
ON THE GROUPS OF COBORDISM ίlk

MASAHISA ADACHΪ

Introduction

In the papers [11] and [18.TRohlin and Thom have introduced an equiva-

lence relation into the set of compact orientable (not necessarily connected)

differentiable manifolds, which, roughly speaking, is described in the following

manner: two differentiable manifolds are equivalent {cobordantes), when they

together form the boundary of a bounded differentiable manifold. The equiva-

lence classes can be added and multiplied in a natural way and form a graded

algebra Ω relative to the addition, the multiplication and the dimension of

manifolds. The precise structures of the groups of cobordism Ωh of dimension

k are not known thoroughly. Thom [18] has determined the free part of Ω

and also calculated explicitly Ωk for 0 ^ k ^ 7.

The purpose of the present paper is to determine explicitly the groups Ωk

for 8 ί= k *= 12. Our method is analogous to that of Thom [18] and we shall

calculate Ωk using Serre's C-theory.

In § 1 we explain shortly some general results on the Eilenberg-MacLane

complexes, Serre's C-theory and the Grassmann manifold, which will be used

later. In §2 the homotopy groups of the Thom complex M(SO{n)) associated

with the rotation group are calculated. In §3 we determine the groups of

cobordism Ωk for 8 ^ k ^ 12, and discuss some problems related to Ωk.

Some of the results contained in this paper have been announced in the

note [1].

The author is deeply grateful to Professors R. Shizuma and N. Shimada

for their kind encouragements and valuable criticisms.

§ 1. Preliminaries

Before we approach the determination of the homotopy groups of the Thom

complex M(SO(n)) associated with the rotation group, it is necessary to recall
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some general results on the reduced powers of Steenrod, the Eilenberg-MacLane

complexes, Serre's C-theory and the Grassmann manifolds.

We shall denote by Z and Zp the ring of integers and of integers modulo

p respectively.

A. Reduced powers of Steenrod

Let p be a prime number. The Bockstein homomorphism ocp : H\X9 Zp)

-* Ht+1{X, Z) is identical with (-l) / f l<5, where δ is the coboundary homo-

morphism of the cohomology exact sequence of a space X relative to the exact

sequence of coefficient groups

0-> Z-» Z-* Zp-+0.

The Bockstein homomorphism βp : Hj{X, Zp) -» Hi+1(Xf Zp) is defined by

the composition of ap and the natural homomorphism

Op : Hi+\X, Z) - Hi+1(X, Zp),

Let « be an integer ^ 0 congruent to 0 or 1 mod 2p - 2. We define the

homomorphism

Sfp : Hi{X) Zp) - Hi+a(X, Zp)

in the following manner: if p = 2, we put Si? = S^α if ^ > 2 and Λ = 2k(p - 1),

A an integer, we put SfP = Pp\ iί p>2 and 0 = 2*(£ -1) + 1, Stp = βp° Pp.

For a sequence / - (βi, a2, . . . , βr) of integers β/ ̂  0, congruent to 0 or 1 mod

2p-2, we denote the composed operation by

st'p = st$ι o stf o . . . o s#\

The following formulas are often used in §2.

Ppiu* Ό) = l±
f = 0

for O ^ f t ^ ί - 1 ,

β\ j binomial coefficient reduced mod ^, if «, >̂ ^ 0,

(cf. Cartan [5]).
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B. Eilenberg-MacLane complexes

Let n be an integer ^ 1, and 77 be an abelian group. An arcwise connected

space X is called the Eilenberg-MacLane complex K{Π, n) if all its homotopy

groups of dimension > 0 are zero except for πn(X) = 77. All these spaces have

the same homotopy type, and among them there exists a simplicial complex.

Moreover,

1) If 77 is an abelian group of finite type, there exists a simplicial complex

K(7T, n) whose ^skelton is a finite complex (cf. Thorn [18], p. 36).

We denote the cohomology ring of Kill, n) with coefficients in G by the

notation 7/*(77, n\ G)\ the group Hn(G, n\ G) possesses a fundamental class

which we will denote by tn.

2) For any cohomology class u^Hn(Xy G) of a topological space X, there

exists a mapping / : X-+ K(G, n) such that u -fή''(cn).

The cohomology of complexes K(Z, n) and K(ZP, n) has been determined

by Cartan [4] and Serre [14]. Here let us recall some of their results.

3) The cohomology ring H*(Z2, n\ Z >) is generated by the Steenrod

squarings of the fundamental class cn ^ Hn(Z2, n Z2) and their cup products

for h < n (stable part of H*(Z2, n\ Z2))f a base of the group HW+A(Z2, n Z2)

is given by the sequences of iterated squarings of tn Sqr(cn), where 7= UΊ, i>,

. . . , ir) with Σί'm = h and is ^ 2is+u for 1 ^ 5 -ύ r- 1.

We have an analogous result for H*(Z, n\ Zp).

4) For h < n, a ^ 5 ^ of Hn*h(Z, n Z/,) is given by the sequences of

iterated reduced powers (squarings if p = 2) Stp(cn), where / = (βi, α2, . . . , ar)

satisfying the following conditions:l)

a, = 0 or 1, mod 2p - 2, for 0 ^ i ^ r,

i+u for 1 ^ i ^ r — 1,

- 2,

C. Serre's C-theory

Let Cp be the class of finite abelian groups whose ^-primary components

are zero, where p is a prime number. We shall often use the following theorem

in §2.

J ) We denote by eH also the fundamental class of K{Z, n) reduced mod p.
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THEOREM. Let hvo spaces A and B be connected and simply arcivise con-

nected, f : A -+ B be a mapping which maps π2(A) onto π2(B) and n be a

positive integer. Suppose the homology groups Ht(A, Z) and Hi(B, Z) are finite

type in all dimensions. Then the following hvo properties are equivalent:

a) /* : πi(A) -» πι{B) is Cp-isomorphism for i < n, and Cp-onto for i ^ n.

b) /* : H'(B, Zp) -> Hι{A, Zp) is an isomorphism for i ^ n, and onto for

i < n.

(Serre [13], Chapitre III, Theoreme I and Proposition 2).

Let G and H be abelian groups. We denote "G is C-isomorphic to H" by

G ^ H mod C.

D. Some formulas in Grassmann manifold

We donote by Gn the Grassmann manifold of oriented w-spaces in a Eu-

clidean s-space Rs where s is sufficiently large. It is well known that Gn is

the classifying space BSOM) associated with the rotation group SO(n).

1) We know that the cohomology ring H *(G«, Z2) is a polynomial algebra

generated by W2, Wz, . . . , W*, where FT is the e-dimensional Stiefel-Whitney

class (Borel [2J).

2) Let n be even, n = 2m, and p be an odd prime. The cohomology ring

H*{Gn, Zn) is a polynomial algebra generated by the Pontrjagin classes mod p

and the Euler-Poincarέ class mod p:

P4 r>8 •nάfn-4 v n

, JΓ y . . . , jr , Λ.

(Borel-Serre [3]).

3) The following formula, which gives the Steenrod squarings of W\ was

introduced by Wu [20] :

SqiWj - Σ ij ~ 11' " λ\ Wt-'W'*', (i ^ j),
to \ t /

with the following conventions

binomial coefficient reduced mod 2, if a ~± b > 0,

1, if b - 0,

0, if b # 0, a < b,

and W1 - 0.

4) It is often useful to consider the Pontrjagin classes mod p and the
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Euler-Poincare class mod p of the universal bundle £W) -> Bsoin) as the

symmetric functions25 of m variables xϊ9 x-u . . . , Xm of degree 2:

where xu x , . - . , Xm are generators of H*(Bπ Zp) (T is the maximal torus

of the rotation group SO(n)). The introduction of the variables xι leads us to

the following formulas:

i) p*(χn) = XnΣxlhxlh . . . xl\ where h = ^~--,

ii) P |(P 4 / ) = P | ( Σ A ; 5 . . . ^ )

= Σ

(Borel-Serre [3]).

5) Here we adopt Hirzebruch's definition of Pontrjagin classes (Hirzebruch

[8], p. 67). Then we have

where p2 - H*(Gn, Z) -> H*(Gn, Z%) is the reduction mod 2.

§2. Homotopy groups of Thorn complex M(SO(n))

In this section we shall calculate the stable homotopy groups of the Thom

complex M(SO(n)) associated with the rotation group SO(n).

A. Thom complexes

We know that any (w-l)-sphere bundle over a finite complex whose

structure group is the rotation group SO{n) is induced from the universal

sphere bundle p : E'som -> #so(«>. We denote by A«»<n> the mapping cylinder

of the projection p this is a manifold with boundary Eso(n) I we denote by

Aso(n) the complement As^n) - Esoin) of the boundary in Asooo.

We call the complex obtained from Asoin) by the identification of its

boundary Enow to a point a Thom complex associated ivith the rotation group

SO{n) we shall denote it by M(SO(n)). Then M(SO(n)) is the Alexandroff's

compactification of

2> In the present paper, we denote a symmetric function by its initial term preceded
with 2
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The homotopy groups and the cohomology rings of Thorn complex

M(SO(n)) have been studied by Thorn [18].

1) The homotopy groups πnτk(M(SO{n))) are independent on n, for n > k

(Thorn [18], Theoreme II. 7).

Owing to 1), hereafter we assume n to be sufficiently large and even without

loss of generality.

2) 7Γi(Af(SO(w))) = 0.

3) The cohomology ring H*(M{SO{n)), Z2) of M(SO{n)) is isomorphic to

the ideal generated by the w-dimensional Stiefel-Whitney class Wn in the

polynomial algebra H*(On, Z*) = Z2ίW\ W\ . . . , Wnl

4) Let p be an odd prime. The cohomolohy ring Ή*(M(SO(n))f Zp) of

M(SOin)) is isomorphic to the ideal generated by the Euler-Poincare class

mod p Xn in the polynomial algebra #*(G«, Zp)=ZpίP\ P\ Pim'\ Xn], where

n -2 m.

5) The cohomology ring H*(M(βO{n)), Z) of M(SO(n)) with integer

coefficient is isomorphic to the ideal generated by the Euler-Poincare class Xn

in the algebra H*(&n, Z) (Thorn [18], Chapitre II, §5).

Henceforth we identify the cohomology rings of M(SO(n)) and the above-

mentioned ideals of the cohomology rings of Grassmann manifold respectively.

6) The stable homotopy groups πn+k(M(SO(n))) are finite if k * 0, mod 4;

the free components of the stable homotopy groups πn+Λj(M(SO{n))) are of

rank π(j), where π{j) is the number of partition of / (Thorn [18], Theoreme

IV. 15).

To our purpose, therefore, it is sufficient to calculate the ^-primary com-

ponents of πn+k(M(SO(n))) for each prime p.

B. 2-primary components of 7rM4fe(M(SO(w)))

We will calculate the 2-primary components of πn+k(M(SO(n))) for

8 ^ k ^ 12. Let Y2 be the product of the Eilenberg-MacLane complexes:

Let

= .
X

A

h

K(Zt n) x K(Z,

(K(Z2, w + 9))2

: M(SO(n)) -*

: M(SO{n))-+

, : M(SO(n)) ->

n + 4) x ϋΓ(^

x iΠZ 2 , 72 + 1C

^Γ(Z, Λ),

A"(Z2, w + δ),

^ ( Z , w + 8),

ί> n-

)) x

/s

/ .

Λ

f 5) x (ΛΓ(Z, ί

K(Z*,n+11)

: Af(SO(w))

: Λf(SO(w))

: Λf(SO(*i))

^ + 8))2

x (7Γ(Z, n + 12

-•ΛΓίZ, /i+ 4),

-^JR:(Z, W + 8 ) ,

-^iΓ(Z2, w + 9)
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/r : M(SO(n))-+K(Z2,n'+9), A : M(SO(n)) -> K(Z2, n + 10),

/i : Λf(SO(w)) -*#(Z 2, n + 11), /io : M(SO(w))-> ϋf(Z, H + 12),

/ii : Λf(SCKw)) -*#(Z, w + 12), /i2 : M(SO(n)) -» K(Z, w + 12),

be mappings defined by

tn^) = W"W*W\

^ + 9) - Wn W'° W\

tnw) = WnW*W\

respectively, where ίnf/, rή+/ and ό/+i2 are the fundamental classes of the corre-

sponding Eilenberg-MacLane complexes.

We define F : Aί(SO(w)) -> Yi by /°cί where J is the diagonal map

M(SO(τι)) - (M(SO(72)))12 and / = Π/i : (Λf(SO(w)))12-> y2.
ί •= 1

Let us calculate the homomorphism F* induced by F

F* : J7*( F2, Z2) -> H*{M(SO(n)), Z2).

We consider F* for the dimension z ^ w +13. It has been verified by Thorn

[18] that F* is an isomorphism of #'"( Y2, Z2) onto H{(M{SO(n))9 Z2) for

i^n^-7. We can verify further that F* : ^'(Yi, Z2) -* ^(^/(SOίw)), Z2) is

an isomorphism into for f ^ n -f 13, and a homomorphism onto for / < n + 13 by

continuing the analogous calculation as Thorn ([18], Chapitre II, §8; §1.B,

§1.D, §2. A). From this we deduce by Serre's C-theory (§1.C) that

F* : πi(M(SO{n))) -> πA Y2) are C2-isomorphisms for * < # + 13 and C2-onto for

i ^ n + 13. Thus we have:

, mod C2,

Z2, mod C2.

^ Z 2 , mod C2,

^ZSt mod C2,

πn+12(M(SO(n))) = Z+Z+Z, mod C2.

Consequently we obtain

PROPOSITION 1. The 2 primary components of the stable homotopy groups

πnτk(M{SO(n))),for 8 ^ k £ 12, αrβ :
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0, Z2 + Z2, Z 2 , Z>, 0,

for A? = 8, 9, 10, 11, 12,

respectively.

C. p-primary components of πn+k(M(SO(n)))

Let p be an odd prime. The calculations of the ^-primary components of

the stable homotopy groups πn+k(M(SOin))) are a little more complicated

than 2-primary components.

There exists an aspherical fibre space A with the fibre K(Z, n + 2p-2)

over the base KiZ. n + 2p-l) (Serre [12]). Consider a mapping <ρ of the

complex KiZ, n) into K(Z, n + 2p~l) such that ψ*(cn+2p-i) = ccp ° Stpp~Hcn).

We denote by Lin, p) the fibre space induced from the fibre space A by the

mapping φ. So Lin, p) is the fibre space over the complex K(Z, n) of fibre

K(Z, n + 2p-2); non zero homotopy groups of Lin, p) are only πn and πnwp-2,

both isomorphic to Z. The Eilenberg-MacLane invariant k £ Hn+2p~HZ, n\ Z)

associated with L(nf p) is ap ° Stpp~2icn).

Now we consider the cohomology mod p of the complex Lin, p) in di-

mension <n + Ap — 4. It is necessaly to discuss the spectral sequence relative

to the fibering of L(n,p) over KiZ, n). By the construction of Lintp)t cn^p-2

is mapped by the transgression τ (explicitly by dn^p-i) to the class St2

p

p"ιicn).

It follows that in total degree ^ n -f Ap - 5, is £ s are zero except for the follow-

ing terms:

Ey~El'0 = H°iZ, n; Zp\

EZ'° = E?>° = Hn(Zy n; ZP\

EZ+2p-2>° = Er2p'2'0 = Hn+2p-2(Z, n; Zp).

Consequently the cohomology groups H'iLin, p), Zp), for i ^ n + 4p~5t admit

only the following generators:

in dimension n, Tn=p*icn),

in dimension n + 2p-2, St2

P

p'2(Tn) =P*(St2

p

p-2icn)),

ivhere p : L(nf p) -> K(Z, n) is the projection (cf. Serre [12], p. 456).

Let Yp be the product of the complex Lint p) and the Eilenberg-MacLane

complexes:

)xK(Z, n + 4)x . . . xiKiZ, n + 4h))Mh) x

. . . x (K(Z, n + 2p-6))*κ{p-*Ί2) x (KiZ, n + 2p-2)ViLί>'1)f2)'\ '



ON THE GROUPS OF COBOKDISM ίlk 143

Let us define a mapping G : MiSO(n)) -» Y/>. There exists a mapping g of

M(SO{n)) into 7f(Z, #) such that £*(:«) = Xn. And there exists a mapping 5 of

the (w + 2i>-2)-skeleton of K(Z, n) into L(n,β) such that s* : πi(K(Z, n)n+2p'2)

-> πi(L(n, p)) is an isomorphism onto for ί ^ w + 2 ^ - 3 . So we have the

mapping s ° # of the (n Λ-2p - 2)-skeleton of M(SOin)) into Z,(w, />) such that

(5 °4§')("ΓM) = Xn. The obstruction to the extension of the mapping s is given

by ap ° Stpp~2(:n\ and therefore, the obstruction to the extension of the mapping

s ° g is

c(s o ̂ r) = 5 r * ( c ( s ) ) = z ( X p O Stf'2{Xn).

Since H*(M(SO(n)), Z) has no ^-torsion, we have c(s°g)=0. So we can

extend the mapping s ° g to a mapping g : MiSO(n)) -> L(w, >̂) such that

Now we introduce in the free base of HrΛlll{M(SO(?ι)), Z) the lexico-

graphic order using the dimension of Pontrjagin classes:

Λζft •pih1 plh2 p-hr y? vnp^ip^'2 pι^s

if hi ^ ho ^ . . . ^ hr, ki ^ hi ^ . . . ^ fc,

/Zl = ^1, . . . , fe - ki, llti-l > kt + l.

For example in Hnn2(M(SO(n)), Z), we have: XnP12 > XnPiiPi > Xn(Pi)\

We denote by Ki(Z, n-V^h) the z-th copy of K(Zy n + 4h) in the correspond-

ing factor of the product space YPf and by ώM/, the fundamental class of

Ki(Z, n + 4h). There exist mappings

/ i f / ( Z , n + 4 h ) , 0 < h ^ p ~ 1 . l £ i £ π ( h ) ,

such that (ghV'dUih) = the z-th element of the free base of Hn^h(M(SO{n))y Z).

Let d : M(SO(n)) -> (M(SOi?ι)))n\ m= Σ rλh), be the diagonal map and

G : (M(SO(n)))m - Y* be

We define G : ilf(SO(w)) -> Yp by the composed mapping G ° d.

We will calculate the homomorphism G* induced by G
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G* : Hn+J'(Yp, ZP) -* Hn+J(MiSO(n)), Zp), for j

In the first place we consider G*(Sf/?~2(?n))

, χl

where (?(#L xl, . . . , #i/2) is a polynomial of elementary symmetric functions

of x) which does not contain the term (Σ#i) ( / > ~ 1 ) / 2 (cf. §1.D). Now we have

the next table:

.7 = 0, G>l:(-cn)=Xn,

j = 4*, o < /* < ^ g * , G*(ά+4Λ) = the i-th base element of

(Λ)), Zp\

for 1 ^ ι ^τr(A),

G*( f«+2/.-2) = the i-th base element of

for l ^ i < (

G*(Sί^- f (7 n )) = X l l ( J P 4 ) ^ 1 ) / a +linear combi-

nation of other base elements.

We know that the classes of Hk{YPi Zp) and Hfc{M{SO{n))9 Zp), which appear

in the table, form bases of Hk(YPi Zp) and of Hh{M{SO(n))y Zp) respectively

for kέn + 2p + 1; therefore we can easily verify that G* : Hk(YP> Zp)

-> Hk(M(SO(n))} Zp) is an isomorphism onto for k £n + 2p+l. By Serre's

C-theory we have that G* : Kk(M(SO(n))) -> πk(Yp) is C/,-isomorρhism for

k < n + 2p + 1 and C/,-onto for k£n + 2p + l. Thus we have:

^ 0, mod Cj>, if * * 0 (4), k £ 2py

πn+ih(M(SO(n))) ^Z+Z+ . . . 4-Z, mod Cp, if 2ft

Consequently we obtain

PROPOSITION 2. The p-primary components of the stable homotopy groups

π?ι+k(M(SO(n))) are zero if k ^ 2p} where p is an odd prime.

As a special case

PROPOSITION 3. Let p be a prime ^ 7. * The p-primary components of the

stable homotopy groups nn+k(M(SO(n))) are zero for k ?= 14.
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D. 5-primary components of πn+k{M(SO(n)))

Now we consider two Postnikov complexes Lin, 5) and L(n + 4, 5) defined

above. As is mentioned in §2. C, the cohomology groups H^Lin, 5), Z~o) for

i ^ n + 15 admit only the following generators:

in dimension n, ϊn-pΐdn),

in dimension w + 8, St\(ln) =pΐ(Stl(cn)),

where pi : L(n, 5) -» KiZ, n) is the projection of L(n, 5). And we know also

that the cohomology groups Hι(L(n + 4, 5), Z5) for it=n + 15 admit only the

following generators:

in dimension ^ ,

in dimension w + 12, SίίC^n+i) =jf>2*(S/s(^+.i)),

where i>2 : L(n-\-A> 5) -> iΓ(Z, w + 4) is the projection.

Let Yδ be the product of Lin, 5), L(w + 4, 5) and the Eilenberg-MacLane

complexes:

Y5 = L(n, 5) x K w + 4 , 5 ) x iΓ(Z, n + 8) x (KiZ, w + 12))2.

Let us define a mapping // : M(SO(w)) -> y s . By the same method as in

§2.C, we can find a mapping hi of M(SOin)) into L(w, 5) such that ht(Jn)

= Xn, and a mapping /z2 of M(SO(w)) into L U + 4, 5) such that ft2*(TMt.i)

= XnP4. On the other hand, there exist mappings

A. : M(S0(/2)) - ίfίZ, Λ + 8 ) , such that A3*(f»+8) = -XnP8,

ft, : M ( S O ( Λ ) ) -> KiZ, n + 12), such that ft?(rn+12) = XnP8P\

h5 : M ( S O ( Λ ) ) -> ΛΓ(Z, w + 12), such that ft5*(ώf12) = X M (P 4 ) 3 .

We define i/ : Af(SO(w)) -> Y5 to be ft o rf, where d : MiSO(n))

is the diagonal map, and

ft= Πft, : (Af(SO0*))) 5-y 5.

We will calculate the homomorphism H* induced by H,

H* : Hn+i(Yrif Zό) -> Hn+i(M(SO(n)), Z5), for i ^ 15.

ι = 0, H*(Tn)=X",
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i = 12, HHStYίnvi)

= X P P ,

For the present section 2 ^ - 2 = 8, so the classes of #*(Y5, Z5) and

#*(M(SOU)), Z5) written in the table form bases of #HYs, Z5) and

HHMiSOin)), Z5). Therefore we can easily verify that if* : #f'(Y5, Z5)

-> Hi(M(SO(n))t Z-o) is an isomorphism onto for * ̂  w + 15. By the C-theory

we have that H* : 7Γi(M(S0(w))) -» 7r, ( Yβ) is Cδ-isomorphism for ί < ^ + 15, and

Cδ-onto for i ύ n + 15 namely

7rΛ+8(Af(SO(Λ))) = Z+Z, mod C5,

7τw+i2(M(SO(^))) ^ Z + Z - f Z , mod C5,

τr«n (Λf(SO(w))) = 0, mod C5, for 8 < 1 < 12, 12 < i < 15.

Thus we have

PROPOSITION 4. The ^-primary components of the stable homotopy groups

πn+i(M(SO(n))), for S^i^ 14, are all zero.

E. 3-primary components of 7Γn+;?(Λf(SO(w)))

The calculation of the 3-primary components of the stable homotopy groups

πn+k(M(SO(n))) is the most complicated.

In the first place we consider the cohomology groups mod 3 of the

Postnikov complex Lin, 3) in the dimension ^ w + 15. We discuss the spectral

sequence mod 3 relative to the fibering of Lin, 3) over iΠZ, n). By the

construction of Lin, 3) the fundamental class cn+ι of fibre is mapped by the

transgression r (explicitly rfΛ+5) onto the class Stlicn)* As the reduced powers

commute with the transgression, the calss Sti(cn+s) of fibre is mapped by r to

the class Stt ° Stl(cn) =Stl(cn) and the class Stlicni.5) to the class Stl ° Stt{cn)

^St\\cn) (cf. §1.A). It follows that in total degree ^w + 15, Er*s are zero

except for the following terms:

EV = Eϊ* = H*(Z9n\ Z3), EZ'* = Eϊ* = Hn(Z,n; Z3),

ii» = ii2 =/2 vZ n, Za) ii = i i2 = tl VZ W, Z3)
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Consequently the cohomology groups Hι(L{n, 3), Z3), for i^w-flδ, admit

only the following generetors:

in dimension n, Tn=β?icn)>

in dimension n-\-4, Sti{Tn),

in dimension n + 8, Stl(ΐn),

in dimension w + 9, ( i * ) " 1 ° SfJKoiv i),

in dimension w-f 12, Sf32(ί"w),

in dimension n + l3t ( i * ) " 1 ° S*?(<»+J),

where pi is the projection of Lin, 3) into if(Z, n) and ix : /f(Z, n -f 4) -* Z,(w, 3)

is the injection of fibre in the total space (cf. Serre [12], p. 456).

We need a certain class to construct the fibre space over Lin, 3) which

is indispensable to our purpose.

LEMMA 1. There exists an integral cohomology class w e H"Λ9(Lin, 3), Z)

such that

ii) 3m« = 0, for a certain integer ?n,

where p3 is the reduction mod 3.

Proof. The following diagram is commutative:

4; Z) S- Hn"(L(n, 3), Z)

ίI Pa ί

; Z 3 ) < J " Hn*HL{n, 3 ) , Z 3 ) .

So it is sufficient to show that Stlicn^) e Hnv\Zy n + 4; Z3) is the image by

<o3°ii* of a class u^Hn^iLin, 3), Z) satisfying the condition ii). Now we

factorize the homomorphism it with use of the spectral sequence associated

with the fibering Lin, 3) :

where λ is an isomorphism into and /J is a homomorphism onto (cf. Serre [12],

p. 456). The term En?n* is the subgroup of E°A+Yo9 consisting of <2n+io-cocycles:

•> hn+io — &ι — t i \jCy n , Z).
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We know i/ ' l f l 0 (Z, n\ Z) have no component but 2-primary one, and therefore

for any element x of En+io\ 2hx is a ύkτi0-cocycle and belongs to En?u* for a

certain integer h. Consequently we can easily find an integer ι > 0 and an

element uf such that

a) 21' a* o stiUn+i) = *(* ' ) , *' e £°«;Ίΐ9,

b) 2I = 1, mod 3.

We know that Hn+9(Z, w-f 4; Z) has no components but 2- and 3-primary

ones, and Hn+9(L(n, 3), Z) has no components but 2-, 3-, and 5-primary

ones. Since 3λ(u')=0, we have 3w' = 0, therefore we can find a class

y 3), Z) such that

i) μ(u) = uf,

ii) 3mu = Q, for a certain integer m,

Thus the lemma is proved.

Let A be an aspherical fibre space over the complex ϋf(Z, n-\-9) of fibre

K{Z, w-f8). There exists a mapping ψ of the complex L(n, 3) in ZΠZ, w-f 9)

such that <f*(cnw) = w. We denote by A"3 the fibre space induced from the fibre

space A by the mapping ψ. The non-zero homotopy groups of iΓ3 are only 7r«,

7Γn+4 and 7r«+8, all isomorphic to Z.

Now we consider the spectral sequence mod 3 relative to the fibering of

Kz over L{n, 3). By the construction of K* the fundamental class cn+s of fibre is

mapped by the transgression τ (explicitly dn\-υ) onto the class (iΐ)~ι ° Stl(cn+.i),

which is the generator of Hn+\L(n, 3), Z3) (Lemma 1).

Hn+9(L(n, 3), Z3) ^ Hn+ι\Liny 3), Z3)

+9 ; Z.) ^ l HnM\Z, n + 4; Z3).

This diagram is commutative and the vertical homomorphisms are both iso-

morphisms onto. Consequently Sttbn+s) is mapped by the transgression to

Stl o (i*)-1 o Stl(cn+i) = (if)"1 ° Sfί

It follows that in total degree *= Λ + 15, E»'5 are zero except for the following

terms:
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n, 3), Z3), E2* = EΪ° = Hn{L(n, 3), Z3),

' , 3), Z3),

, 3), Z3),

, 3), Z3),

; Z3).

Consequently the cohomology groups H\Kzt Z3) for i?=w-f-15 admit only the

following generators:

in

in

in

in

in

dimension

dimension

dimension

dimension

dimension

n,

n +

n +

Λ +

n +

4,

12,

13,

Cn=p2(

Stίifn),

SΆ(τn),

SffiΨn),

air1-

where >̂2 is the projection of the fibre space K3 and z2 K(Z, n + 8) -* i^3 is the

injection of fibre in the total space iξ$.

To eliminate the cohomology groups of dimension n +13, we will construct

a fibre space over Kz of fibre K(Z, nΛ-12).

LEMMA 2. T/z^r^ £#/s£s an integral cohomology class vE: Hn¥U{K*y Z)

such that

i) smv = 0, /or αw integer m,

ii) p8(t;) = (/ 2 *)" l o Sί3(^ + 8 ).

Proof* We know that Hn+u{L(n, 3), Z) has no components but 2-primary

one, that Hn¥1\Z9 w + 8; Z) has no components but 2- and 3-primary ones, and

that Hn+1*(KSy Z) has no components but 2-, 3-, 5- and 7-primary ones. There-

fore we can prove Lemma 2 by the same method as Lemma 1.

Let B be an aspherical fibre space over K(Z, # + 13) of fibre K(Z, w-f-12).

There exists a mapping ψ of the complex Ks in K(Z, n+ 13) such that ψ'(cn\u)

= v. We denote by Ki a fibre space induced from the fibre space B by the

mapping ψ. The non zero homotopy groups of IU are only 7rn, ^ M , 7ΓM+8 and

ττw+12, all isomorphic to Z.

Now we consider the spectral sequence mod 3 relative to the fibering of

Ki over Kz. By the construction of Ki the fundamental class rM+i2 of fibre is

mapped by the transgression r (explicitly dn+iz) onto the class (i*)'1 ° Stldnts)
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(Lemma 2). It follows that in total degree *= n + 15, Er*s are zero except for

the following terms:

E*± ° - H\K%% Z 3 ) , El' ° = Hn(K,y Za),

E^*>ΰ = HnJ-\K3f Z 3 ), EZ+s>° = Hfl+s(Kz, Z 3 ),

77^ + 12,0 _ r r « +12/ r r r^ \
ϋα> — X2 V-ft.3> Z 3 Λ

Consequently the cohomology groups H\K^ Z3) for / ^ w + 15 admit only the

following generators:

in dimension n, Tn=pf{fn)y

in dimension w + 4, Sti(Tn),

in dimension # + 8, S^(^«),

in dimension n + 12, St\2(Tn),

where p* is the projection of K4.

On the other hand, as is shown in §2. C, the cohomology groups

Hi{L(n + 8y 3), Z8) of the Postnikov complex L{n + 8, 3) for i^n + 15 admit

only the following generators:

in dimension n + 8, 7«+8=j£>*(oi+8),

in dimension w + 12, SίU^n+s),

where p± is the projection of the fibre space L(n + 8, 3) over K(Z, n + 8).

Let y3 be the product of Ku L(n -hδ, 3) and K(Z, w + 12). Let us define

a mapping F : Λf(SO(w)) -> F3. As is shown in §2.C, we can find a mapping

/1 of Λf(SO(/i)) into L(w, 3) such that / ί ( 7 n ) = Xn. We know that there exists

a mapping ί of the (n + 8)-skeleton of L(n, 3) into iΓ3 such that U : πi(L(n, 3) n f S )

-> 7r/(ϋΓ3) is an isomorphism onto for 1 < w + 8. So we obtain the mapping t ° A

of the (w-f 8)-skeleton of M(SO{n)) into Kz such that (f °/i)*(r) = XM. The

obstruction to the extension of the mapping ί ° / i is given by fΐ{u). Since

//*(Af(SO(w)), Z) has no 3-torsion, we have f?(u) = 0 (see Lemma 1). Now

we have the mapping f% of M{SOin)) into K3 such that /2*(τM) = J£M. In virture

of Lemma 2, we can find a mapping fz of M(SO(«)) into K\ such that f*{Tn)

— Xn by the same method as above. Similarly we can find a mapping f\ of

Λf(SO(w)) into L(n + 8, 3) such that /?(7 n + 8 ) = X^P' 1) 2 . On the other hand

there exists a mapping / 5 of M(SO{n)) into 'ϋΓ(Z, w-f 12) such that f*Un¥iz)

= XW(P4)3. Now we define a mapping F : M(SO(w)) -• Ya to be the composition
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of the diagonal map d and /3 x/i x/s:

M(SO(n)) - j ) 3

We will calculate the homomorphism F* induced by F

F* :-fl r /(ri,Zϊ)-»Jϊ ί(M(SO(ιι)) f.Za) t for i ^

12, F*(S#(?»)) = XnP1 2,

* t = XnP*PA

For the present case 2p - 2 = 4, so the classes of JFΓ( Y3, Z8) and flWιSO(w) ),Z3)

written above form bases of #HY3, Za) and H\M(SO(n)), Zz) for ί ^ Λ + 15.

Therefore we can verify that F* : /f'lK, Z3) -> E^MiSOin)), Z3) is an

isomorphism onto for *' ^ w + 15. By Serre's C-theory, we obtain that

F* : m(M(SO(n))) -+ πi(Y3) is C3-isomorphism for i<n~\-15 and C3-onto for

15. This implies

Z+Z, mod C3,

Z + Z + Z , mod C3,

τr»+, ( M ( S O ( Λ ) ) ) ^ 0, mod C3 for 8 < i < 12, 12 < i < 15.

Thus we have

PROPOSITION 5. The ^-primary components of the stable homotopy groups

πn+i(M{SO(n)))t for S^i^ 14, are all zero.

F. Results

Here we state the results obtained in this section §2.

THEOREM 1. i) The stable homotopy groups πn+i(M(SO(n))) are for

7Γwf8 = Z'-+ Z, 7Γ«f9

τcn+12 = ZΛ ZΛ- Zy π-«+is = 2-group,

ii) Let p be an odd prime. For i ^ 2py πn+i(M{SO(n))) has no p-primary

components.
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§ 3. The groups of cobordism Ωk

In this section we determine the groups of cobordism Ωk for 8 ^ k ύ 12

and discuss some problems related to the cobordism classes.

All manifolds considered are to be compact, orientable and differentiable,

unless otherwise stated.

A. Thorn algebra

Here we state briefly the definition of Thorn algebra Ω and the central

results of Thorn [18] concerning Ω.

We define the sum Vn + Wn of two disjoint oriented manifolds Vn and Wn

of the same dimension as the union of Vn and Wn. The sum is oriented in

natural way. For an oriented manifold Vn an oriented manifold - Vn is defined

as follows: - Vn is identical with Vn as manifold and has the orientation

opposite to that of Vn. The product Vnx Wm of two oriented manifolds Vn,

Wm of any dimensions is the oriented cartesian product,

An oriented manifold Vn is bounded, when there exists an oriented mani-

fold with boundary, Xn+1, whose oriented boundary (with the orientation and

differentiable structure induced from Xni'1) is identical with the given oriented

manifold Vn, Two oriented manifolds Vn and Wn are called "cobordantes"

when Vn + ( - Wn) is bounded. This is an equivalence relation and compatible

with the operation + , ~ and x defined above. The equivalence classes of n-

dimensional oriented manifolds form an additive group Ωn under the operation

+ and - , and its null element is the class of bounded manifolds. We call
00

Ωn the group of cobordism of dimension n. The direct sum Ω - Σ Ωn becomes
H = 0

an anticommutative graded algebra under the operation + , - and x defined

above.

The groups of cobordism Ωk are related to the stable homotopy groups of

Thorn complex M(S0(n)) by Thorn [18].

THEOREM. The groups of cobordism Ωk of dimension k are isomorphic to

the stable homotopy groups of Thorn complex MiSOin)):

Ωk = πn* k(M(S(Hn))), for k < n.

The following results of Thorn [18] are founded on this theorem.

1) The groups Ωk are finite for k * 0, mod 4. The group J24/ is the direct

sum of τr(ί) free cyclic groups and a finite group.
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2) For k < 8, the groups Ωk a r e :

Ω° = Z, i?1 = i?2 = J23 = 0,

Ω* = Z, £ δ = Z2, £ 6 = i?7 = 0.

B The groups of cobordism Ωk

Thorn's theorem and Theorem 1 give

THEOREM 2. i) For 8 *s A *s 14, the groups Ωk are:

£ s = Z-h Z, Ω9 = Z2 + Z2, £ 1 0 = Z2, £ u = Z2,

J212 = Z -f Z -f Z, i?13 = 2-groupy Ωli = 2-group.

ii) Lέtf jί> ^ Λ/2 oί/J prime. The p-primary components of Ωk are zero for

k ^2p.

Generators of Ωk.

We denote by PC(i) the complex ^dimensional projective space, and by

Pirn, n) the (m + 2n)-manifold defined by Dold [6]. We know that Pint, n)

is orientable if and only if m $ nf mod 2 or m = 0 (cf. Dold [6], C). We

denote by ZVn] the element of Ω which contains an w-manifold Vn.

i) Generators of Ω% are given by ίPCU)l and ίPC(2) x PC(2)].

ii) Generators of Ω9 are given by [P(l, 4)] and [P(l, 2) x PC(2)], where

[P(l, 2)] is the generator of £5 = sJί5 = Z2 given by Wu [19].

iii) The generator of £10 is [P(l, 2) x P(l, 2)].

iv) The generator of Ωn is [P(3, 4)].

v) Generators of Ω12 are given by CPC(β)], ΓPC(4) x PC(2)] and

C(PC(2))3].

As is shown above, Ωs and j?12 are free groups, therefore i) and v) are

trivial (Thorn [18], Chapitre IV, §8); iiHv) are the direct consequences of

Theorem 2 and Dold [6] (Satz 3 and H).

Remark. Among the groups of cobordism Ωk there exist no free groups

but Ω\ i?s and Ωv\ because for i ^ 4, ΩAi has 2-torsion [ F i f ] , where

V4i = PC(2i-8) x P(3, 4) x P ( l , 2).

Now we consider the problem of Steenrod: What algebraic conditions are

necessary and sufficient for an orientable manifold Vn to be bounded ? (Eilenberg

[7], Problem 26). Rohlin and Thorn have given partial answers for this

problem ([10], [11], [18], Chapitre IV, §8);
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i) Vn is always bounded for n = 1, 2, 3, 6, 7

ii) F 4 is bounded if and only if its index τ( F4) is zero.

iii) F 5 is bounded if and only if its Stiefel-Whitney number W3W2 is zero.

We apply Theorem 2 to this problem.

THEOREM 3. i) An S-mani/old is bounded if and only if all its Pontrjagin

numbers are zero.

ii) A 9-manifold is bounded if and only if both its Stief el-Whitney numbers

W\W2Ϋ and W7W2 are zero.

iii) A 10-manifold is bounded if and only if its Stief el-Whitney number

W* WA is zero.

iv) An 11-manifold is bounded if and only if its Stief el-Whitney number

( WΎ W2 is zero.

v) A 12- manifold is bounded if and only if all its Pontrjagin numbers are

zero.

LEMMA 1. The Stief el-Whitney classZ) of the manifold Pirn, n) is given by

W(m, n) = (l + c)m(l + c + d)n*\ with cm + 1 = 0, tfw+1 = 0,

where c and d are 1- and 2-dimensional cohomology classes mod 2 respectively,

and they generate H*(P(m, n), Z2) (Dold [6], Satz 2).

LEMMA 2. The Chern class3) of the complex projective space PC(n) is equal

to (l+gV*1, where g is the generator of H2(PC(n), Z). The Pontrjagin class3)

of PC(n) is equal to (1 + £ 2 ) Λ + 1 (Hirzebruch [8], Satz 4.10.2).

Proof of Theorem 3. For any 8-manifold F8, we can describe [ F s ]

= tf[PC(4)] + 2>[PC(2) x PC(2)], where a and b are certain integers. As the

Pontrjagin numbers are additive, a and b are uniquely determined by Lemma 2:

£i= J ( P 4 P 4 - 2 P 8 ) , &= * ( 5 P S - P 4 P 4 ) ,

where PAPA and P 8 denote the corresponding Pontrjagin numbers of F8. There-

fore i) is proved. Using Lemma 1 and Lemma 2 we can prove ii)-v) by the

same method as above.

Remark. The selections of Stiefel-Whitney numbers described in ii) and iv)

3> Precisely, we must say the Stiefel-Whitney polynomial with the variable / = 1 (cf.
Wu [21], p. 41) or total Stiefel-Whitney class.
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are not unique. It is evident from the proof that in iv), for example, we can

take W5(WΎ instead of (WZ)ZW\ However, in iii) no other Stiefel-Whitney

numbers than W*,W4 give a sufficient condition, because W*WA is the unique

Stiefel-Whitney number that is not zero for P(l , 2) x P(l , 2).

Especially we observe

COROLLARY 1. For n ^ 12, an nsphere Sn is bounded, even if it admits any

differentiable structures^

Proof, For n * 8, 12, it is trivial. For n = 8, 12, we know the following

index formulas (Hirzebruch [8]):

45r = 7 P s - P 4 P 4 ,

945 τ = 62P12 - 13PHPί + 2(P4)3,

where Π P 4 ί are the corresponding Pontrjagin numbers. Thus the corollary is

the direct consequence of Theorem 3.

COROLLARY 2. For n *= 11, n 3F 8, //&* cobordism classes of n-manifotds Vn

are topological invariants, i.e., they are independent of their differentiable

structures^

Proof. We know that the Stiefel-Whitney classes W\Vn) of an n-

dimensional manifold are topological invariants of Vn (Thorn [17]). Therefore

the corollary is the immediate consequence of Theorem 3.

Remark. If the Pontrjagin classes P*k(Vn) of an w-dimensional manifold

are topological invariants, Corollary 2 holds for n - 8 and 12.
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