4 on

F-{n{p;f)>l) with index l-nip f) at p satisfying nip;f)>l, then G pos-

sesses a hyperbolic metric.

Proof- Let us first treat (a). Let λ denote the maximal conformal metric

to which reference is made. We shall "induce" from λ an S-K metric μ on G

satisfying

(25.1) λ<lμ,fl

Since μ < γ and ίγt f~\ < λy we infer lγ, / ] •-= λ.

The S-K metric μ is introduced as follows. Given q&G we assign a uni-

formizer ψq% ψQ(0) = <?, with domain J ( 0 ; l ) such that each component Ω of

M is relatively compact. We define

(25.2) M(z;φq, Ω)
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at a point z e J^O l) for which / Ω , the restriction of / to Ωy is not ramified

over ψq(z)j to be the maximum of the values λ*(z) where ψ is a uniformizer

of F whose domain contains z and which satisfies ψql°fQ°ψ{w)=w. At the

remaining points of J(O l) , M{z;ψQ, Ω) is defined by taking limiting values.

So defined z-*M(z',φQt Ω) is the identity-scale [cf. §1] of an S-K metric on

J(O l ) . Hence

(25.3) M(z;ψQ, Ω)<(l-\z\2Γ\

We introduce

(25.4) z-*s\ipM{z;ψQ, Ω), U|<1,
Ω

and let Mψq denote its upper limit function. There exists a conformal metric

μ on F satisfying μψg = Mψq. Further λ < [μ,/l To see that μ is an S-K metric,

we first observe that each M9q is automatically upper semi-continuous. Suppose

that MΨq(0) *Q. If we fix r, 0 < r < l , and take u as a continuous function on

J(O r) which dominates logΛf^ on C(O r) and is C" and satisfies du-Ae2"

in J(O r), we see that

u(z)>\ogM(z;φQ, Ω), \z\<r,

and consequently

u{z)7>logMφq(z), \z\<r.

From

m{r;u)-u(Q)>:e2u(0)r\

we conclude by the arbitrariness of u that

m(r log M9q) - log M^O) > [M^(0)]V2.

Consequently μ is an S-A' metric. Part (a) of the theorem is established.

To establish (b) we note that the argument just employed shows the

existence of an S-K metric on G.

Part (a) of Theorem 25.1 admits the following extension: Let E denote a

discrete subset of G and let λ denote a C" conformal metric of constant curva-

ture - 4 o n G - is and suppose that λ is the maximal among conformal metrics

of this type with index v(q',λ), q^E. Let f\ denote the restriction of / to

f~\G-E). Then [/,/i] is the maximal C" metric of constant curvature
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- 4 on f~\G-E)- {nip ;/ι)>l} whose index at a point p^f'\E) is

nip; f)vίf(p) ;λ]-n(p;f) + l and at a pointy, nip ;/ i)>l, is 1-nip If).

Part (b) yields information on the distribution of the points at which a

conformal map / is ramified in the case that / is a map locally of island type

onto a Riemann surface that does not possess a hyperbolic metric. For the

special case where the domain of / is J'O l), it would be of interest to study

the growth of the Nevanlinna characteristic function of/, as well as of / belong-

ing to more special classes.

[The following remark is worth making. Let G be a Riemann surface with

hyperbolic metric γ and let / be a conformal map of a Riemann surface F into

G. Then a necessary and sufficient condition that lr, / ] be the hyperbolic

metric of F is that f be a covering of G (i.e. locally simple and locally of island

type). The sufficiency follows from Theorem 25.1 (a). It can be established

as well with the aid of conformal universal coverings. The necessity can be

established with the aid σf conformal universal coverings. This remark must

be well-known.3

26. We seek to bracket the class of conformal maps that enjoy the pro-

perty stated in Theorem 25.1 (a). Much remains to be done in this direction.

In the present section we give a bracketing from above.

Let / denote an interior transformation of a surface F into a surface G.

We say that ^ E G is a point locally omitted by / provided that either

q<=G- fiF) or else <?e/(F) and there exists a region Ω, q&Ω, such that for

some component ω of f~ιiΩ), the restriction of / to ω omits q.

We show

THEOREM 26.1' Let f denote a conformal map of a Riemann surface F into

a Riemann surface G that possesses a hyperbolic metric γ. Suppose that f has

the property stated in Theorem 25.1 (a). Then f has no locally omitted point.

Proof'. Suppose that there is a locally omitted point. At all events, f{F)

- G. Otherwise the hyperbolic metric γ1 of fiF) would exceed γfm and if* fl

= [r> fl so that f -γt[F\ There exists a locally omitted value q, and a uni-

formizer φ, <p(Q) = q, such that the domain of ψ is J(0;2), t h a t / is hot rami-

fied over φZCiOlDl, and that / omits q on ω for some component ω of

Let λ denote the continuous conformal metric on
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- {q) satisfying: (a) its restriction, λf, to ψίJ(0 1)] - {q} is C" of constant

curvature — 4 and has index 1 at q> (b) its restriction to γCC(O l ) ] is equal

to the restriction of γ to φίC(Q;l)l. Let μ denote the conformal metric on F

satisfying

μw = lλ'9 / J

and

/i = Lr, /J .

It is easily verified that μ is an S-K metric. Further μ exceeds Cr, fl at the

points of ω where / is not ramified and in addition has the same index as

ίr / J at each point of the set {n(p\f)>l}. It follows that the upper envelope

μ of the Perron family on {n(p;f) = l) generated by μ restricted to {n(plf)

= 1} exceeds the restriction of Zr» / ] to {nip ; / ) = l}. Further the index of

μ at each point of {n{p; f)>l) is the same as that of ίr, /J The contradic-

tion is manifest.

27. On a remark of Caratheodory. In his Conformal Representation [3,

first ed. p. 29] Caratheodory considers an analytic function ψn of modulus less

than one on J(O l), which is of constant valence n on J(O l), which has a

ramification of order w —1 over a given point WQ&J(0;D, WO*Q, and which

is subject to the normalization ψn(0) = 0, φ'n(0)>Q. There is precisely One such

function. In §59 [loc. cit] Caratheodory shows by direct computation that

ψn(0)>ψn+Λ0) for all n and observes that the stated inequality "may perhaps

rest upon some deeper, as yet unremarked, property of the transformations".

In the present section we shall consider a problem that embraces the situation

considered by Caratheodory and we shall see how Caratheodory's insight may

be justified. What is lacking, of course, in Caratheodory's example is the pos-

sibility of factoring ψn+i in the sense of composition in the form Φ°ψn where

ψ is an analytic function of modulus less than one on J(0; 1) and ψ(0) =0.

We consider Riemann surfaces F, G, H. Let G possess a hyperbolic metric.

We also consider a conformal map / of F into H and a conformal map g of

G into H. The following conditions are to be fulfilled:

(a) g is to be locally of island type.

(b) The set E of points over which g is ramified is discrete and

N(q)= sup n(p;g)< + °°,
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[The possibility that E = 0 is allowed.]

(c) If f(p)<ΞE, n(p;f)>Nlf{p)~].

Under these conditions we show

THEOREM 27.1: F admits a hyperbolic metric. Further for each pair (α, b)

&FxG satisfying fia) = gib), there exists a quadruple (Ky ky ψ, ψ) where K

is a Riemann surface, k e Ky ψ is a conformal map of K into Fy and ψ is a

conformal map of K into G for which the following conditions are fulfilled:

(1) φ(k) =α, ψ(k) =6.

(2) foψ = goψ.

(3) ψ is a conformal map of K onto F ivhich is locally of island type and

which is such that if nip <f) > 1, then foψ(p) e E and nip ψ) <, Nlf°φ(p)l

(4) The inequality

(27.1) [ r i, φl>Zr2, φ]

holds. r'ι and u being respectively the hyperbolic metrics for F and G.

Furthermore, if F = G = J(O l), then equality in (27.1) implies that f = g°T

where T is a conformal automorphism of J(0; 1).

Before we turn to the proof, let us see how the observation of Caratheodory

may be explained in the light of the present theorem. To do this, we identify

ψn+i with / and ψn with g. From 12), (4) and the last sentence of the theorem,

we conclude that <ff

n+i(0) <<p'n{Q). To be sure, this way of arriving at the in-

equality is far from elegant, but it does show that the phenomenon in question

is a special instance of a fairly general situation.

Proof: It will be convenient to have available some well-known facts con-

cerning analytische Gebilde for maps into Riemann surfaces. They are not

novel but they do not appear to have been explicitly formulated. We start

with given Riemann surfaces. For the purposes of the immediate consideration

we shall call them F and G without implying that any restrictions are imposed.

We consider ordered pairs (α, β), where a and β have a common domain, a

plane region containing 0, and a and β are conformal maps of this region into

F and G respectively, such that

(27.2) z-*(x{z), β(z))
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is univalent. An equivalence relation is defined in the class of such pairs as

follows. Given two such pairs (ak, βk), & = 1, 2, we say that (α2, β%) is "equi-

valent" to (ecu βi) provided that there exists φ analytic at 0, ψ(0) =0, such that

aJLφ(z)]=s(X2(z), βiZψ(z)] = j&U) for z sufficiently small. We let e{a, β) denote

the equivalence class containing (a, β) and we let E denote the set whose

elements are the e(a, β). Exactly as in the standard theory of analytische

Gebilde we introduce as a topology in E the weakest topology rendering each

of the maps

(27.3) θaβ'.t^eia', β'), f ε domain of a andβ,

open, a and βt being defined by oc\z) = a{t + z), β\z) = β(t + z), zetranslate

by - 1 of the domain of a and β. Each 0αp is continuous. A component 21 of

E is endowed with a conformal structure by the family of the 0<*β having image

in 2ί. As in the classical case, we introduce the maps

(27.4) { °' '•*'
I v: e\a, β)-*β{0),

and see that they are conformal maps of 21 into F and G respectively. We

term the components 21 Gebilde, c the center map, and v the value map. [The

terms center and value are adopted from the "Analytic Functions" of Saks and

ZygmundJ

We now return to the situation of Theorem 27.1. Suppose that f°c(p)

-gov(p) for p in the neighborhood of a point of 2ί. Then f°c = g°v.

It is now easy to see that there exists i<x, β) satisfying

and further that the number of distinct equivalence classes of such pairs is

precisely n{b\g)im where m is the smallest positive integer / satisfying

n(b g) \ln(a',f). We fix such a class and term it k and let K denote the

component of E containing k and let φ~c and ψ~v. It is obvious that (1)

and (2) of Theorem 27.1 are fulfilled.

To continue, we show that the covering properties of g induce correspond-

ing properties for ψ. Given ί e F , there exists a disk Δ containing p such that

/Δ, the restriction of/ to Δ, is a map of constant valence n(p f) of Δ onto

f{Δ) which is ramified at most at p, and on each component Ω of g~ιί/{Δ)l,
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ga is a map of constant valence with image/(J) which carries precisely one

point # e Ω into f(p) and is ramified at no other point of Ω. We now see that

if Ω is given, there are precisely n(q\g)/m distinct equivalence classes of (<*, β),

satisfying: (i) f°a = g° β, (ii) α(0) = p, 0(0) = q. Here m is the smallest positive

integer / satisfying n(q',g)\ln(p',/). There exist such (a, β) satisfying: (iii)

the image of a is Δ, the image of β is J2, (iv) the domain of a and β is Δ(0 1)

and a and β are of constant valence on their images.

We shall conclude that ψ(K) = F. At all events, ψ(K) is open. Suppose

that p^ψ(K), There exists r& ΔV\ψ{K), r^p; Δ is here construed in the sense

of the previous paragraph. Let r~φ{s). From fίψ(s)] = gίψ(s)] we see that

there exists Ω, ψ(s) e Ω. One of the (α, 0). satisfying all the conditions (i)-(iγ.)

has the property that s-e{a\ β*) for some t, | ί | < l . With (α, β) so chosen,

the image of 0«p is contained in K. Consequently p& 4<^φ(K). Hence ψ(K) is

closed. We conclude that ψ(K) = F.

We now verify that ψ is locally of island type. Given p&F, ψ(s) -p, let

Δ be associated with p as above. There exists (a, |9)es satisfying (i), (iii),

(iv). Consequently, {eka , βt)\\t\<l} is a component of ψ~ι(Δ). Further, each

component of ψ~x(Δ) is a set of this kind for some s. Hence, if Δ\ is a rela-

tively compact disk, p^άγC2\^Δ, then each component of ψ~1{Δi) is relatively

compact.

Suppose that n(s',φ)>l. From the definition of Kt we see that with

p = φ(s), q=φ{s), we have n{q;g)>l. Hence f(p)<EE. From nis ψ)

<n(q;g), n(s;ψ)<Nίf(p)l. We conclude (3).

The proof of (4) will be based on property (c) [stated before the theorem]

which implies that n(r ψ) < n{s ψ), S G I From Theorem 25.1 (b) we con-

clude on considering ίr2i ψ~] and ψ that F possesses a hyperbolic metric ri and

we conclude (27.1) from Theorem 25.1 (a).

The final assertion of the theorem is immediate.

An application. Suppose that H is the extended plane or the finite plane

and that F-G~ J(θ l). We shall obtain from (27.1) inequalities connecting

derivatives (resp. Laurent coefficients) of / and g at points a and b respectively

where f(a) =g(b). Let us first suppose that f(a) # °° and let / = nib',g). Let

A denote the Taylor coefficient of / of order I at a and let B denote the Taylor

coefficient of g of order / at b. Then from the local behavior of the solutions
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of f(z)=g(w) and (27.1) we obtain

(27.5) \A\ma-\a\2)<\B\ιl\l~\b\2).

In particular, if a-b-Q and n(Q g) = 1, we obtain

l/'(0)l£ \g'(0)\

it is to be observed that if (27.5) reduces to an equality, then Theorem 27.1

and the observation at the end of § 18, Case 1, assure us that f~g°T, where

T is a conformal automorphism of J(O l).

If f{a) =5 °°, it suffices to consider the reciprocals of / and g respectively

to deduce that either n(a /) >/ or n(a I f) = / and

(27.6) \AΓllι{l-\a\2)<\BΓllι(l-\b\2),

where now A is the Laurent coefficient of / at a of order - / and B is the

Laurent coefficient of g at b of order - /.

The case of equality in (27.6) also yields the result t h a t / = £°Γ, T a con-

formal automorphism of J(O l).

28. An extension of Nevanlinna's criterion for hyperbolic type. Let ah

. . . , an denote n distinct points of the extended plane and let vu , vn

denote positive integers > 2 or 4- °o satisfying

(28.1)

A celebrated theorem of Nevanlinna [10 p. 282] implies as an immediate corol-

lary the result:

If a non-constant meromorphic function f on 4(0 i?), R< + «>, satisfies

n(z;f)>vk,

when f(z) = ak, k = 1, . . . , nt then R< + oo.

It is of interest to note that one may obtain this result as a corollary of a

monotoneity property of induced metrics. Let λ denote the Schwarz-Picard

metric for the extended plane whose index cck at au is 1 - vΫ. Let / denote a

non-constant meromorphic function on a non-compact Riemann surface. Let

E = f~ι({ah . . . , an}). Let Ω denote a relatively compact Jordan region in F.

Let
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SΩ(i>)=Σ< Σ U-n(q;f)pkι

where Q is Green's function for Ω, p&Ω-E. Let/denote the restriction of

f to F-E. Then

(28.2) expo( - S Q ) U / ] Q - *

is an S'K metric and is the restriction to Ω — E of an S-K metric μa on Ω. If

Ωi and i?> are admitted Ω satisfying i2iC£2, then

(28.3) AΏi>(/<a«)Ql

We conclude

THEOREM 28.1: //* Mere ÂΓίsίs a monotone increasing sequence of Ω, say

{Ωn)ΐ exhausting F such that for some point a^Ωi we have supSβn(α)< -+- oo,

then F has a hyperbolic metric. If the given condition is fulfilled non-trivially,

then F possesses Green's function.

We note that the hypotheses of Theorem 28.1 are automatically fulfilled

in the situation of Nevanlinna's type criterion.

Similar results hold also for conformal maps with image in a torus.

Chapter IV. Applications. Meromorphic Functions on J(O l).

Fuchsoid Groups

29. Our starting point will be a theorem connecting maximal C" metrics

of constant curvature - 4 with assigned negative integral indices and bounded

analytic functions on J(O l).

THEOREM 29.1: Let E denote a non-empty discrete set in J(O l) and let λ

denote the maximal C" conformal metric of constant curvature ~ 4 on J(0 1) — E

with assigned negative integral indices at points of E, the class of such conformal

metrics being assumed not empty. Then there exists an analytic function f on

J(0 1) of modulus less than one such that

(29.1) TψϊM = λiz)' Z G

If g also satisfies the same condition as /, then g= Tof where T is a conformal

automorphism of J(0 1).
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Proof- We start with the case where E is finite and the index at each

point of E is equal to - 1. In order to treat this case we proceed as follows.

Let A -denote the set of ordered ^-tuples (au . , an) satisfying: |α*l<l,

k = 1, . . . , n( >: 1), and aj ^ ak for j ±? k. It is easy to see that A is an open

connected subset of

J(O l) x κJ(θ l).

Further let B denote the subset of A consisting of the (au . . . , an) for which

there exists a finite Blaschke product of degree n -f 1 of whose derivative the

zeros in J(O l) consist precisely of aίt . . . , an. It is easy to see from

examples that B is not empty.

We next show that B is open. Given (αi, . . , , an) e B, let / denote a

finite Blaschke product of degree n 4-1 of whose derivative the zeros in J(0 l)

consist of au . . . , α«. Let ^satisfy: w^f{ak), k = l, . . . , n\ \w\<\. Let

ecu . . . , ccn+i denote the distinct solutions of f(z) = w. The function / admits

a representation-of the form

(29.2)

where -η is a complex number of modulus one and

Let

(29.3)
— CCn+lZ

where C ~ (Ci, . . . , CΛ). There exist disjoint neighborhoods of the ak, say

N(ak), k = 1, . . . , n, and a neighborhood Mα) of a = (αi, . . . , ar«) of the

form

άi; r) x x J(acn'>r),

where the Δ(ock r) are mutually disjoint, such that for eachCeMα) there are

?2 distinct zeros of f'ζ in J(O l), say ^(C), k = 1, . . . , w where O

The mapping

(29,4) C - (*,(O, . . . , ^ ( O ) , C e M«),
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is (1, 1) and continuous. The continuity is elementary. If ζ,ω^N(a) go into

the same point under the map (29.4), then by Theorem 25.1 (a), we have

\Λ\ _ \f'<l_
l-ΊΛl 1 " ΐ- !Λ>i 2 ' "

Consequently fζ = S°f<a where S is a conformal automorphism of J(O l) with

fixed point w. Hence {Ci, • . . , CΛ> = {ωh - . . , ωn) and by the disjunction of

the Δ(cck\r) we have C = ω. Brouwer's theorem of Gebietstreue [8] now yields

the conclusion that (αi, . . . , an) e int B. Hence B is open.

To show that B is closed in the sense of the relative topology of A we

proceed as follows. Given a° = (a\> . . . , a°n) e β Π A There exists a sequence

(am)?, am& B, with limit #°. Let gm denote a finite Blaschke product of degree

tt-fl of whose derivative the zeros in J(O l) consist of the components of

am> gm(0) = 0. There exists a convergent subsequence of (gm) with limit g.

It is easy to see that g is a finite Bίaschke product of degree w + 1 of whose

derivative the zeros in J(0; 1) consist of the components of a0. Consequently

«° e 5. £ is closed in the sense of the relative topology of A. Hence J5 = A.

The theorem is thereby cared for in the case where E is finite and the index

is - 1 at each point of E.

To treat the case where E is finite but the indices are unrestricted negative

integers, it suffices to introduce a sequence ίgn) of finite Blaschke products,

each of degree l-'Σv(q), p(q) being the value assigned for the index at q^E,

gn(0) = 0, such that the zeros of g'n in J(0 1) are simple and tend to the points

of £, ~ p(q) of them tending to q, and thereupon to observe that the limit of

a convergent subsequence of (gn) serves.

To treat the case where E is infinite, let (En)T denote a monotone increas-

ing sequence of sets with union E. Let gn denote an analytic function of

modulus less than one on J(0; l) , gn(0)=0> which has the required property

relative to En and the values assigned for the indices. Now

I s i l U - I * . ! 2 ) " 1

is monotone non-increasing and tends to λ. On the other hand, there exists a

subsequence of (gn) which tends to an analytic function g of modulus less

than one on J(Q 1), g{0) =0. It follows that
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l-\g(z)?

The la'st sentence of the theorem does not call for special details.

30. The distribution of the ramification points of a Lindelofian map.

Thanks to Theorem 29.1 we see that there is a very close connection between

the derivatives of bounded analytic functions on J(0; l ) and the conformal

metrics of Theorem 29.1. We introduce a divisor 3 on a Riemann surface F

as a real-valued function on F such that {σ(p)*Q} is discrete. Given a con-

formal map / with domain F, by the ramification divisor 9/ of / is meant the

function on F defined by

(30.1) d/(p)=:

Given a C" conformal metric λ of constant curvature - 4 on F-E, where E

is a discrete subset of F, by the divisor of λ, 9λ, is meant the function with

domain F defined by

(30,2)

It is now immediate that the following theorem holds.

THEOREM 3 0 . 1 - The set {oκ), λ admitted by Theorem 29.1, is the same as

the set {~df},f bounded analytic not constant on J ( 0 ; l ) .

We may go further and study the ramification divisors of Lindelofian maps

[7j having domain J(0 1). Let us recall that a Lindelofian map may be defined

as a conformal map / of a Riemann surface F possessing Green's function β

into a Riemann surface G which satisfies

In case G is the extended plane and F= J ( 0 ; l ) the requirement that / be

Lindelofian is equivalent to the condition that it be of bounded type in the

sense of R. Nevanlinna. [Indeed, in the unrestricted case the requirement that

a map be Lindelofian is equivalent to its having bounded Nevanlinna charac-

teristic function in the sense of an extension of Nevanlinna's theory to conformal

maps of Riemann surfaces [7, 12].]

We show
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THEOREM 30.2: Given a Riemann surface G. The set % of ramification

divisors of Lindelόfian maps of J(0 1) into G is the same as the set {9/}, /

analytic, not constant, and of modulus < 1 on J ( 0 ; l ) .

Proof: Given a member of the second class 3/, it suffices to take a univalent

conformal map ψ of J(0 1) into G to obtain in ψ°/a Lindelofian map of J(0 1)

into G satisfying 3?0/ = 3/. Hence the latter set of divisors of the theorem is

contained in the former.

Suppose now that g is a Lindelofian map of J ( 0 ; l ) into G. Let a, b, c

denote three distinct points of G over which g is not ramified. Let γ denote

the hyperbolic metric for G- {a, b, c). Let g* denote the restriction of g to

g~ι(G-{a, b, c}). Referring to (30.3) with F = J ( 0 ; l ) and with our present

g in place of /, we introduce

(30.4) e χ p o [ - ( S j + S£ + S?)]Er. g*l,

where S* is taken as the restriction to g~\G-{a, b> c)) of SQ. The metric

(30.4) is an SK metric on g~1(G-{a, br c}). Let μ denote the restriction to

{dg(z) = 0̂} of the continuous conformal metric on J ( 0 ; l ) whose restriction to

g^ίG-la, b, c}) is the conformal metric (30.4). Then the upper envelope A

of the Perron family generated by μ satisfies 9χ = — 3^. Hence by Theorem

30.1, ® c {3/}. Theorem 30.2 follows-

We remark that the latter part of the theorem could also have been demon-

strated by observing that given a Lindelofian map / with domain J ( 0 ; l ) there

exists a function of bounded type with domain J ( 0 ; l ) which has the same

ramification divisor as /. However the basic argument is not altered thereby.

The following evident remark should be made. If G admits a conformal

universal covering with domain J (0 ; l ) , then the set of ramification divisors of

conformal maps of J ( 0 ; l ) into G is the same as the set of ramification divisors

of non-constant bounded analytic functions on J ( 0 ; l ) .

Theorem 30.2 permits us to characterize the distribution of the ^-points of

the derivative of a function of bounded type. We recall that the sum of two

meromorphic functions of bounded type is itself of bounded type if it is not

constant. Given a finite and g meromorphic of bounded type on J ( 0 ; l ) , we

introduce

(30.5) ha(z) = g(z) - az
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and notice that, with da(z) denoting the multiplicity of gf at z if g'(z) = a and

otherwise zero,

δa<dha, (g'(z)^a).

We conclude

THEOREM 30.3- Let g be a non-constant meromorphic function of bounded

type on J (0 ; 1) and let a be a finite number. If g'(z) $ <?> δa is the ramification

divisor of a non-constant bounded analytic function on JίO l ) .

The converse result is immediate: given a finite and 3 the ramification

divisor of a non-constant bounded analytic function, there exists a meromorphic

function g of bounded type on J ( 0 ; l ) for which δa = d. The characterization

of the distribution of the poles of the derivative of a function of bounded type

on J (0 ; l ) is so obvious (in terms of the Blaschke condition) that we omit its

consideration.

31. Growth problems. It is easy to obtain upper estimates on the growth

of the Anzahlfunktion for the zeros of the derivative of a non-constant bounded

analytic function on J ( 0 ; l ) , even by means of classical function-theoretic

methods. It is of interest to see to what extent the growth estimates so ob-

tained are sharp and here the results of the present paper will be seen to be

useful.

Let / denote a non-constant analytic function of modulus less than one on

J(O l) and let

(31.1)
\z\<r

and

, f t~ιnχ(t)dt if 9/(0) = 0 ;

(3L.2) M ί r ; / ) = ,
\ t Ϊ T Ϊ I U ) — BfiO)^dt -f 3/ίO) log r if 8/(0)!

By the Schwarz-Pick lemma we obtain

(31.3) l o ^ y ^ f J + Σ w U /Hlog ^ ^ ^ l o g ^ , \z\<r,

where the sum is taken over t satisfying: \t\<r and ff(t) =0. Hence

(31.4) Nι(r f) < log ^ +A, 0:
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A being constant. We conclude

(31.5) l i ^ L Z )

We shall now see that for the class of admitted/the upper bound 1 cannot

be improved. To that end, we let p denote a positive integer > 2 and we let

Γ denote the Fuchsian group that leaves invariant a conformal universal cover-

ing of a compact Riemann surface of genus p. Let nAr) denote the number

of points in J(0 r) equivalent to a with respect to Γ, 0 < r <1, (a not equivalent

to 0) and let

(31.6) NAr) = ί Γ'nAtidt, 0<r<l.
Jo

A well-known result [17] yields

( 3 L 7 ) ΪJ? -ΊSϊϊϊ^r) = 2^2"

We know from the Schwarz-Picard existence theorem that there exists a C"

metric of constant curvature - 4 on Λ(0;l) less the orbit of Γ containing a

having index Z — 2p at each point of the orbit. By Theorem 29.1 we see that

there exists an analytic function /of modulus less than one on J(0 1) satisfying

(31 8> \im = £ ^ .
V ό i * 5 ) !™ - log( l- r ) 2/>-2

Since we may take p arbitrarily large, we see that (31.5) is the best possible

inequality of its kind.

The example that we have produced gives another solution to the problem

of Bloch which asks whether the derivative of a non-constant bounded analytic

function on J(0; l ) is necessarily of bounded type. The problem was settled

negatively by Frostman [6] who exhibited a Blaschke product the derivative

of which fails to have the Fatou property. The work of the present section

supplements the solution of Frostman in that it yields quantitative information

on Nι(r f) for non-constant bounded analytic/ on J(0 1).

I have not determined whether there exists such an / for which

-log ( l - r )
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It would also be of interest to study the dependence of Nι(r\f—az) on a.

One must not expect that an arbitrary non-negative integer-valued divisor

o on J(0;"l) is necessarily the ramification divisor of a non-constant bounded

analytic function / on J(O l ) even if with m(r) = Σ ^ ) and
|«l<r

= I t~1nd(t)dt we have

(31.9) linkup ^ ^

In fact, suppose that g is an analytic function on J(O l) which is locally of

island type with respect to the finite plane and is ramified precisely at the

antecedents of m + in, m and n being integers, and the multiplicity of g at

each such point being 2. By Bloch's theorem we obtain the inequality

(31.10) ^

where B is a positive number. We take 3 = 9#. From (31.10) we see that

(31.5) holds, g replacing /. However there does not exist a bounded analytic

function b on ά(0; 1) satisfying 96 = 3. Otherwise from Theorem 25.1 (b) we

should infer that the finite plane possesses a hyperbolic metric,

32. The property of SK metrics given in §10 (e) permits us to obtain

information concerning analytic functions on J ( 0 ; l ) which do not grow too

rapidly. Let A and a be positive numbers. Let / be analytic on J ( 0 ; l ) and

not constant, and let / satisfy

(32.1) \f(z)\<A(l-\z\Γa, \z\<l.

It follows from §10 (e) that for each 77, 0<τ?<l, there exists a non-trivial S-K

metric Λη on J(O'Λ) which has a zero of order ά~ι-ηniz', f) at a zero z of/.

Now suppose that μ is an S-K metric on {Rez>0}. We follow the con-

vention put down earlier and use μ for the scale associated with the identity

map on {Rez>0} as well. Now log μ is subharmonic and

(32.2) μ(z)<(2Rez)~\ Rez>0,

the right-hand side of the inequality being the scale of the hyperbolic metric

corresponding to the identity map on {Re2>0}. If, in particular, μ = Zλη, T}

where T is a univalent conformal map of {Res>Q} onto J ( 0 ; l ) , then the
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subharmonicity of logμ and (32.2) imply

(32.3) ΈnίT(w) fllog\
z-w

the summation being taken over w satisfying fίT(w)l = 0y Rew>uo. On

returning to J(O l), we see that the zeros of the restriction of / to a disk

whose frontier is an oricycle tangent to the unit circumference satisfy the

Blaschke condition. What has been said for / holds as well for f-c where c

is an arbitrary complex constant. We are led at once to

THEOREM 32.1: The restriction of f to a disk whose frontier is an oricycle

tangent to the unit circumference is a function of bounded type.

We need hardly remark that the derivative of a bounded analytic function

on J(O l) satisfies (32.1) with a = 1.

Theorem 32.1 has the following consequence:

Let r-*N(r) denote a non-decreasing function on { 0 < r < l } taking non-

negative integral values, MO) =0, and N being continuous on the left. If for

every divisor d taking non-negative integral values on J(0; l ) and satisfying

(32.4) Σ d(z)=N(r)
\z\<r

there exists / satisfying (32.1) for some A and a for which n(z f) = d(z) when

d(z)>0 and f(z)*0 when 9(z) = 0, then

(32.5) J ΓιN(t)dt< + °°9 0<r0<l.

33. The class C of the ramification divisors of functions g analytic on

J(0; l) , g' satisfying (32.1) with a=l, may be bracketed as follows. Let A

denote the set of the ramification divisors of the non-constant bounded analytic

functions on J(O l). Let 0<??<l and let BΆ denote the class of divisors B on

J(O l) with non-negative integral values for which there exists a C" conformal

metric of constant curvature - 4 on J(0; 1) - {d(z) >0} with index -τβ(z)

for z satisfying d(z)>0. Then

(33.1) A^Ca Π J5η.

The strong inclusion on the left follows from § 31. It would be of interest to

determine whether the inclusion on the right side of (33.1) is strong.
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34. The argument of § 32 may be made to yield a general oricycle property

of arbitrary Fuchsian or Fuchsoid groups. We recall that if Γ is an arbitrary

Fuchsian or Fuchsoid group acting on J(O l), then the set of orbits Γ(z)

= { Γ ( 2 ) | Γ G Γ } may be so endowed with a conformal structure that z-*Γ(z) is

rendered a conformal map. Such a conformal structure is essentially unique.

Thanks to the results of §14 and the argument of §32 we conclude

THEOREM 34.1: The restriction of z->Γ{z) to the interior of an oricycle

tangent to C(O l) is a Lindelόfian conformal map.

35. The following theorem relates the ramification divisor of a meromorphic

function totally ramified over a finite number of points to ramification divisors

for bounded analytic functions. The notation [α] will be employed to denote

the integral part of a real number a.

THEOREM 35.1: Let au . . . , an denote n distinct points of the extended

plane. Let.z>i, . . . , vn be real numbers, vk<l, k = 1, , . . , n, satisfying

vk>2.
1

Let f denote a non-constant meromorphic function on J(O l) satisfying n(z f)

> 2 when f(z) = ak, k = 1, . . . , n. Let d denote the divisor defined by

{niz'y f) - 1, when
d(z)

(niz;

/)(l-z/*)-1, when

# 9 > 0 , then "d is the ramification divisor of some non-constant bounded analytic

function on J(0 1).

The proof is very simple. Let λ denote the Schwarz-Picard metric on the

extended plane less {au . ... » βn} with index vk at ak. The negative of the

divisor of Zλ, /J where / is the restriction of / to {niz f) =1} dominates d.

It follows that there exists a C" conformal metric of constant curvature - 4

on J(O l) - {d(z)>0} with index -d(z) when d{z)>0. The theorem now

follows from Theorem 29.1.

A similar argument establishes

THEOREM 35.2 : Let f denote a confor?nal map of J(0 1) into a torus T

which has the property that there exists a&T such that niz f) >1 when f(z)
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= a. Then if 0 < y < 1, the divisor 3 defined by

__(n(z;, x (n(z / ) - 1, when f(z) * a
d(z) < /Ml - *) - 1 ,

as £/*£ ramification divisor of a bounded analytic function on J(O l) provided

Chapter V. The Bloch constant exceeds V~3/4.

36. Before we turn to the proof of the theorem stated in the heading, it

will be convenient to recall some basic facts concerning the Bloch constant as

well as the argument of Ahlfors which led to the result: the Bloch constant

is at least V3*/4. Let / denote a non-constant analytic function on a given

Riemann surface F. By the Bloch number b(f) of / we understand the supre-

mum of the set of positive r for which there exists a region Ω(c:F) which /

maps univalentiy onto a disk of radius r. By the Bloch constant B we under-

stand the infimum of the set of b(f) when all / analytic on J(0 1) and satis-

fying /'(0) = 1 are taken into account.

In showing that J5>\/3/4 Ahlfors proceeded (essentially) in the following

way. For each / analytic on J(O l) and satisfying /'(0) = l, a function p/

with domain J(O l) is introduced. When ff(z) = 0, p/U) =0. When /'(*)=¥0,

then p/(z) is the supremum of the set of positive numbers r such that the

restriction of / to the component Ω of / " ΐ J (/(«) r)J containing z maps Ω

univalentiy onto J(f(z) r). In the latter case, p/(z) is actually the maximum

of such r and there exists c satisfying \c — f(z)\ = p/U) such that

(36.1) P/(*)£l/tt)-«?|, t^Qz.

Further p/ is continuous on J(0; l) . An essential part of Ahlfors's argument

is the fact that when b{f)< + oo and yj3b(f)<A< + QO

(36.2) A\f>\
2p} / 2U2-p/)

is (in our present terminology) the scale for an S-K metric on J(0 l ) relative

to the identity, the definition at a point z where f'iz) =0 being taken as the

limit at the point. The inequality (36.1) and the restriction on A are the basis

for the support property [cf. §6A2] at the points z where /'(z)=*0. The
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inequality B > V 3 /4 follows on noting that the value of (36.2) at 0 is no greater

than one. This, in brief, is Ahlfors's argument.

Suppose that J3 = V3/4. It is well known that there exists a function g

analytic on J(O l), g{0) =0, £'(0) = 1, for which b(g) = £ . For g we should

conclude that

(36 3)(36 3)

is the scale with respect to the identity of an S-K metric on J(0;l). The con-

vention made in connection with (36.2) holds where gf(z) = 0. Further

(36.4) pf (A2 - pg) < B1I2(A2 - B) = ^ _ .

It follows that (36.3) attains the value 1 at 0, hence (36.3) is equal to

(1 - \zI2)*"1 throughout J(0 1). Further p#(0) = B. We take (36.1) into account

for g with 2 = 0 noting that \c\=B. Let Ω' = {\g(z) - cI <B} Π Ω, Ω being taken

in the present context. We note that

(36.5) Pg{z)<\g(z)-c\<B>

and that

(36.6) Pg(z) = \g(z)-c\i ze

Hence

( 3 6 7 ) A\g*\
KM- ~2\g~c|1/2(Λ2- Ig- c|T 2

in Ω1 and equality holds along an arc. Since each side of (36.7) defines in Ω'

a C" conformal metric of constant curvature - 4, the two sides of (36.7) agree

on Ω1. That is, the left hand side of (36.7) agrees with ( 1 - U l 2 ) " 1 on a non-

empty open subset of J ( 0 ; l ) .

We are led to the conclusion that

(36.8) g = c + A2L2

where L is a conformal automorphism of J ( 0 ; l ) . But (36.8) implies that

big) = A2/2, that is,

31/2 _ 33/2

4 " 8
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Since this is false, we conclude that Z?>v3/4. Another reason why (36.8)

cannot hold is furnished by the theorem of R. M. Robinson [14] which asserts

that a Bloch extremal function has a natural boundary.
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