
CORRESPONDING GROUP AND MODULE SEQUENCES1)

R. H. CROWELL

§ 1. Statement of results

For convenience we consider throughout an arbitrary but fixed multiplica-

tive group H. The integral group ring of H is denoted by ZH, and the homo-

morphism ε: ZH-> Z is always the trivializer, or unit augmentation, defined by

εh = 1 for all foeH. For any group extension of H, i.e., exact sequence of

multiplicative groups

1—>K—>G-^H—>1, (1)

we shall construct an exact sequence of left Ztf-modules

0—>B—>A-^->ZH-^Z—>0. (2)

(All uniabeled monomorphisms will be assumed to be inclusion mappings). We

shall say that the module sequence (2) is determined by the group sequence (1).

Conversely, starting from an arbitrary exact sequence (2) of left Z/ί-modules,

we shall construct a multiplicative group A and an abelian group extension

1—>B—>A-^->H—>1 (3)
\

written multiplicatively

whose kernel is the additive group of the module B. We shall also say that

the group sequence (3) is determined by the module sequence (2).

Two group extensions (1) will be called equivalent if there exists an iso-

morphism of one onto the other which is the identity on H. Similarly, two

module sequences (2) are equivalent if there exist a Z/7-isomorphism of one

onto the other which is the identity on ZH. It will be obvious that equivalent

group sequences determine equivalent module sequences and conversely.
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Where Kf is the commutator subgroup of K, a group sequence (1) induces

the commutative diagram

Φ

1*1* J* ^ e n t i t y (4)

1—ϊK/IP —> G/K' —-> H—* 1

We shall call the second row of the diagram, which is also exact, the abelianiza-

lion of the first. The principal theorems of this paper are

(1.1) The group sequence determined by the module sequence determined by

a given group sequence (1) & equivalent to the abelianization of (1).

And, conversely,

(1.2) The module sequence determined by the group sequence determined

by a given module sequence (2) is equivalent to (2).

It is an immediate Corollary that the module sequences determined by two

group sequences are equivalent if and only if their abelianizations are equivalent.

The module sequence determined by a group sequence (1) will be shown

in § 6 to be the 0- and 1-dimensional part of the homology sequence of the pair

(G, 1) with coefficients i n ZH as defined by Massey [?]. If G is given by a

group presentation (xu χ2f . . . : Tu r2, . . . )9, the module sequence (2) may

όe calculated using the free dϊίterentiaf culus of Fo x f4, 51 The matrix
φ<P\^cj) i s a r e l a t i o n matrix for the relative homol^gy group Hχ(G, 1; ZH),

which is the module A \n the sequence (2). These facts and (1.1) imply

Blanchfield's result [1] that, to quote Fox, "roughly speaking, the Jacobian class of

G at φ determines the structure of G modulo the commutator subgroup of the

kernel of ψ". Even though the approach and proofs ar e entirely different, many

of Blanchfield's basic constructions translate directly into the ones used here.

In § 7 I have elaborated On the comparison.

I am greatly indebted to Hale F. Trotter of Queen's University, Kingston,

Ontario, with whom I w<*s associated in the NSF project1. His suggestions have

resulted in substantial simplifications in the present treatment.

§ 2. Obstruction of the module sequence

Consider given a gro u p extension (1). Let ψ: ZQ _> ZH be the linear ex-
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tension to the group rings of the group homomorphism ψ9 and let e: ZG-+Z be

the trivializer of G. The ideals that are the kernels of ψ and e we denote by

ft and (§, respectively. Where $(S is the product ideal and π is the factor

homomorphism, we obtain the commutative diagram

0 —> ft —> <S ̂  ZH—>Z—->0
\π\U I* {identity

0—-> ft/ft® — X S / Λ β - ^ Z H - ^ Z — > 0 (5)

(6)

whose rows are easily seen to be exact. Observe that ©/ft® is a left ZϋΓ-

module with the operation of ZH well-defined by

(2.1) ψwπv = π(uυ), for all u<=ZG and v e ®.

Furthermore, $7$© is a submodule and the mappings in the second row (5)

are Z/7-homomorphisms. The sequence (5) is by definition the module sequence

(2) determined by (1).

§ 3. Construction of the group extension

Consider an arbitrary exact module sequence (2) (the mapping ε is always

the trivializer). With respect to a product defined by

ab = a + {da + 1) b, for all α, b<ΞA,

the module A is a semi-group with the element 0 the identity.

Let A be the set of all a^A such that da + 1 eH. Then,

(3.1) A is a multiplicative group ( t h e i n v e r s e of a i s a'1 - - (3α + I ) " 1 * a).

Notice that Be: A and, in addition,

(3.2) bxΛ-bi^bibϊ, for any bit b2^B.

Thus B is a subgroup of A. We define the mapping γ: A^H by setting

γa = da + i, all c e A . It is straightforward to show that

(3.3) r is α group homomorphism of A onto H with kernel B.

We therefore obtain the abelian extension (3). In any abelian extension

there is defined an operation of the image on the kernel. In particular, the

action of H on B is well defined by

γa°b = aba'1, for any o e i and
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This product can be extended in the obvious way so that B is a Z#-module

with respect to °. Inasmuch as

γa° b = ab( - (γa)~ι a) =a(b- (γa)'1 a) = a + ya b - a = γa b,

it follows that

(3.4) The induced module structure on B is the same as the original.

§ 4. The principal mapping diagram

Consider a given group sequence (1), and let (5) be the module sequence

which it determines. The principal mapping diagram is the commutive diagram

1—> KIK! —> G/K' — » # — > !

o—>&/&©—>©/&©—>ZH—>z— >o

The mapping β is defined by βh = h-l, for all h e H. Let α:: G -* ® be given

by ag^g-ly for all g&G. The mapping ^ is defined by the commutativity

relation

iTf = πa.

(The diagram chasing in the following lemmas is based on (4) and (6).)

(4.1) -η is well-defined.

Proof. Observe first of all that a is a crossed homomorphism:

Hence, for any ku fa^K,

akιk2kVKι = (1 - kιhKι)ockx + fti(l - k2kϊ1k;1)ak2.

Thus, by (2.1), 7rαA1A2AΓ1A2"
1 = O; whence it follows that TΓOΓUL' - 0. Next, sup-

pose that ξgi = ξg2. Then, gxgϊι e iΓ and so

0 = πagigϊ1 = π(agι - î̂ rΓ1 ago) = τrα:£Ί - zrα:̂ ,

and the proof is complete.

(4.2) 3η = βζ.

Proof. For any g e G, 3τ??̂  = aτrα£ = ̂ (^ - 1) and /3C?̂  = βψg = ̂  - 1.
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(4.3) For any ru n^G/K1, -η(nr2) = ̂ n + CTΊ τ?r2, i.e., -η is a crossed

homomorphism.

Proof. Choose counter-images n = ξgι and r2-ξg2. Then,

7}(rir2) = -ηξgigz = πagιg2 = πiagi -t- giag2)

= πocg\ + ψgi πocg2 =

Inasmuch as dηr = /9Cr = 1 - 1 = 0 for any r e if/if, it follows that the image

of the restriction θ^ylK/K1 is contained in $7$©. Thus the existence of the

principal mapping diagram (7) is established. It is a consequence of (4.3) that

0(nr2) =θri + θr2, for any ru r2^K/Kr.

Hence, θ is a multiplicative-to-additive group homomorphism. In addition θ is

a Z//-homomorphism. The operation of H on KlK1 is defined by h r = srs"1,

for all h^H, r&K/K1, and 5 such that ζs = h (just like the definition of ° in

the paragraph preceding (3.4)). We have

7}r- Cisrs'1) 7}S

-h θr,

which is sufficient to verify that θ is a Z//-homomorphism.

(4.4) The mapping θ is a ZH-isomorphism onio.

Proof. The proof is obtained by constructing the inverse mapping. Choose

a system of coset representatives, i.e., for each h e H> select h EΞG such that

ψh = h, and consider an arbitrary element Σ ngg in the ideal $. Then

Σ ngg = Σ
&G h&H fc

Since // is a basis for the free additive group ZH, 0= Σ nTik* Hence,

Έngg= Σ Σ W A Λ M A - 1 ) .

In addition, if Σ w7*&fr(& - 1) = 0, then all WΛfe = 0. It follows that the elements
h, Λ * l



32 fc. H. CROWELL

A(A-l), for all h^H and l=¥Aeif, constitute a basis for the free additive

group $. We may therefore define an additive-to-multiplicative homomorphism

υ: 8-+K/K' by

υ(h(k - 1)) = h £*, fce

Consider arbitrary elements ^ e G and k^K. Where h = ψg, we have g=hk*

for some A' e K Then,

- 1) = A(AΆ - 1) - h(V - 1),

and so

υ(g(k- Ό) = (A £AΆ) (A ξk'Y1 = 0# f A.

This implies

(4.5) υ{uυ)=φu vv, for all W G Z G and t; e ^.

Consider the identity

-'kg-D-ik-l), g^G and

Inasmuch as ζξg = ̂ , we have, according to the definition of the operation of

H on K/K',

υ(g(g-ikg-l))= ψg-ξig-'kg) = ξigg~ιkgg'1) = £A.

Hence,

The ideal ^® is a left ZG-module generated by all elements ( A - l ) ( £ - l ) ,

AGUC and g^G. As a result of the above equation and (4.5), we conclude

that υ(ff®) = l. Consequently, υ induces a homomorphism ω: &/®Q£~*K/Kt;

which is easily seen by (4.5) and (2.1) to be ZH-linear. Since ξK and

{π(k-l)}kς=κ generate the modules K/Kf and St/St®, respectively, the equations

show that ωθ = identity and θω = identity, and the proof is complete.

The preceding result, (4.4), is the key lemma of this paper. I had. origi-

nally proved it using the free calculus of Fox, specifically, § 4 of his paper [4].

Later K. Iwasawa suggested a proof independent of group presentations. The

present proof was constructed in a discussion with Trotter and was motivated
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by an analogous argument on page 190 of [2], It is a corollary of (4.4) and

the principal mapping diagram that if k e K and ^ ~ l e £®, then k s K1. This

is a result proved by Fox for the case that G is a free group, cf. (4.9) in [4].

Fox's paper also contains references to earlier proofs by Schuman and Blanch-

field.

§5. Proofs of (1.1) and (1.2)

The proof of (1.1) is an immediate corollary of (4.4) and the principal
d

mapping diagram. We write the second row of the latter as 0-*B•+ A—>ZH
ε _ ΐ

—>Z-+0, and consider the abelian extension 0-*B-*A—>H-+l which it deter-

mines. Diagram chasing around (7) yields

(5.1) A = image -η and rv = C.

(5.2) -η is a group isomorphism of G/Kf onto A.

Proof. That -η is a homomorphism follows from

= fin + rvn fin - ( ηrι) (fin).

Next suppose that -ηr = identity for some re.G/Kf. Since the identity element

of A is 0, we have

0 = dVr = βCr = Cr - 1.

It follows that r^K/K' and thence that 0 = v}r = θr. Since, by (4.4), θ is a

multiplicative to additive isomorphism, we conclude that r = 1. This completes

the proof.

As a result, the commutative diagram

1 — > /jΓ/ϋΓ' — > G/Kι -^ H-* 1

! θ \v \ identity

1 —> B —> A -^> /f—>1

exhibits the equivalence of the two rows, and theorem (1.1) is proved.

To prove (1.2), we start with an arbitrary module sequence (2). In order

to avoid the necessity of introducing new notation in what follows, we write
Φ

the group sequence (3) determined by (2) as \-+K-*G—>#-»!. This group
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extension in turn detemines the module sequence (5), and it is our objective

to show that (2) and (5) are equivalent. The additive group of ZG is freely-

generated by G. Since G-ACLA, the inclusion can be extended to an additive

group homomorphism i: ZG-+A.

(5.3) i(uυ) = (ψu) (iv), for any u^ZG and z e®.

Proof. It is sufficient to prove that i(gv) = (ψg) (iv) for any g^G and

v e ©. Since v = Σ ng{g- l), it is actually enough to show

i(gi(gi - 1)) = (Ψgi) ί(5fe - 1). £i. #2 e G.

The identity I G G is the element O e Λ Thus ί l = 0. Furthermore, 0 = r, and

so according to the definition of multiplication in the semi-group A, the equa-

tion gigo = £, -f 0 ^ 2̂ holds in Λ. Therefore,

1(̂ 1(̂ 2 - 1)) = iigigi - ^1) = gίgi - ̂ 1

=:Ψgι g2- (Ψgι)°i(g2~l),

and this completes the argument.

(5.4) f(iϊ®)=0.

Proof In view of (5.3), it suffices to verify the assertion on a generator

(k-D(g-l), fcei

/(* - 1) (£- 1) = i(fe- k-g+1)

As a result, there exists the following commutative diagram of additive group

homomorphisms

->A

(5.5) j is a ZH-homomorphism.

Proof. This amounts to checking

j(ψu πv) = ψu ./7rtf, for any w e ZG and f
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By (2.1), (5.3), and the above diagram

j(ψu 7zv) = jπuv = iuv = ψu iv = ψu ./VΓZ;.

Since in the present instance B = K, the commutator subgroup A7 is trivial.

This simplifies the fundamental mapping diagram, and we obtain??: G-*(§/$($.

For any g^G, we have -ηg-π(g-l), and so jyg^jπig- 1) = i(g— 1) -g.

That is,

? i

(5.6) The composition G—->(§/$(§—>.A is £/*£ inclusion mapping.

Inasmuch as η\K is the isomorphism θ, it follows from (5.6) that j maps

ίf/β® onto # = £ and that the restriction of / to R/R® is the inverse ^ - 1 . We

therefore obtain the diagram
dι ε

0—»Λ/ff®—>®/R®—+ZH —> Z— >0
U"1 Ji (identity I identity (8)

0 —> 5 —> ^ -^> ZH -^> Z—>0

whose rows are the module sequences (5) and (2). To establish commutativity,

it remains to show

(5.7) d2j = di.

Proof. We need d2jπv = dιπv, for any Z;G@; so it suffices to prove

<hjπ(g- 1) =3i7r(^- 1), for any g^G. The mapping r = 0 is defined by 'dig

+ l = rg^ψg. By (5), dm(g-l)=(pg-l. Hence, dzjπig- 1) =9ai(^- 1)

= 32£ = ̂ — 1 = 3J 7r(^ - 1), and the proof is complete.

Thus (8) is a commutative diagram. Since θ"1 is an isomorphism, it follows

from the "five" lemma that j is also, We conclude that the rows are equivalent,

and theorem (1.2) is proved. It is interesting that according to (5.6) the

mapping j'1 is an extension of y from G = A to A. If we could produce this

extension directly, (1.2) would be an immediate corollary of the principal

mapping diagram.

§ 6. The homology sequence

In this section we show that the module sequence (5) determined by a

given group extension (1) is the 0- and 1-dimensional part of the homology

sequence of the pair (G, 1) with coefficients in ZH.
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For any ring homomorphism ψ: Λ-+Λ' (a ring is assumed to have an

identity) and right Λ'-module Bf, we define the right Λ-module Bί whose un-

derlying additive group is the same as that of B' and whose scalar multiplica-

tion is defined by b1 λ - b' ψλ. For any left yl-module A, we define the left

/f-module (ψ)Λ = AI®A A. The mapping ψA : A-* (φ)A defined by ψΛa) - V® Aa

obviously satisfied

ψA(λ a) = ψλ ψA{a), for all λ e yί and o e A

Assuming that 0 is onto and using the right exactness of the tensor product,
i φ

we obtain from the exact sequence 0-* kernel ψ—>Λ—>Λi, ->0 of right Λ-modules

the commutative diagram

kernel ΨΘAA -»A® AA —> A'*® AA —>0

whose row is exact. The isomorphism j is the mapping λ ® Λ a -* Λ «, and the

image of kernel ^ 0 Λ A under jd^Atd) is (kernel <̂ ) A. We conclude that

(6.1) If φ is onto, then 0-> (kernel^)- A-> A—>(φ)A-v0 is

Finally, we remark that any Λ-homomorphism / : A\-*A* of two left A-

modules induces a Λ'-homomorphism / ' : (α,)Ai-> ̂ Az in the obvious way and

that ψAzf — ffψAl.

Our construction of the homology sequence of (G, 1) follows Trotter's for-

mulation [8] for a group system. The system here consists simply of the group

G, the trivial subgroup {l}, and the inclusion {1}->G. The module of coeffi-

cients is Z#Φ, where ψ- ZG->ZH is the extension to the group rings of the

group homomorphism ψ. Let X be a projective ZG-resolution of Z,

dι d\ ε

—> Xo —> Xi—> ZG —> Z—> 0.

The subcomplex Y corresponding to {1} is

--> 0 — > 0 —>ZG —> Z—> 0.
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The graded structure of the chain mapping ψx: X-^^X is exhibited in

dι dι ε

—>Xz —+ XX—>ZG—+Z—*Q

\ψ2 \ψι \φ jidentity

dj dϊ ε

—-»<Ψ)Xi—>(ψ,Xi—>ZH—>Z—»0

For w > l , we have abbreviated 0,γn by 0M. The module ZH*®QZG has been

identified with ZH and, therefore, ψZG is replaced by 0. The homology sequence

of (G, 1) with coefficients in Z # is that of the pair ({^X9 <*)Y). That is, of

dt' dϊ
>(^)X2 >(&)Xi > ZH *0 I

—> 0 — > 0 —> ZH—>0 J

It follows that the 0- and 1-dimensional part of this sequence is of the form
d ε

0-»ffi(G; ZH)-*Hi(G, 1; ZH)—->ZH—>Z-^0. In order to establish its equi-

valence with (5), it will suffice to establish a commutative diagram

0 0

1 ψ

0 > ί? ->© > ZH—>Z—>0
[identity (9)

0 — > a ( G ; ZH)—>Hi(G, l ; ZH)—>ZH~^Z—>0
I I

0 0

whose rows and columus are exact.
di e

From the exact sequence -* X2—>Xi—> © -* 0. where ex = diX, for all

we obtain the commutative diagram

0

I

dt e
X2 —> Xι > ® > 0

do)

o
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The second row is exact by the right exactness of the tensor product and the

column is exact by (6.1).

The remaining two lemmas serve to complete the proof of the existence

of the mapping diagram (9).

(6.2) πSt = Hι(G; ZH).

Proof. An element of Hi(G, 1; ZH) belongs to Bi(G ZH) if and only

if it has a counter-image under ef in kernel d[. Consider t e δ and select

XGXI such that ex- dix-v. Then πv^e'ψiX and d[ψ1x = ψdiX = ψv = O.

Hence πv e Hι(G ZH). Conversely, consider b e HAG ZH). Select xf e kernel

d[ such that efx' = b, and choose x&Xx such that ψιX = x'. Since ψex-φdiX

~ dΊψiX = d[xf = 0, we have ex ̂ ®. Since πex ̂  e!φ,x = e'x( =^ bf we conclude

b&π®. This completes the proof.

(6.3) a7r =

Proof. It follows from the definition of the boundary operator in an homo-

logy sequence that Be' = d[. Hence,

dπe = de'ψi = Jj0i = <M = {φ I <S)e.

Since ^ is onto, the proof is complete.

§ 7. Jacobian matrices and Blanchfield's senior thesis

Suppose G is defined by a group presentation G = (xiXz> . . . ' ri, 2̂, . . . ) ? .

That is, there is given a free group f* freely generated by Xu Xι, . . . and a

homomorphism <f oί F onto G with kernel the consequences of ru n, . . (cf.

[4, 5]). We first show that the Jacobian matrix at ψ, i.e., φψ\^p- )!•» is a

relation matrix for /7i(G, 1 ZH). Following Trotter, we define the complex

Xi = free ZG-module generated by αj^Xj, j = 1, 2, . . .

^2 = free ZG-module generated by bi<*n, z = 1,2, . . .

A : X-> Zo defined by Aαy = <PΛΓ, - 1, j = 1, 2, . . .

defined by rf,fc= Σ ? ( | — ) # Λ 7 , i = l , 2,

d-L d\ ε

It is not hard to prove that the sequence X2—>Xi—>Xo—>Z-+Q is exact (cf.

lemma δ.l of [6]). It is therefore the 2-skeleton of a projective ZG-resolution
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of Z. Consider the mapping diagram (10) in which Xi and X2 are assumed to

be as described in this section. The ZH-modules {^)Xι and (t)Xz are free and

generated by {φiai, ψia?, . . . } and {ψobu ψzfa, . . . }, respectively. Since

ί = l, 2, . . . ,

it follows that ψψi ~,1 )\ is the matrix of d[ and therefore a relation matrix
\ OXj '

of J3i(G, 1 ZflO.

Blanchfield proved that, for any finite presentation (xi> . . . , xn' fi> ,

rm) ? = G, the matrix P= Wf-lϊ )! < ι= 1, . . . , w, / - I , . . . , n, and the
\ OXj I

Xj

column matrix (? = |]^#/ —1||, i = l, . . . , n> determine the groups K/K1 and

G/K'. In view of the preceding paragraph, this result follows at once from

our theorem (1.2). We have seen that specifying P is the same as specifying

d\. Similarly, Q defines d[ inasmuch as

d[ φx cij = φd\ a,j = φψxj ~ 1.

Finally, the sequence

dι' dϊ ε

ί i/) ̂ 2 * (&)Xi ^ Z\H) * Z ^0

defines the homology sequence (2) which, by (1.1), determines

Blanchfield proved (4.4) for finitely generated groups. That is, he has

KIK1^ kernel dj/image d'2t

where d[ and d\ are defined by the matrices Q and P. Interestingly enough,

he did not consider Hi(G, 1 ZH) = A but a group which can be identified as

the image of G/K1 under -η, i.e., our group A.
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