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1. Introduction. It is known that there are only three rationally inequi-

valent classes of indecomposable integral representations of a cyclic group of

prime order Z. The representations of these classes are :

( I ) identical representation,

( I I ) rationally irreducible representation of degree / - I ,

(III) indecomposable representation consisting of one identical represen-

tation and one rationally irreducible representation of degree / — I (F. E. Die-

derichsen [1], I. Reiner [2]).

We now consider the special case where the representation module is the

ring of algebraic integers of a number field and the operator group is a cyclic

group of Galois automorphisms of prime order, and show that the multiplicity

in this representation of indecomposable components belonging to each one of

the above standing rationally inequivalent classes is determined by ramification

numbers.0)

2. Theorem on the different. In this note, we denote by oΩ for an alge-

braic number field Ω the ring of integers of Ω and by DQ/L for an extension Ω

of an algebraic number field L the relative different of Ω/L.

The main aim of this article is to prove the following

THEOREM 1. Let k be an algebraic number field of finite degree and K be

a normal extension of k. Then the relative traces of all integers of K to k

constitute an integral ideal of k and the ideal is characterized as the maximal

divisor of k dividing the relative different DK/k.

We must first establish two lemmas.

Received August 5, 1959.
0) In the case of absolutely abelian number fields, some results in this note have

recently been proved by H. W. Leopoldt [2a]. (This foot-not and [2a] are added Sep-
tember lδ, 1959.)
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LEMMA 1. Let ^ be any prime ideal of K and p be the prime ideal of k

contained in $. Denote by K<$ resp. kp the ty adic completion of K resp. the p-

adic completion of k. Then the relative different Dκ$ikψ is characterized as the

highest power of $ such that for any fixed natural number n we have Sκ$ikγ A

= 0 mod. Pn for every number A in ϋΓ$ with the congruence A = 0 mod.

Proof. Since the set of traces Sκ$ikψA of all elements in an ideal 91 of

the ring oκ$ forms clearly an ideal of the ring ô ,, we denote the ideal by

&f5p/fy>9i. Then we can prove that the ideal Sχ$p/fy(α 91) coincides with the

ideal α Sκφ/kψ^ί for any ideal Q resp. 9f of kp resp. iΓ«β. Namely, since all

the ideals of kp are principal, the ideal α of kp is generated by an element a of

kp, hence if A runs over all the elements of 91, then a A also runs over all

the elements of the ideal α 9ί. Therefore, our assertion follows at once from

Sκ%/k?{a A ) = a Stfjp/jfep A

We next prove that we have SK^^DK^)'1 = %. If we assume that

SK^/kψiDK^ikψ)'1 is not equal to o^, but is equal to a proper subideal b of θkψ,

then it follows from the above result that SκψkΨ(Dκ$ikψ b)"1 is equal to o^,

which is contrary to the fact that the different Dκ%/kψ is the highest power of

$ such that the inverse of every element in it has an integral trace with respect

to K^/kp.

Lemma 1 follows immediately from these two assertions,

LEMMA 2.1} Let e be the ramification order of $ with respect to K<$lkp,

and put Dκ$tk% = Pr Ψ (e > s > 0, r > 0). Then we have Sκ$ikv oκ$ = Pr.

Proof. By Lemma 1 we have S ^ A ^ O mod. pr for every number A in

K% such that

A Ξ O mod. pr (D^/fep)"1 i.e. mod. ψs.

In particular, we have Sκ$kψAo = 0 mod. pr for every integer Ao of

15 A. Speiser and E. Noether have proved the following theorem on integral normal
basis: When K^/kψ is normal, there exists an integral normal basis of K^/ky if and only
if the ramification group is trivial, i.e. K^/k? is tamely ramified (A. Speiser [3], E. Noether
[4]).

Lemma 2 together with this theorem implies that there exists an integral normal
basis of K$/kp if and only if the 0-dimensional Galois cohomology group of oκ$ with re-
spect to K^/kγ is trivial (cf. Corollary 1).
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On the other hand, by Lemma 1, there is an integer B of oκ$ such that

5 = 0 mod. p r + 1 . $β-(βr+ } i.e. mod. $°, but 5 ^ 5 * 0 mod. pr+\

Since the set of traces Sκ$ιkψA of all integers A in K<$ forms an ideal of

0kψ> our lemma is proved,
0

Proof of Theorem 1. Let p = Π $f be the decomposition of a prime p of

k into powers of distinct prime divisors in K, and a be the ideal SK/A? 0*. Denote

by r the exponent of p in £>*/& (pr//Dκik in notation). Then from Lemma 2

and the product theorem of different,2* it follows that Sκf^ikψA = Q mod. pr for

every z = 1, 2, . . . , g and for any integer A of oK) and hence we obtain the

following congruence:
Q

$κ/kA = Σ S * » . / * « A Ξ O mod. j>r

for every integer A of o x. On the other hand, by Lemma 2, there are g inte-

gers Ai of JBΓ̂  such that Sκ^/k9Ai $ 0 mod. j>r+1, and Sκ%.fkψAi = O mod. p r + 1 for

ί = 2, 3, . . . , g. For these numbers A, , there is an integer B oί K such that

we have J5 = A/ mod. φ ί r + 1 ) ^ for every i = 1, 2, . . . , g, hence we have

P i/^ B Ξ St̂ /Λp Ai ^ 0 mod. prΛ

3 0 mod. p r 4

for ί = 2, 3, . . . , g.

Consequently, we have SKIUB = S S ^ / ^ B ^ 0 mod. pr+ι. Since this is true
* = 1 * ^

for any prime ideal p of kt our theorem is proved.3)4)

2> T h e p r o d u c t of t h e clifferents of local fields co inc ides w i t h t h e dif ferent of t h e
g r o b a l field.

3) The theorem on integral normal basis corresponding to footnote 1 is not always
true in grobal fields, but it is true in absolutely abelian number fields (cf. H. W. Leopoldt
[2 a]).

4 ) We c a n also g ive a well-known bound of ramif icat ion n u m b e r from T h e o r e m 1 in
t h e following way.

L e t Kjk be a cyclic e x t e n s i o n of p r i m e d e g r e e p over an a lgebra ic n u m b e r field k, p
be a p r i m e divisor of p in k and let p = $p be t h e p r i m e decompos i t ion of p in K. T h e n
the relative different Dκ,h has ^'ip-v as its ^-component, where v is the ramification
number of $ in Kjk, namely, the maximal exponent of $ such that we have A~A° mod.
<$v for every integer A of oκ and for any Galois automorphism a of Kjk. Furthermore,
let e be the ramification order of p in k/P, where P is the rational number field and
pr be the p-component of Sκ/kΰκ($rίSκ/kϋκ), then P^SK/JCOK^P7' implies r<.e. From
Theorem 1, we see that υ{p~l) <p(r-\-l), namely t/<l + pr/(/>-l)-fl/(/>--l), and since
v is a natural number, we have v^l+pr/(p-l)<,l-\-pe/ip-l) (cf. T. Takagi [5],
H. Hasse [6]).
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We can deduce from Theorem 1 the following two corollaries, but we do

not use them in this paper.

COROLLARY 1. Under the same conditions in Theorem 1, the O-dimensional

Galois cohomology group of oκ with respect to K/k is trivial if and only if K/k

is tamely ramified at every prime ideal of k®

Proof. By the well-known theorem of different,6) a prime ideal p of k

divides Dκ/k if and only if K/k is not tamely ramified at p. Hence our lemma

is clear from Theorem 1.

COROLLARY 2. Under the same conditions in Theorem 1, if we assume

moreover that the O-dimensional Galois cohomology group of oκ with respect to

K/k is trivial, then the Galois cohomology group of oκ with respect to K/Ω is

trivial for every dimension and Jor any intermediate field Ω of K/k?

Proof. If K/k is tamely ramified at p, then K/Ω is also tamely ramified

at p for any intermediate field Ω of K/k. Hence, by Corollary 1, the assertion

of our lemma implies that the O-dimensional Galois cohomologjr group of 0κ

with respect to K/Ω is also trivial.

Let § be the Galois group of K/Ω and put A = Σ ατ/τ for any integer

a # 0 in θκ and for any 1-cocycle (A) ( r e $ ) of ξ> in ox. Then we have A - Aβ

= (SK/QCC) fo for any a in ξ>. In particular, since we may take the integer a

with SK/ςι α = 1 from the above assertion, we may write /σ = A - Aσ with an

integer A in oκ for every 1-cocycle {fσ} (</eξ>) of £> in oκ. This shows that

the 1-dimensional Galois cohomology group of o* with respect to K/Ω is trivial

for any intermediate field Ω of K/k. Therefore, from the well-known theorem

of cohomology group8> we obtain our lemma.

5> Cf. E. Art in [7].
6> Cf. H. Hasse [8].
7> This corollary is of course true for local fields, and it yields the results described

in footnotes 1 and 3 purely cohomologically in the following way. The O-dimensional
Galois cohomology group of oκ (resp. oκ$) with respect to K/k (resp. K$/k?) is trivial
if and only if ΌK (resp. oκ$) is Z[©]-projective, where Z[@] is the group algebra of Galois
group © of K/k (resp. K$/kp) over the ring Z of rational integers. Therefore, in particu-
lar, there exists an integral normal basis of K^/k^ if the O-dimensional Galois cohomology
group of otf p with respect to K^/k^ (T. Nakayama [9]).

8> Cf. T. Nakayama [10], G. Hochschild-T. Nakayama [11].
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3. Principal results

THEOREM 2. Let K be a normal extension of degree n over the rational

number field P, and Ω be a sub field of K such that K/Ω is cyclic of prime degree

I and that Ω/P is normal.

Furthermore, let v^l be the common ramification number with respect to

K/Ω of all the prime divisors 2, of I in K, and e be the common ramification

order with respect to Ω/P of all the prime divisors U of I in Ω. Let m be a

non-negative rational integer such that l(m-l)<v^lm, and put no-n/l,

t = no(v - m)/e. Then we have the following basis of the ring θκ '-

0κ = Lβu - . , βrtO(/-i)> ωU , (Ot> £i» , ζno-tl

with ?,• = (ωt+i + ou)/l U = l , 2, . . . , no-t), where ωj O' = l, 2, . . . , w0) is a

suitable basis of oΩ, and cti, βu are integers of K such that

Sκ!Qcti = 0, SKfΩβk = O (ι = l, 2, . . . , Λo-f; * = 1, 2, . . . , nQ(l~l)).9)

Proof. Denote by [DKVQ]^ the exponent of S, in DK/Q. Then we have

LDK/QIQI = v(l-l) = l(v- m) + (Im -v)> Q<^lm- v<lf hence Theorem 1 implies

that SKIQOK = Πίf~m, where the product runs over all the prime divisors of / in
ij/i

Ω. Since Ω/P is normal by the assumption, the index of SK/ΩQK in oΩ is equal

t o / 1 :
CoΩ : ί

Let 0κ be a submodule of oκ which consists of all elements β in oκ such

that SK/Ω β = 0t and let Zβu . . . , βnaa-i)l be any basis of o2. If we take the

basis Zβi, . . . , βnQa-i), yi, . . . , ^«03 of oA- which contains the basis Zβi, . . . ,

βnΰ(;-i)] of o£ obtained above, then ISK/QVU . , Sκ/Ωτ??,0] forms a basis of

On the other hand, since we may choose a basis [_ωu . . > ω»0] of oΩ in

such a way that ίω[ = /ωx, . . . , α>ί = /ωί,ωί+i = α?ί+i, . . . , ω«0 = ωnol forms a

basis of SK/QOK, there is a unimodular nQ x w0 matrix ί/= (w/y) with integral

coeίBcients such that

J I V J / j V j ( f = 1 , 2 , . . . , / i o ) .
.7 = 1 j - 1

9) In the case where / is unramiίΐed in K/Ω, we set ϋ = 0 for convenience, and then
we have m = 0 and it implies / = 0.
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Now, if we put ςl = Σ H V W (* = 1, 2, . . . , no), then we have S*:/Ω£/ = ω/

and the set [ft, . . . , /3nO(/-n, ωi, . . . , ω/, £ί+i, . . . , ξ'no] is again a basis of

Ojt. Putting ou = lξi = ωi U + l^ i^ iwo), we have SK/QΛT/ = 0, which proves our

theorem.

THEOREM 3. Under the same assumptions in Theorem 2, ίfte representation

of the Galois group ® of K/Ω by the ring oκ is integrally equivalent with the

sum of t identical representation, t rationally irreducible representations of degree

/ - 1 and Wo - t indecomposable representations containing one identical represen-

tation and one rationally irreducible representation of degree / — 1.

Proof, As a basis of o*, we may take a basis having the property stated

in Theorem 2. Let σ be a generator of the Galois group (S. Then both (σ — 1) oκ

and (tf-l)oί are submodules of o| and are generated by (a - l)ft, . . . ,

(tf-DiW-ι>> U - 1 ) 6 , . . . , (<7-l)£Wo-f and (a - 1) ft, . . . , U - 1)βnΰa-D

respectively.

Therefore, (σ — l)ξi = (<j-l)ai/l (ι = l, 2, . . . , no-t) generate the factor

module g? = (# - 1) oκ/ (σ - 1) o| and moreover form its basis. For, if we assume

that ΣΛΓ U - Dξii = (cy —l)/9 for some /9 in o| and for rational integers Xi (« = 1,

2, . . . , no-t), then we have U - l)(Σxica/r— 0) =0 and hence lβ = *Σxiai.
i l i

But since α:/= /?,- —ω/, we have Σ#/ω/ = /(j9-Σ#ι?/), which implies # , Ξ 0

mod. / for every i = 1, 2, . . . , n0 - £.

On the other hand, let Z[(§] be a group ring of © over the rational inte-

gers and define S=l- f a+ +(τ / " 1 eZ[®]. Then we may regard oj£ as a

Z[@]/(S)-module, where (S) is the principal ideal of Z[@] generated by S.

Since Z[©]/(S) is a Dedekindian ring, we have by Chevalley's lemma direct

decompositions

10) Each direct factor %, of o^ in the decomposition (*) is Z[ζ]-isomorρhic to an
ideal class of the ring Z[ζ] which consists of all integers of the field P(ζ) obtained by
adjunction of a primitive l-th root of 1 to the rational number field P.

In particular, if we assume /<23, then the class number of the cyclotomic field P(ζ)
is equal to 1 (cf. e.g. H. W. Leopoldt [9]). Therefore, every factor Sίv is
isomorphic to Z[®]/(S).
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of Z[@]/(S)-module o|, ( t f -l)θjc with ?ί, 2 S, (i = l, 2, . . . , no).ll)

Since (σ-l)θκ is the Z[(S]/(S )-submodule of ( < J - 1 ) O £ , and since the

index of (* — l)9ί v in 9ίv is the prime number /, each factor S3V is either 91 v or

(<7-l)9ίv and by permuting the summands in (*) we obtain the factor module

$ = (a- |

which is an additive abelian group of type ( / , . . . , / ) . Therefore, we may

choose a basis [γlf . . . , rno-tl of $ with π ^ S l t , namely if we take a basis
l-l

[β V l , . . . , βw-J of the 7;-th factor 9ίv in (*), then we may write 77= *Σxijβu
J = l

with rational integers #//.

Since both [(<7-l)?i, . . . , (σ-l)ξnD-tl and [ n , . . . , r»fl-<3 are bases of

$, there is a unimodular (no-t) x (no-t) matrix S=(sij) with integral coef-

ficients such that

Σxijβij = Π= Σ s/y(<; - l)?y = (<y - 1) Σ Sijξj (i = 1, 2, . . . , no ~ t).

no-t

Now, we put ξi = Σ Syfy for every *', then {/9vμ, ωy, ξi) (v = 1, 2, . . . , ^0

Λ« = 1, 2, . . . , / — 1 y = 1, 2, . . . , t i = 1, 2, . . . , no - t) again form a basis

of DA; and [fly] (7 = 1, 2, . . . f ί), [βvi, . . . , /3v/-i] (v = l, 2, . . . , ί), and [f{,

A Ί , . . . , βn-iΊ (ί = 1, 2, . . . , nQ-t) give respectively f, t, no~t indecomposable

representations in Theorem 3.
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