A CORRECTION TO MY PAPER ‘“ON THE NON-
COMMUTATIVITY OF PONTRJAGIN RINGS
MOD 3 OF SOME COMPACT
EXCEPTIONAL GROUPS”

SHORO ARAKI

This note is a correction of an error of the author’s paper mentioned in
the title. (The reference [1]). The proof of the Prop. 6 of [1], Chap. II, p.
247, is an error. And the propositions and formulas in pp. 247-249 of [1]

depending on this Prop. 6 must be corrected. All notations are referred to [1].

1. We continue the discussion of [1, p. 246]. The singular planes of @
are partially ordered by the ordering of associated planes in P. Give a linear
order in @ compatibly with this partial order. Then any subsequence @ of
length % gives a 2 k-dimensional sub Es-cycle 7'(Q;) of I'(fP). The totality of
these 2 k-dimensional Es-cycles forms an additive basis of Hyx(I'(fP): Z). The
dual cohomology class of I'(Q) is ¥tV - - vii¥ for Qr ={gii*, . . ., i{""}) where
es=0 if p;, is a long root of Fy and e =1 or 2 if p;, is a short root.

Now the Prop. 6, Chap. II of [1], must be corrected as follows:

ProrosiTiON 6. The 2 k-cycles fpI'( P) and

Sk, c %, (TP TR, ..., gi®))
represent the same class in Hyp (I'(fP): Z), where the summation runs over
all subsequences {qii", . . ., ¥} of length k of Q.
Since fA(y -+ - y¥) = - - x, by (11) of [1, p. 246], a standard

argument proves this proposition immediately. The crucial of the erroneous

statement of the Prop. 6 lies in what the author had overseen that the 2 k-

cohomology class such as (x:)%%; - - - % is not necessarily zero in general.
The Prop. 7 of [1, p. 547] should be corrected as follows:

PROPOSITION 7. 2fi(Py) =232, + + * % ([(P)) +{q", . . ., @i’} where 2f

denotes the homology map induced by Qf and the summation is the same as in
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the Prop. 6.
The proof is entirely the same as in the proof of the Prop. 7 of [1, p. 2471.

2. The formula (12) of [1, p. 247] is correct as is easily seen from the
corrected Prop. 7.

The formulas (12') and (12") of [1, p. 248] are incorrect. If we compute
by making use of the Prop. 4.2 of [2, Chap. III], then we see that the coho-
mology rings H*(I'(Pi(Fy)) : 2) and H*(I'(Pi(Fs)) :Z) have the relations

(*) %1=0, %(%1 +%2) =0

among others, and the cohomology fundamental classes are x;%:x3%:% for both
rings. Then the corrected Prop. 7 and the relations (*) prove the following
corrections of the formulas (12/) and (12"):

(12")
R (PLAF)) = Py (Eg) + PL Es) — PL(Es) +{(ul, 1), Pite+ {(u, 1), Pils

(13 2f«(PL(FD) ={(pa— 94 1), Pite+ {(sa— 93 1), Pty — Pi(Es).

The same argument as in pp. 248-249 above the Prop. 8 of [1], with the
corrected (12') and (12"), prove the following corrected formulas of (13) and
(14):

(13) 2f «(Py(Fs)) = Piy(Es) + Piy(Ee) + Py (Eo),

(14) 2f «(PL(Fy)) = Pi(Es).

The Prop. 8 of [1, p. 249] is exact and the Prop. 8 is false as is easily
seen from the formula (12) and the corrected formulas (13) and (14). We

can state the Prop. 8 in a more stronger form as follows:

ProrosiTiON 8'.  The homology map 2f. is injective in deg <10 for any
coefficients.

In the discussion in Chap. III of [1] only the Prop. 8 is refered from pp.
247-249 so that no more related. corrections are needed.

8. We can prove the above proposition in its most general form.

The diagram of the symmetric space Es/F; is of type A, and all roots
have multiplicity 8 ([3], p. 422). The K-cycles of [2] describing the additive
basis of H.(2(E:/F,); Z.) are all iterated 8-sphere bundles over 8-spheres,
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whence in particular orientable. Then H.(2(E;/F,); Z) has no torsion and
H{(Q(E:/F); Z)=0if i£0 (mod 8) by [2].

The spectral sequence associated with the fibration 2(FEs) - 2(Es/F,) (fibre
Q(Fy)) is collapsed for any coefficients since odd degree homologies vanish
for all three involved homology groups. Hence 2(Fy) is totally non homolo-
gous zero in 2(Fs) for any coefficients, i.e., we obtained the

ProrosiTiON. The homology map R2f.: H(QF:: G)-» H(QE;: G) is in-
Jective in all degrees and for any coefficient group G.

A related question will be discussed elsewhere.
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