ON THE GROUPS OF COBORDISM Ω^{k}

MASAHISA ADACHI

Introduction

In the papers [11] and [18] Rohlin and Thom have introduced an equivalence relation into the set of compact orientable (not necessarily connected) differentiable manifolds, which, roughly speaking, is described in the following manner: two differentiable manifolds are equivalent (cobordantes), when they together form the boundary of a bounded differentiable manifold. The equivalence classes can be added and multiplied in a natural way and form a graded algebra Ω relative to the addition, the multiplication and the dimension of manifolds. The precise structures of the groups of cobordism Ω^{k} of dimension k are not known thoroughly. Thom [18] has determined the free part of Ω and also calculated explicitly Ω^{k} for $0 \leqq k \leqq 7$.

The purpose of the present paper is to determine explicitly the groups Ω^{k} for $8 \leqq k \leqq 12$. Our method is analogous to that of Thom [18] and we shall calculate Ω^{k} using Serre's C-theory.

In § 1 we explain shortly some general results on the Eilenberg-MacLane complexes, Serre's C-theory and the Grassmann manifold, which will be used later. In $\S 2$ the homotopy groups of the Thom complex $M(S O(n))$ associated with the rotation group are calculated. In $\S 3$ we determine the groups of cobordism Ω^{k} for $8 \leqq k \leqq 12$, and discuss some problems related to Ω^{k}.

Some of the results contained in this paper have been announced in the note [1].

The author is deeply grateful to Professors R. Shizuma and N. Shimada for their kind encouragements and valuable criticisms.

§ 1. Preliminaries

Before we approach the determination of the homotopy groups of the Thom complex $M(S O(n))$ associated with the rotation group, it is necessary to recall
some general results on the reduced powers of Steenrod, the Eilenberg-MacLane complexes, Serre's C-theory and the Grassmann manifolds.

We shall denote by Z and Z_{p} the ring of integers and of integers modulo p respectively.

A. Reduced powers of Steenrod

Let p be a prime number. The Bockstein homomorphism $\alpha_{p}: H^{i}\left(X, Z_{p}\right)$ $\rightarrow H^{i+1}(X, Z)$ is identical with $(-1)^{i+1} \delta$, where δ is the coboundary homomorphism of the cohomology exact sequence of a space X relative to the exact sequence of coefficient groups

$$
0 \rightarrow Z \rightarrow Z \rightarrow Z_{p} \rightarrow 0
$$

The Bockstein homomorphism $\beta_{p}: H^{i}\left(X, Z_{p}\right) \rightarrow H^{i+1}\left(X, Z_{p}\right)$ is defined by the composition of α_{p} and the natural homomorphism

$$
\rho_{p}: H^{i+1}(X, Z) \rightarrow H^{i+1}\left(X, Z_{p}\right)
$$

Let a be an integer $\geqslant 0$ congruent to 0 or $1 \bmod 2 p-2$. We define the homomorphism

$$
S t_{p}^{a}: H^{i}\left(X, Z_{p}\right) \rightarrow H^{i+a}\left(X, Z_{p}\right)
$$

in the following manner: if $p=2$, we put $S t_{p}^{a}=S q^{a}$; if $p>2$ and $a=2 k(p-1)$, k an integer, we put $S t_{p}^{a}=P_{p}^{k}$; if $p>2$ and $a=2 k(p-1)+1, S t_{p}^{a}=\beta_{p} \circ P_{p}^{k}$. For a sequence $I=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ of integers $a_{i} \geqq 0$, congruent to 0 or 1 mod $2 p-2$, we denote the composed operation by

$$
S t_{p}^{L}=S t_{p}^{a_{1}} \circ S t_{p}^{a_{2}} \circ \ldots \circ S t_{p}^{a_{r}}
$$

The following formulas are often used in $\S 2$.

$$
\begin{aligned}
& P_{p}^{k}(u \cdot v)=\sum_{i=0}^{k} P_{p}^{i}(u) P_{p}^{k-i}(v), \\
& P_{p}^{k} \circ \beta_{p} \circ P_{p}^{h}=\binom{k+h-1}{h} P_{p}^{k+h} \circ \beta_{p}+\binom{k+h-1}{k} \beta_{p} \circ P_{p}^{k+h}, \\
& \text { for } 0 \leqq k \leqq p-1,
\end{aligned}
$$

where $\quad\binom{a}{b}=\left\{\begin{array}{l}\text { binomial coefficient reduced } \bmod p, \text { if } a, b \geqslant 0, \\ 0, \text { if } a<0 \text { or } b<0,\end{array}\right.$
(cf. Cartan [5]).

B. Eilenberg-MacLane complexes

Let n be an integer $\Rightarrow 1$, and Π be an abelian group. An arcwise connected space X is called the Eilenberg-MacLane complex $K(I, n)$ if all its homotopy groups of dimension >0 are zero except for $\pi_{n}(X)=\Pi$. All these spaces have the same homotopy type, and among them there exists a simplicial complex. Moreover,

1) If Π is an abelian group of finite type, there exists a simplicial complex $K(\Pi, n)$ whose q-skelton is a finite complex (cf. Thom [18], p. 36).

We denote the cohomology ring of $K(I, n)$ with coefficients in G by the notation $H^{*}(\Pi, n ; G)$; the group $H^{n}(G, n ; G)$ possesses a fundamental class which we will denote by ${ }^{n} n$.
2) For any cohomology class $u \in H^{n}(X, G)$ of a topological space X, there exists a mapping $f: X \rightarrow K(G, n)$ such that $u=f^{*}\left({ }_{n}\right)$.

The cohomology of complexes $K(Z, n)$ and $K\left(Z_{p}, n\right)$ has been determined by Cartan [4] and Serre [14]. Here let us recall some of their results.
3) The cohomology ring $H^{*}\left(Z_{2}, n ; Z_{2}\right)$ is generated by the Steenrod squarings of the fundamental class $\iota_{n} \in H^{n}\left(Z_{2}, n ; Z_{2}\right)$ and their cup products; for $h<n$ (stable part of $H^{*}\left(Z_{2}, n ; Z_{2}\right)$), a base of the group $H^{n+h}\left(Z_{2}, n ; Z_{2}\right)$ is given by the sequences of iterated squarings of $\ell_{n}: \mathrm{Sq}^{I}\left(\ell_{n}\right)$, where $I=\left(i_{1}, i_{2}\right.$, \ldots, i_{r}) with $\sum_{m} i_{m}=h$ and $i_{s} \geqq 2 i_{s+1}$, for $1 \leqq s \leqq r-1$.

We have an analogous result for $H^{*}\left(Z, n ; Z_{p}\right)$.
4) For $h<n$, a base of $H^{n+h}\left(Z, n ; Z_{p}\right)$ is given by the sequences of iterated reduced powers (squarings if $p=2) \operatorname{St}_{p}^{\prime}\left(\ell_{n}\right)$, where $I=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ satisfying the following conditions: ${ }^{1)}$

$$
\begin{aligned}
& a_{i} \equiv 0 \text { or } 1, \bmod 2 p-2, \text { for } 0 \leqq i \leqq r, \\
& a_{i} \cong p a_{i+1}, \text { for } 1 \leqq i \leqq r-1, \\
& a_{r} \geqq 2 p-2, \\
& \sum_{i} a_{i}=h .
\end{aligned}
$$

C. Serre's C-theory

Let C_{p} be the class of finite abelian groups whose p-primary components are zero, where p is a prime number. We shall often use the following theorem in $\S 2$.

[^0]Theorem. Let two spaces A and B be connected and simply arcwise connected, $f: A \rightarrow B$ be a mapping which maps $\pi_{2}(A)$ onto $\pi_{2}(B)$ and n be a positive integer. Suppose the homology groups $H_{l}(A, Z)$ and $H_{i}(B, Z)$ are finite type in all dimensions. Then the following two properties are equivalont:
a) $f_{*}: \pi_{i}(A) \rightarrow \pi_{i}(B)$ is C_{p}-isomorphism for $i<n$, and C_{p}-onto for $i \leqq n$.
b) $f^{*}: H^{i}\left(B, Z_{p}\right) \rightarrow H^{i}\left(A, Z_{p}\right)$ is an isomorphism for $i \leqq n$, and onto for $i<n$.
(Serre [13], Chapitre III, Théorème I and Proposition 2).
Let G and H be abelian groups. We denote " G is C-isomorphic to H " by $G \cong H \bmod C$.

D. Some formulas in Grassmann manifold

We donote by \hat{G}_{n} the Grassmann manifold of oriented n-spaces in a Euclidean s-space R^{s} where s is sufficiently large. It is well known that \hat{G}_{n} is the classifying space $B_{\text {so }(n)}$ associated with the rotation group $\mathrm{SO}(n)$.

1) We know that the cohomology ring $H^{*}\left(\hat{G}_{n}, Z_{2}\right)$ is a polynomial algebra generated by $W^{2}, W^{3}, \ldots, W^{n}$, where W^{i} is the i-dimensional Stiefel-Whitney class (Borel [2]).
2) Let n be even, $n=2 m$, and p be an odd prime. The cohomology ring $H^{*}\left(\hat{G}_{n}, Z_{n}\right)$ is a polynomial algebra generated by the Pontrjagin classes $\bmod p$ and the Euler-Poincaré class $\bmod p$:

$$
P^{4}, P^{8}, \ldots, P^{4 m-4}, X^{n}
$$

(Borel-Serre [3]).
3) The following formula, which gives the Steenrod squarings of W^{i}, was introduced by Wu [20]:

$$
S q^{i} W^{j}=\sum_{t=0}^{i}\binom{j-i+t-1}{t} W^{i-t} W^{j+t}, \quad(i \leqq j)
$$

with the following conventions

$$
\binom{a}{b}=\left\{\begin{array}{l}
\text { binomial coefficient reduced } \bmod 2, \text { if } a \geqq b>0 \\
1, \text { if } b=0, \\
0, \text { if } b \neq 0, a<b
\end{array}\right.
$$

and $W^{1}=0$.
4) It is often useful to consider the Pontrjagin classes $\bmod p$ and the

Euler-Poincaré class $\bmod p$ of the universal bundle $E_{s o(n)} \rightarrow B_{s o(n)}$ as the symmetric functions ${ }^{2}$) of m variables $x_{1}, x_{2}, \ldots, x_{m}$ of degree 2 :

$$
\begin{aligned}
P^{4 i} & =\sum x_{1}^{2} x_{2}^{2} \ldots x_{i}^{2}, & & 1 \leqq i \leqq m-1, \\
X^{n} & =x_{1} x_{2} \ldots x_{m}, & & n=2 m,
\end{aligned}
$$

where $x_{1}, x_{2}, \ldots, x_{m}$ are generators of $H^{*}\left(B_{T}, Z_{p}\right)$ (T is the maximal torus of the rotation group $S O(n))$. The introduction of the variables x_{i} leads us to the following formulas:
i) $P_{p}^{k}\left(X^{n}\right)=X^{n} \sum x_{1}^{2 h} x_{2}^{2 h} \ldots x_{k}^{2 h}$, where $h=\frac{p-1}{2}$,
ii) $P_{p}^{k}\left(P^{4 i}\right)=P_{p}^{k}\left(\sum x_{1}^{2} \ldots x_{i}^{2}\right)$

$$
=\sum_{2 r+s=k} 2^{s} \sum x_{1}^{2 p} x_{2}^{2 p} \ldots x_{r}^{2 p} \cdot x_{r+1}^{p+1} \ldots x_{r+s}^{p+1} \cdot x_{r+s+1}^{2} \ldots x_{i}^{2}
$$

(Borel-Serre [3]).
5) Here we adopt Hirzebruch's definition of Pontrjagin classes (Hirzebruch [8], p. 67). Then we have

$$
\rho_{2}\left(P^{4 i}\right)=\left(W^{2 i}\right)^{2}
$$

where $\rho_{2}: H^{*}\left(\hat{G}_{n}, Z\right) \rightarrow H^{*}\left(\hat{G}_{n}, Z_{2}\right)$ is the reduction $\bmod 2$.

§ 2. Homotopy groups of Thom complex $\boldsymbol{M}(\mathbf{S O}(n))$

In this section we shall calculate the stable homotopy groups of the Thom complex $M(S O(n))$ associated with the rotation group $S O(n)$.

A. Thom complexes

We know that any ($n-1$)-sphere bundle over a finite complex whose structure group is the rotation group $S O(n)$ is induced from the universal sphere bundle $p: E_{S O(n)}^{\prime} \rightarrow B_{s o(n)}$. We denote by $A_{s o(n)}$ the mapping cylinder of the projection p; this is a manifold with boundary $E_{s o(n)}^{\prime}$; we denote by $A_{s o(n)}^{\prime}$ the complement $A_{s o(n)}-E_{S O(n)}^{\prime}$ of the boundary in $A_{s o(n)}$.

We call the complex obtained from $A_{s o(n)}$ by the identification of its boundary $E_{s o(n)}$ to a point a Thom complex associated with the rotation group $\operatorname{SO}(n)$; we shall denote it by $M(S O(n))$. Then $M(S O(n))$ is the Alexandroff's compactification of $A_{s o(n)}^{\prime}$.

[^1]The homotopy groups and the cohomology rings of Thom complex $M(S O(n))$ have been studied by Thom [18].

1) The homotopy groups $\pi_{n+k}(M(S O(n)))$ are independent on n, for $n>k$ (Thom [18], Théorème II.7).

Owing to 1), hereafter we assume n to be sufficiently large and even without loss of generality.
2) $\pi_{1}(M(S O(n)))=0$.
3) The cohomology ring $H^{*}\left(M(S O(n)), Z_{2}\right)$ of $M(S O(n))$ is isomorphic to the ideal generated by the n-dimensional Stiefel-Whitney class W^{n} in the polynomial algebra $H^{*}\left(\hat{G}_{n}, Z_{2}\right)=Z_{2}\left[W^{2}, W^{3}, \ldots, W^{n}\right]$.
4) Let p be an odd prime. The cohomolohy ring $H^{*}\left(M(S O(n)), Z_{p}\right)$ of $M(S O(n))$ is isomorphic to the ideal generated by the Euler-Poincare class $\bmod p X^{n}$ in the polynomial algebra $H^{*}\left(\hat{G}_{n}, Z_{p}\right)=Z_{p}\left[P^{4}, P^{8}, P^{4 m-4}, X^{n}\right]$, where $n=2 m$.
5) The cohomology ring $H^{*}(M(S O(n)), Z)$ of $M(S O(n))$ with integer coefficient is isomorphic to the ideal generated by the Euler-Poincaré class X^{n} in the algebra $H^{*}\left(\hat{G}_{n}, Z\right)$ (Thom [18], Chapitre II, §5).

Henceiorth we identify the cohomology rings of $M(S O(n))$ and the abovementioned ideals of the cohomology rings of Grassmann manifold respectively.
6) The stable homotopy groups $\pi_{n+k}(M(S O(n)))$ are finite if $k \equiv 0, \bmod 4$; the free components of the stable homotopy groups $\pi_{n+1 j}(M(S O(n)))$ are of rank $\pi(j)$, where $\pi(j)$ is the number of partition of j (Thom [18], Théorème IV.15).

To our purpose, therefore, it is sufficient to calculate the p-primary components of $\pi_{n+k}(M(S O(n)))$ for each prime p.
B. 2-primary components of $\pi_{n+k}(M(S O(n)))$

We will calculate the 2 -primary components of $\pi_{n+k}(M(S O(n)))$ for $8 \leqq k \leqq 12$. Let Y_{2} be the product of the Eilenberg-MacLane complexes:

$$
\begin{aligned}
Y_{2} & =K(Z, n) \times K(Z, n+4) \times K\left(Z_{2}, n+5\right) \times(K(Z, n+8))^{2} \\
& \times\left(K\left(Z_{2}, n+9\right)\right)^{2} \times K\left(Z_{2}, n+10\right) \times K\left(Z_{2}, n+11\right) \times(K(Z, n+12))^{3} .
\end{aligned}
$$

Let

$$
\begin{array}{ll}
f_{1}: M(S O(n)) \rightarrow K(Z, n), & f_{2}: M(S O(n)) \rightarrow K(Z, n+4), \\
f_{3}: M(S O(n)) \rightarrow K\left(Z_{2}, n+5\right), & f_{4}: M(S O(n)) \rightarrow K(Z, n+8), \\
f_{5}: M(S O(n)) \rightarrow K(Z, n+8), & f_{6}: M(S O(n)) \rightarrow K\left(Z_{2}, n+9\right),
\end{array}
$$

$$
\begin{array}{ll}
f_{\tau}: M(S O(n)) \rightarrow K\left(Z_{2}, n^{2}+9\right), & f_{8}: M(S O(n)) \rightarrow K\left(Z_{2}, n+10\right), \\
f_{9}: M(S O(n)) \rightarrow K\left(Z_{2}, n+11\right), & f_{10}: M(S O(n)) \rightarrow K(Z, n+12), \\
f_{11}: M(S O(n)) \rightarrow K(Z, n+12), & f_{12}: M(S O(n)) \rightarrow K(Z, n+12),
\end{array}
$$

be mappings defined by

$$
\begin{array}{ll}
f_{1}^{*}\left(\ell_{n}\right)=X^{n}, & f_{2}^{*}\left(\ell_{n+1}\right)=X^{n} P^{4}, \\
f_{3}^{*}\left(\ell_{n+5}\right)=W^{n} W^{3} W^{2}, & f_{4}^{*}\left(\ell_{n+8}\right)=X^{n} P^{s}, \\
f_{5}^{*}\left(\ell_{n+8}^{\prime}\right)=X^{n}\left(P^{4}\right)^{2}, & f_{6}^{*}\left(\ell_{n+9}\right)=W^{n} W^{5} W^{4}, \\
f_{7}^{*}\left(\ell_{n-9}^{\prime}\right)=W^{n} W^{3}\left(W^{2}\right)^{3}, & f_{8}^{*}\left(\ell_{n+10}\right)=W^{n} W^{6} W^{4}, \\
f_{9}^{*}\left(\ell_{n+11}\right)=W^{n} W^{5}\left(W^{2}\right)^{3}, & f_{10}^{*}\left(\ell_{n+12}\right)=X^{n} P^{12}, \\
f_{11}^{*}\left(\ell_{n+12}^{\prime 2}\right)=X^{n} P^{8} P^{4}, & f_{12}^{* /\left(\ell_{n+12}^{\prime \prime}\right)=X^{n}\left(P^{1}\right)^{3},}
\end{array}
$$

respectively, where $\iota_{n+i}, \iota_{n+i}^{\prime}$ and $\iota_{n+12}^{\prime \prime}$ are the fundamental classes of the corresponding Eilenberg-MacLane complexes.

We define $F: M(S O(n)) \rightarrow Y_{2}$ by $f \circ d$ where d is the diagonal map $M(S O(n)) \rightarrow(M(S O(n)))^{12}$ and $f=\prod_{i=1}^{12} f_{i}:(M(S O(n)))^{12} \rightarrow Y_{2}$.

Let us calculate the homomorphism F^{*} induced by F

$$
F^{*}: H^{*}\left(Y_{2}, Z_{2}\right) \rightarrow H^{*}\left(M(S O(n)), Z_{2}\right)
$$

We consider F^{*} for the dimension $i \leqq n+13$. It has been verified by Thom [18] that F^{*} is an isomorphism of $H^{i}\left(Y_{2}, Z_{2}\right)$ onto $H^{i}\left(M(S O(n)), Z_{2}\right)$ for $i \leqq n+7$. We can verify further that $F^{*}: H^{i}\left(Y_{2}, Z_{2}\right) \rightarrow H^{i}\left(M(S O(n)), Z_{2}\right)$ is an isomorphism into for $i \leqq n+13$, and a homomorphism onto for $i<n+13$ by continuing the analogous calculation as Thom ([18], Chapitre II, §8; §1.B, §1. D, §2.A). From this we deduce by Serre's C-theory (§1.C) that $F_{*}: \pi_{i}(M(S O(n))) \rightarrow \pi_{i}\left(Y_{2}\right)$ are C_{2}-isomorphisms for $i<n+13$ and C_{2}-onto for $i \leqq n+13$. Thus we have:

$$
\begin{aligned}
& \pi_{n+8}(M(S O(n))) \cong Z+Z, \bmod C_{2}, \\
& \pi_{n+9}(M(S O(n))) \cong Z_{2}+Z_{2}, \bmod C_{2} \\
& \pi_{n+10}(M(S O(n))) \cong Z_{2}, \bmod C_{2} \\
& \pi_{n+11}(M(S O(n))) \cong Z_{2}, \bmod C_{2}, \\
& \pi_{n+12}(M(S O(n))) \cong Z+Z+Z, \bmod C_{2} .
\end{aligned}
$$

Consequently we obtain
Proposition 1. The 2-primary components of the stable homotopy groups $\pi_{n+k}(M(S O(n)))$, for $8 \leqq k \leqq 12$, are:

$$
\begin{array}{ccccc}
0, & Z_{2}+Z_{2}, & Z_{2}, & Z_{2}, & 0 \\
\text { for } k=8, & 9, & 10, & 11, & 12,
\end{array}
$$

respectively.

C. p-primary components of $\pi_{n+k}(M(S O(\imath)))$

Let p be an odd prime. The calculations of the p-primary components of the stable homotopy groups $\pi_{n+k}(M(S O(n)))$ are a little more complicated than 2 -primary components.

There exists an aspherical fibre space A with the fibre $K(Z, n+2 p-2)$ over the base $K(Z, n+2 p-1)$ (Serre [12]). Consider a mapping φ of the complex $K(Z, n)$ into $K(Z, n+2 p-1)$ such that $\varphi^{*}\left(\ell_{n+2 p-1}\right)=\alpha_{p} \circ \operatorname{St}_{p}^{2 p-2}\left(\ell_{n}\right)$. We denote by $L(n, p)$ the fibre space induced from the fibre space A by the mapping φ. So $L(n, p)$ is the fibre space over the complex $K(Z, n)$ of fibre $K(Z, n+2 p-2)$; non zero homotopy groups of $L(n, p)$ are only π_{n} and $\pi_{n+2 p-2}$, both isomorphic to Z. The Eilenberg-MacLane invariant $\mathbf{k} \in H^{n+2 p-1}(Z, n ; Z)$ associated with $L(n, p)$ is $\alpha_{p} \circ \operatorname{St}_{p}^{2 p-2}\left(\ell_{n}\right)$.

Now we consider the cohomology $\bmod p$ of the complex $L(n, p)$ in dimension $<n+4 p-4$. It is necessaly to discuss the spectral sequence relative to the fibering of $L(n, p)$ over $K(Z, n)$. By the construction of $L(n, p),{ }_{6} n+2 p-2$ is mapped by the transgression τ (explicitly by $d_{n+2 p-1}$) to the class $S t_{p}^{2 p-1}\left(\ell_{n}\right)$. It follows that in total degree $\leqq n+4 p-5, E_{\infty}^{r, s}$ are zero except for the following terms:

$$
\begin{aligned}
& E_{\infty}^{0,0}=E_{2}^{0,0}=H^{0}\left(Z, n ; Z_{p}\right) \\
& E_{\infty}^{n, 0}=E_{2}^{n, 0}=H^{n}\left(Z, n ; Z_{p}\right) \\
& E_{\infty}^{n+2 p-2,0}=E_{2}^{n+2 p-2,0}=H^{n+2 p-2}\left(Z, n ; Z_{p}\right) .
\end{aligned}
$$

Consequently the cohomology groups $H^{i}\left(L(n, p), Z_{p}\right)$, for $i \leqq n+4 p-5$, admit only the following generators:
in dimension n,
in dimension $n+2 p-2$,

$$
\begin{aligned}
& \bar{\iota}_{n}=p^{*}\left(\iota_{n}\right), \\
& S t_{p}^{2 p-2}\left(\bar{\iota}_{n}\right)=p^{*}\left(\operatorname{St}_{p}^{2 p-2}\left(\iota_{n}\right)\right),
\end{aligned}
$$

where $p: L(n, p) \rightarrow K(Z, n)$ is the projection (cf. Serre [12], p. 456).
Let Y_{p} be the product of the complex $L(n, p)$ and the Eilenberg-MacLane complexes:

$$
\begin{aligned}
Y_{p}=L(& n, p) \times K(Z, n+4) \times \ldots \times(K(\dot{Z}, n+4 h))^{\pi(h)} \times \\
& \ldots \times(K(Z, n+2 p-6))^{\pi((p-31 / 2)} \times(K(Z, n+2 p-2))^{\pi((p-1) / 2)-1}
\end{aligned}
$$

Let us define a mapping $G: \dot{M}(S O(n)) \rightarrow Y_{p}$. There exists a mapping g of $M(S O(n))$ into $K(Z, n)$ such that $g^{*}\left(e_{n}\right)=X^{n}$. And there exists a mapping s of the $(n+2 p-2)$-skeleton of $K(Z, n)$ into $L(n, p)$ such that $s_{*}: \pi_{i}\left(K(Z, n)^{n+2 p-2}\right)$ $\rightarrow \pi_{i}(L(n, p))$ is an isomorphism onto for $i \leqq n+2 p-3$. So we have the mapping $s \circ g$ of the $(n+2 p-2)$-skeleton of $M(S O(n))$ into $L(n, p)$ such that $(s \circ g)\left(\bar{\zeta}_{n}\right)=X^{n}$. The obstruction to the extension of the mapping s is given by $\alpha_{p}{ }^{\circ} S_{p}^{2 f-2}\left(e_{n}\right)$, and therefore, the obstruction to the extension of the mapping $s \circ g$ is

$$
c(s \circ g)=g^{*}(c(s))=\alpha_{p} \circ S t_{t}^{2 p-2}\left(X^{\prime \prime}\right)
$$

Since $H^{*}(M(S O(n)), Z$) has no p-torsion, we have $c(s \circ g)=0$. So we can extend the mapping $s \circ \mathrm{~g}$ to a mapping $g: M(S O(n)) \rightarrow L(n, p)$ such that $\bar{g}^{*}\left(\bar{\iota}_{n}\right)=X^{n}$.

Now we introduce in the free base of $H^{n+1 i}(M(S O(n)), Z)$ the lexicographic order using the dimension of Pontrjagin classes:

$$
\begin{gathered}
X^{n} P^{1 h_{1}} P^{1 h_{2}} \ldots P^{: h_{r}}>X^{n} P^{1 k_{1}} P^{4 k_{2}} \ldots P^{1 k_{s}}, \\
\text { if } \quad h_{1} \geq h_{2} \geq \ldots \geq h_{r}, k_{1} \geq k_{2} \geq \ldots \geqslant k_{s}, \\
h_{1}=k_{1}, \ldots, h_{t}=k_{t}, h_{t+1}>k_{t+1} .
\end{gathered}
$$

For example in $H^{n+12}(M(S O(n)), Z)$, we have: $X^{n} P^{12}>X^{n} P^{8} P^{4}>X^{n}\left(P^{1}\right)^{3}$. We denote by $K_{i}(Z, n+4 h)$ the i-th copy of $K(Z, n+4 h)$ in the corresponding factor of the product space Y_{p}, and by $i_{\|+4 h}^{i}$ the fundamental class of $K_{i}(Z, n+4 h)$. There exist mappings

$$
\begin{aligned}
g_{h}^{i}: M(S O(n)) \rightarrow K_{i}(Z, n+4 h), & 0<h \leqq \begin{array}{c}
p-1 \\
2
\end{array}, \quad 1 \leqq i \leqq \pi(h), \\
& (h, i) \neq\left(\begin{array}{c}
p-1 \\
2
\end{array}, \quad \pi\binom{p-1}{2}\right),
\end{aligned}
$$

such that $\left(g_{h}^{i}\right)^{*}\left(\epsilon_{n+4 h}^{i}\right)=$ the i-th element of the free base of $H^{n+1 h}(M(S O(n)), Z)$.
Let $d: M(S O(n)) \rightarrow(M(S O(n)))^{\prime \prime \prime}, m=\sum_{n=1}^{\left(y^{\prime \prime-1 / 2}\right.} \pi(h)$, be the diagonal map and $\bar{G}:(M(S O(n)))^{m} \rightarrow Y_{p}$ be

$$
\begin{aligned}
\bar{G}=g \times \Pi g_{h}^{j}, & 0<h \leqq \begin{array}{l}
p-1 \\
2
\end{array}, \quad 1 \leqq i \leqq \pi(h), \\
& (h, i) \neq\left(\begin{array}{c}
p-1, \\
2
\end{array}, \pi\binom{p-1}{2}\right) .
\end{aligned}
$$

We define $G: M(S O(n)) \rightarrow Y_{p}$ by the composed mapping $\bar{G} \circ d$.
We will calculate the homomorphism G^{*} induced by G

$$
G^{*}: H^{n+j}\left(Y_{p}, Z_{p}\right) \rightarrow H^{n+j}\left(M(S O(n)), Z_{p}\right), \text { for } j \leqq 2 p+1
$$

In the first place we consider $G^{*}\left(\operatorname{St}_{p}^{2 b-2}\left(\bar{\zeta}_{n}\right)\right)$:

$$
\begin{aligned}
& G^{*}\left(S t_{\beta}^{2 p-2}\left(\bar{l}_{n}\right)\right)=S t_{p}^{2 p-2}\left(G^{*}\left(\bar{i}_{n}\right)\right)=S t_{p}^{2 p-2}\left(X^{n}\right) \\
& \quad=X^{n} \sum\left(x_{1}^{2}\right)^{(p-1) / 2}=X^{n}\left\{\left(\sum x_{1}^{2}\right)^{(p-1 / 2}+Q\left(x_{1}^{2}, x_{2}^{2}, \ldots, x_{n / 2}^{2}\right)\right\}
\end{aligned}
$$

where $Q\left(x_{1}^{2}, x_{2}^{2}, \ldots, x_{n / 2}^{2}\right)$ is a polynomial of elementary symmetric functions of x_{i}^{2} which does not contain the term $\left(\sum x_{1}^{2}\right)^{(p-1) / 2}(c f . \S 1 . D)$. Now we have the next table:

$$
\begin{aligned}
& j=0, \quad G^{*}\left(\bar{\iota}_{n}\right)=X^{n}, \\
& j=4 h, 0<h<\begin{array}{c}
p-1 \\
2
\end{array}, G^{*}\left(e_{n+4}^{i}\right)=\text { the } i \text {-th base element of } \\
& H^{n+4 h}\left(M(S O(n)), Z_{p}\right), \\
& \text { for } 1 \leqq i \leqq \pi(h) \text {, } \\
& j=2 p-2, \quad G^{*}\left(e_{n+2 p-2}^{i}\right)=\text { the } i \text {-th base element of } \\
& H^{n+2 p-2}\left(M(S O(n)), Z_{p}\right), \\
& \text { for } 1 \leqq i<\pi\left(\frac{p-1}{2}\right) \text {, } \\
& G^{*}\left(S t_{p}^{2 p-2}\left(\bar{\iota}_{n}\right)\right)=X^{n}\left(P^{4}\right)^{(p-1) / 2}+\text { linear combi- } \\
& \text { nation of other base elements. }
\end{aligned}
$$

We know that the classes of $H^{k}\left(Y_{p}, Z_{p}\right)$ and $H^{k}\left(M(S O(n)), Z_{p}\right)$, which appear in the table, form bases of $H^{k}\left(Y_{p}, Z_{p}\right)$ and of $H^{k}\left(M(S O(n)), Z_{p}\right)$ respectively for $k \leqq n+2 p+1$; therefore we can easily verify that $G^{*}: H^{k}\left(Y_{p}, Z_{p}\right)$ $\rightarrow H^{k}\left(M(S O(n)), Z_{p}\right)$ is an isomorphism onto for $k \leqq n+2 p+1$. By Serre's C-theory we have that $G^{*}: \pi_{k}(M(S O(n))) \rightarrow \pi_{k}\left(Y_{p}\right)$ is C_{p}-isomorphism for $k<n+2 p+1$ and C_{p}-onto for $k \leqq n+2 p+1$. Thus we have:

$$
\begin{aligned}
& \pi_{n+k}(M(S O(n))) \cong 0, \bmod C_{p}, \text { if } k \text { 末 } 0(4), k \leqq 2 p, \\
& \left.\pi_{n+4 h}(M(S O(n)))\right) \cong \underbrace{Z+Z+\ldots+Z}_{\pi(h)}, \bmod C_{p}, \text { if } 2 h<p .
\end{aligned}
$$

Consequently we obtain
Proposition 2. The p-primary components of the stable homotopy groups $\pi_{n+k}(M(S O(n)))$ are zero if $k \leqq 2 p$, where p is an odd prime.

As a special case
Proposition 3. Let p be a prime \geq 7. ' The p-primary components of the stable homotopy groups $\pi_{n+k}(M(S O(n)))$ are zero for $k \leqq 14$,
D. 5-primary components of $\pi_{n+k}(M(S O(n)))$

Now we consider two Postnikov complexes $L(n, 5)$ and $L(n+4,5)$ defined above. As is mentioned in $\S 2$. C, the cohomology groups $H^{i}\left(L(n, 5), Z_{\jmath}\right)$ for $i \leqq n+15$ admit only the following generators:
in dimension n,

$$
\bar{\iota}_{n}=p_{1}^{*}\left(\iota_{n}\right)
$$

in dimension $n+8$,

$$
S t_{5}^{8}\left(\bar{\iota}_{n}\right)=p_{1}^{*}\left(S t_{5}^{8}\left(\iota_{n}\right)\right)
$$

where $p_{1}: L(n, 5) \rightarrow K(Z, n)$ is the projection of $L(n, 5)$. And we know also that the cohomology groups $H^{i}\left(L(n+4,5), Z_{5}\right)$ for $i \leqq n+15$ admit only the following generators:
in dimension $n+4, \quad \bar{\iota}_{n+4}=p_{2}^{*}\left(\ell_{n+4}\right)$,
in dimension $n+12, \quad S t_{5}^{8}\left(\bar{\iota}_{n+4}\right)=p_{2}^{*}\left(S t_{5}^{8}(!n+4)\right)$,
where $p_{2}: L(n+4,5) \rightarrow K(Z, n+4)$ is the projection.
Let Y_{5} be the product of $L(n, 5), L(n+4,5)$ and the Eilenberg-MacLane complexes:

$$
Y_{5}=L(n, 5) \times L(n+4,5) \times K(Z, n+8) \times(K(Z, n+12))^{2}
$$

Let us define a mapping $H: M(S O(n)) \rightarrow Y_{5}$. By the same method as in $\S 2$. C, we can find a mapping h_{1} of $M(S O(n))$ into $L(n, 5)$ such that $h_{1}^{*}\left(\bar{\iota}_{n}\right)$ $=X^{n}$, and a mapping h_{2} of $M(S O(n))$ into $L(n+4,5)$ such that $h_{2}^{*}\left(\imath_{n+4}\right)$ $=X^{n} P^{4}$. On the other hand, there exist mappings

$$
\begin{array}{lll}
h_{3}: M(S O(n)) \rightarrow K(Z, n+8), & \text { such that } & h_{3}^{*}\left(\ell_{n+8}\right)=X^{n} P^{8} \\
h_{1}: M(S O(n)) \rightarrow K(Z, n+12), & \text { such that } & h_{4}^{*}\left(\ell_{n+12}\right)=X^{n} P^{8} P^{4} \\
h_{5}: M(S O(n)) \rightarrow K(Z, n+12), & \text { such that } & h_{5}^{*}\left(\iota_{n+12}^{\prime}\right)=X^{n}\left(P^{4}\right)^{3}
\end{array}
$$

We define $H: M(S O(n)) \rightarrow Y_{5}$ to be $h \circ d$, where $\left.d: M(S O(n)) \rightarrow M(S O(n))\right)^{5}$ is the diagonal map, and

$$
h=\prod_{i=1}^{5} h_{i}:(M(S O(n)))^{5} \rightarrow Y_{5}
$$

We will calculate the homomorphism H^{*} induced by H,

$$
\begin{aligned}
& H^{*}: H^{n+i}\left(Y_{5}, Z_{5}\right) \rightarrow H^{n+i}\left(M(S O(n)), Z_{5}\right), \text { for } i \leqq 15 \\
& i=0, \quad H^{*}\left(\bar{\iota}_{n}\right)=X^{n} \\
& i=4, \quad H^{*}\left(\tau_{n+4}\right)=X^{n} P^{4}
\end{aligned}
$$

$$
\begin{array}{ll}
i=8, & H^{*}\left(S t_{5}^{8} \iota_{n}\right)=3 X^{n} P^{4}+X^{n}\left(P^{4}\right)^{2}, \\
& H^{*}\left(\ell_{n+8}\right)=X^{n} P^{8}, \\
i=12, & H^{*}\left(S t_{5}^{8} \iota_{n+4}\right)=X^{n} P^{12}+2 X^{n} P^{8} P^{4}+3 X^{n}\left(P^{4}\right)^{3}, \\
& H^{*}\left(\ell_{n+12}\right)=X^{n} P^{8} P^{4}, \\
& H^{*}\left(\ell_{n+12}^{\prime}\right)=X^{n}\left(P^{4}\right)^{3},
\end{array}
$$

For the present section $2 p-2=8$, so the classes of $H^{*}\left(Y_{5}, Z_{5}\right)$ and $H^{*}\left(M(\mathrm{~S} O(n)), Z_{5}\right)$ written in the table form bases of $H^{i}\left(Y_{5}, Z_{5}\right)$ and $H^{i}\left(M(S O(n)), Z_{5}\right)$. Therefore we can easily verify that $H^{*}: H^{i}\left(Y_{5}, Z_{5}\right)$ $\rightarrow H^{i}\left(M(S O(n)), Z_{j}\right)$ is an isomorphism onto for $i \leqq n+15$. By the C-theory we have that $H_{*}: \pi_{i}(M(S O(n))) \rightarrow \pi_{i}\left(Y_{5}\right)$ is C_{5}-isomorphism for $i<n+15$, and C_{5}-onto for $i \leqq n+15$; namely

$$
\begin{aligned}
& \pi_{n+8}(M(S O(n))) \cong Z+Z, \bmod C_{5} \\
& \pi_{n+12}(M(S O(n))) \cong Z+Z+Z, \bmod C_{5} \\
& \pi_{n+i}(M(S O(n))) \cong 0, \bmod C_{5}, \text { for } 8<i<12,12<i<15
\end{aligned}
$$

Thus we have
Proposition 4. The 5-primary components of the stable homotopy groups $\pi n+i(M(S O(n)))$, for $8 \leqq i \leqq 14$, are all zero.
E. 3-primary components of $\pi_{n+k}(\boldsymbol{M}(\mathbf{S O}(\boldsymbol{n})))$

The calculation of the 3 -primary components of the stable homotopy groups $\pi_{n+k}(M(S O(n)))$ is the most complicated.

In the first place we consider the cohomology groups mod 3 of the Postnikov complex $L(n, 3)$ in the dimension $\leqq n+15$. We discuss the spectral sequence $\bmod 3$ relative to the fibering of $L(n, 3)$ over $K(Z, n)$. By the construction of $L(n, 3)$ the fundamental class s $_{n+1}$ of fibre is mapped by the transgression τ (explicitly d_{n+5}) onto the class $S t_{3}^{5}\left(\epsilon_{n}\right)$. As the reduced powers commute with the transgression, the calss $S t_{3}^{4}\left(e_{n+5}\right)$ of fibre is mapped by τ to the class $S t_{3}^{4} \circ S t_{3}^{5}\left(\ell_{n}\right)=S t_{3}^{9}\left(\ell_{n}\right)$ and the class $S t_{3}^{8}\left(\ell_{n+5}\right)$ to the class $S t_{3}^{8} \circ S t_{3}^{5}\left(\ell_{n}\right)$ $=S t_{3}^{13}\left(\iota_{n}\right)$ (cf. §1.A). It follows that in total degree $\leqq n+15, E_{\infty}^{r, s}$ are zero except for the following terms:

$$
\begin{array}{ll}
E_{\infty}^{0,0}=E_{2}^{0,0}=H^{0}\left(Z, n ; Z_{3}\right), & E_{\infty}^{n, 0}=E_{2}^{n, 0}=H^{n}\left(Z, n ; Z_{3}\right), \\
E_{\infty}^{n+4,0}=E_{2}^{n+4,0}=H^{n+4}\left(Z, n ; Z_{3}\right), & E_{\infty}^{n+8,0}=E_{2}^{n+8,0}=H^{n+8}\left(Z, n ; Z_{3}\right), \\
E_{\infty}^{0, n+9}=E_{2}^{0, n+9}=H^{n+9}\left(Z, n+4 ; Z_{3}\right), & E_{\infty}^{n+1,, 0}=E_{2}^{n+12,0}=H^{n+12}\left(Z, n ; Z_{3}\right), \\
E_{\infty}^{0, n+13}=E_{2}^{0, n+13}=H^{n+13}\left(Z, n+4 ; Z_{3}\right) . &
\end{array}
$$

Consequently the cohomology groups $H^{2}\left(L(n, 3), Z_{3}\right)$, for $i \leqq n+15$, admit only the following generetors:
$\begin{array}{ll}\text { in dimension } n, & \bar{\iota}_{n}=p_{1}^{*}\left(\iota_{n}\right), \\ \text { in dimension } n+4, & S t_{3}^{4}\left(\bar{\iota}_{n}\right), \\ \text { in dimension } n+8, & S t_{3}^{8}\left(\bar{\iota}_{n}\right), \\ \text { in dimension } n+9, & \left(i_{1}^{*}\right)^{-1} \circ S t_{3}^{5}\left(\ell_{n-4}\right), \\ \text { in dimension } n+12, & S t_{3}^{12}\left(\bar{l}_{n}\right), \\ \text { in dimension } n+13, & \left(i_{1}^{*}\right)^{-1} \circ S t_{3}^{9}\left(\ell_{n+1}\right),\end{array}$
where p_{1} is the projection of $L(n, 3)$ into $K(Z, n)$ and $i_{1}: K(Z, n+4) \rightarrow L(n, 3)$ is the injection of fibre in the total space (cf. Serre [12], p. 456).

We need a certain class to construct the fibre space over $L(n, 3)$ which is indispensable to our purpose.

Lemma 1. There exists an integral cohomology class $u \in H^{n+9}(L(n, 3), Z)$ such that
i) $\rho_{3}(u)=\left(i_{1}^{*}\right)^{-1} \circ S t_{3}^{5}\left(\ell_{n+1}\right)$,
ii) $3^{m} u=0$, for a certain integer m,
where ρ_{3} is the reduction $\bmod 3$.
Proof. The following diagram is commutative:

$$
\begin{aligned}
& H^{n+9}(Z, n+4 ; Z) \stackrel{i_{1}^{*}}{\leftrightarrows} H^{n+9}(L(n, 3), Z) \\
& H^{n+9}\left(Z, n+4 ; Z_{3}\right) \stackrel{\rho_{3}}{\stackrel{i_{1}^{*}}{\leftrightarrows}} H^{n+9}\left(L(n, 3), Z_{3}\right) .
\end{aligned}
$$

So it is sufficient to show that $\operatorname{St}_{3}^{5}\left(\ell_{n+4}\right) \in H^{n+9}\left(Z, n+4 ; Z_{3}\right)$ is the image by $\rho_{3} \circ i_{1}^{*}$ of a class $u \in H^{n+9}(L(n, 3), Z)$ satisfying the condition ii). Now we factorize the homomorphism i_{1}^{*} with use of the spectral sequence associated with the fibering $L(n, 3)$:

$$
\begin{aligned}
H^{n+9}(Z, n+4 ; Z) & =E_{2}^{0, n+9}=E_{n+10}^{0, n+9} \longleftarrow E_{n}^{0, n+9}=E_{\infty}^{0, n+9} \\
& =D^{0, n+9} / D^{1, n+8}=D^{0, n+9} / E_{\infty}^{n+9,0} \longleftarrow \stackrel{I}{4} D^{0, n+9}=H^{n+9}(L(n, 3), Z),
\end{aligned}
$$

where λ is an isomorphism into and μ is a homomorphism onto (cf. Serre [12], p. 456). The term $E_{n+11}^{0, n+9}$ is the subgroup of $E_{n+10}^{0, n+9}$ consisting of d_{n+10}-cocycles:

$$
E_{n+10}^{0, n+9} \xrightarrow{d_{n+10}} E_{n+10}^{n+10,0}=E_{2}^{n+10,0}=H^{n+10}(Z, n ; Z) .
$$

We know $H^{n+10}(Z, n ; Z)$ have no component but 2-primary one, and therefore for any element x of $E_{n+10}^{0, n+9}, 2^{h} x$ is a d_{n+10} cocycle and belongs to $E_{n+11}^{0, n+9}$ for a certain integer h. Consequently we can easily find an integer $i>0$ and an element u^{\prime} such that
a) $2^{i} \cdot \alpha_{3} \circ S t_{3}^{4}\left(e_{n+4}\right)=\lambda\left(u^{\prime}\right), \quad u^{\prime} \in E_{n+11}^{0, n+9}$,
b) $2^{i} \equiv 1, \bmod 3$.

We know that $H^{n+9}(Z, n+4 ; Z)$ has no components but 2- and 3-primary ones, and $H^{n+9}(L(n, 3), Z)$ has no components but 2 -, 3 -, and 5 -primary ones. Since $3 \lambda\left(u^{\prime}\right)=0$, we have $3 u^{\prime}=0$, therefore we can find a class $u \in H^{n+9}(L(n, 3), Z)$ such that
i) $\mu(u)=u^{\prime}$,
ii) $3^{m} u=0$, for a certain integer m,

Thus the lemma is proved.
Let A be an aspherical fibre space over the complex $K(Z, n+9)$ of fibre $K(Z, n+8)$. There exists a mapping φ of the complex $L(n, 3)$ in $K(Z, n+9)$ such that $\varphi^{*}\left({ }_{{ }_{n+9}}\right)=u$. We denote by K_{3} the fibre space induced from the fibre space A by the mapping φ. The non-zero homotopy groups of K_{3} are only π_{n}, π_{n+4} and π_{n+8}, all isomorphic to Z.

Now we consider the spectral sequence $\bmod 3$ relative to the fibering of K_{3} over $L(n, 3)$. By the construction of K_{3} the fundamental class ε_{n+8} of fibre is mapped by the transgression τ (explicitly d_{n+9}) onto the class ($\left.i_{1}^{*}\right)^{-1} \circ S t_{3}^{5}\left(\ell_{n+4}\right)$, which is the generator of $H^{n+9}\left(L(n, 3), Z_{3}\right)$ (Lemma 1).

This diagram is commutative and the vertical homomorphisms are both isomorphisms onto. Consequently $\operatorname{St}_{3}^{4}\left(e_{n+8}\right)$ is mapped by the transgression to

$$
\begin{aligned}
S t_{3}^{4} \circ\left(i_{1}^{*}\right)^{-1} \circ S t_{3}^{5}\left(\ell_{n+1}\right) & =\left(i_{1}^{*}\right)^{-1} \circ S t_{3}^{4} \circ S t_{3}^{5}\left(\ell_{n+8}\right) \\
& =\left(i_{1}^{*}\right)^{-1} \circ S t_{3}^{9}\left(\ell_{n+8}\right) .
\end{aligned}
$$

It follows that in total degree $\leqq n+15, E_{\infty}^{r, s}$ are zero except for the following terms :

$$
\begin{aligned}
& E_{\infty}^{0,0}=E_{2}^{0,0}=H^{0}\left(L(n, 3), Z_{3}\right), \quad E_{\infty}^{n, 0}=E_{2}^{n, 0}=H^{n}\left(L(n, 3), Z_{3}\right), \\
& E_{\infty}^{n+4,0}=E_{2}^{n+4,0}=H^{n+1}\left(L(n, 3), Z_{3}\right), \\
& E_{\infty}^{n+8,0}=E_{2}^{n+8,0}=H^{n+s}\left(L(n, 3), Z_{3}\right), \\
& E_{\infty}^{n+12,0}=E_{2}^{n+12,0}=H^{n+12}\left(L(n, 3), Z_{3}\right), \\
& E_{\infty}^{0, n+13}=E_{2}^{0, n+13}=H^{n+13}\left(Z, n+8 ; Z_{3}\right) .
\end{aligned}
$$

Consequently the cohomology groups $H^{i}\left(K_{3}, Z_{3}\right)$ for $i \leqq n+15$ admit only the following generators:

where p_{2} is the projection of the fibre space K_{3} and $i_{2}: K(Z, n+8) \rightarrow K_{3}$ is the injection of fibre in the total space K_{3}.

To eliminate the cohomology groups of dimension $n+13$, we will construct a fibre space over K_{3} of fibre $K(Z, n+12)$.

Lemma 2. There exists an integral cohomology class $v \in H^{n+13}\left(K_{3}, Z\right)$ such that
i) $3^{m} v=0$, for an integer m,
ii) $\rho_{3}(v)=\left(i_{2}^{*}\right)^{-1} \circ S t_{3}^{5}\left(e_{n+8}\right)$.

Proof. We know that $H^{n+14}(L(n, 3), Z)$ has no components but 2 -primary one, that $H^{n+13}(Z, n+8 ; Z)$ has no components but 2 - and 3 -primary ones, and that $H^{n+13}\left(K_{3}, Z\right)$ has no components but 2-, 3-, 5- and 7-primary ones. Therefore we can prove Lemma 2 by the same method as Lemma 1.

Let B be an aspherical fibre space over $K(Z, n+13)$ of fibre $K(Z, n+12)$. There exists a mapping ψ of the complex K_{3} in $K(Z, n+13)$ such that $\psi^{*}\left({ }_{\left(e_{n+13}\right)}\right.$ $=v$. We denote by K_{1} a fibre space induced from the fibre space B by the mapping ψ. The non zero homotopy groups of K_{4} are only $\pi_{n}, \pi_{n+4}, \pi_{n+8}$ and π_{n+12}, all isomorphic to Z.

Now we consider the spectral sequence mod 3 relative to the fibering of K_{1} over K_{3}. By the construction of K_{4} the fundamental class ${ }^{n} n+12$ of fibre is mapped by the transgression : (explicitly d_{n+13}) onto the class $\left(i_{2}^{*}\right)^{-1} \circ S t_{3}^{5}(!n+8)$
(Lemma 2). It follows that in total degree $\leqq n+15, E_{\infty}^{r, s}$ are zero except for the following terms:

$$
\begin{array}{ll}
E_{\infty}^{0,0}=H^{0}\left(K_{3}, Z_{3}\right), & E_{\infty}^{n, 0}=H^{n}\left(K_{3}, Z_{3}\right), \\
E_{\infty}^{n+4,0}=H^{n+4}\left(K_{3}, Z_{3}\right), & E_{\infty}^{n+8,0}=H^{n+8}\left(K_{3}, Z_{3}\right), \\
E_{\infty}^{n+12,0}=H^{n+12}\left(K_{3}, Z_{3}\right) . &
\end{array}
$$

Consequently the cohomology groups $H^{i}\left(K_{4}, Z_{3}\right)$ for $i \leqq n+15$ admit only the following generators:

in dimension n,	$\tilde{\imath}_{n}=p_{3}^{*}\left(\bar{\tau}_{n}\right)$,
in dimension $n+4$,	$S_{3}^{4}\left(\tau_{n}\right)$,
in dimension $n+8$,	$S t_{3}^{8}\left(\tilde{\imath}_{n}\right)$,
in dimension $n+12$,	$S t_{3}^{12}\left(\tilde{\imath}_{n}\right)$,

where p_{3} is the projection of K_{4}.
On the other hand, as is shown in $\S 2 . \mathbf{C}$, the cohomology groups $H^{i}\left(L(n+8,3), Z_{3}\right)$ of the Postnikov complex $L(n+8,3)$ for $i \leqq n+15$ admit only the following generators:
$\begin{array}{ll}\text { in dimension } n+8, & \bar{\iota}_{n+8}=p_{4}^{*}\left(\ell_{n+8}\right), \\ \text { in dimension } n+12, & S t_{3}^{4}\left(\bar{\iota}_{n+8}\right),\end{array}$
where p_{4} is the projection of the fibre space $L(n+8,3)$ over $K(Z, n+8)$.
Let Y_{3} be the product of $K_{4}, L(n+8,3)$ and $K(Z, n+12)$. Let us define a mapping $F: M(S O(n)) \rightarrow Y_{3}$. As is shown in $\S 2$. C, we can find a mapping f_{1} of $M(S O(n))$ into $L(n, 3)$ such that $f_{1}^{*}\left(\bar{f}_{n}\right)=X^{n}$. We know that there exists a mapping t of the $(n+8)$-skeleton of $L(n, 3)$ into K_{3} such that $t_{*}: \pi_{i}\left(L(n, 3)^{n+8}\right)$ $\rightarrow \pi_{i}\left(K_{3}\right)$ is an isomorphism onto for $i<n+8$. So we obtain the mapping $t \circ f_{1}$ of the $(n+8)$-skeleton of $M(S O(n))$ into K_{3} such that $\left(t \circ f_{1}\right)^{*}(\bar{c})=X^{n}$. The obstruction to the extension of the mapping $t \circ f_{1}$ is given by $f_{1}^{*}(u)$. Since $H^{*}(M(S O(n)), Z)$ has no 3 -torsion, we have $f_{1}^{*}(u)=0$ (see Lemma 1). Now we have the mapping f_{2} of $M(S O(n))$ into K_{3} such that $f_{2}^{*}\left(\bar{\tau}_{n}\right)=X^{n}$. In virture of Lemma 2, we can find a mapping f_{3} of $M(S O(n))$ into K_{4} such that $f_{3}^{*}\left(\tilde{\tau}_{n}\right)$ $=X^{n}$ by the same method as above. Similarly we can find a mapping f_{i} of $M(S O(n))$ into $L(n+8,3)$ such that $f_{4}^{*}\left(\bar{\zeta}_{n+8}\right)=X^{n}\left(P^{4}\right)^{2}$. On the other hand there exists a mapping f_{5} of $M(S O(n))$ into $\cdot K(Z, n+12)$ such that $f_{5}^{*}\left(\ell_{n+12}\right)$ $=X^{n}\left(P^{4}\right)^{3}$. Now we define a mapping $F: M(S O(n)) \rightarrow Y_{3}$ to be the composition
of the diagonal map d and $f_{3} \times f_{4} \times f_{5}$:

$$
M(S O(n)) \underset{d}{\longrightarrow}(M(S O(n)))^{3} \xrightarrow[f_{3} \times f f_{4} \times f_{5}]{\longrightarrow} Y_{3} .
$$

We will calculate the homomorphism F^{*} induced by F

$$
\begin{array}{ll}
F^{*}: H^{i}\left(Y_{3},\right. & \left.Z_{3}\right) \rightarrow H^{i}\left(M(S O(n)), Z_{3}\right), \quad \text { for } \quad i \leqq n+15 . \\
i=n, & F^{*}\left(\tau_{n}\right)=X^{n}, \\
i=n+4, & F^{*}\left(S t_{3}^{4}\left(\tau_{n}\right)\right)=X^{n} P^{4}, \\
i=n+8, & F^{*}\left(S t_{3}^{8}\left(\tau_{n}\right)\right)=X^{n} P^{s}, \quad F^{*}\left(\iota_{n+8}\right)=X^{n}\left(P^{4}\right)^{2}, \\
i=n+12, & F^{*}\left(S t_{3}^{12}\left(\tau_{n}\right)\right)=X^{n} P^{12}, \\
& F^{*}\left(S t_{3}^{4}\left(\bar{\iota}_{n+8}\right)\right)=X^{n} P^{8} P^{4}+2 X^{n}\left(P^{4}\right)^{3}, \\
& F^{*}\left(\iota_{n+12}\right)=X^{n}\left(P^{4}\right)^{3} .
\end{array}
$$

For the present case $2 p-2=4$, so the classes of $H^{i}\left(Y_{3}, Z_{3}\right)$ and $\left.H^{i}(M i S O(n)), Z_{3}\right)$ written above form bases of $H^{i}\left(Y_{3}, Z_{3}\right)$ and $H^{i}\left(M(S O(n)), Z_{3}\right)$ for $i \leqq n+15$. Therefore we can verify that $F^{*}: H^{i}\left(Y_{3}, Z_{3}\right) \rightarrow H^{i}\left(M(S O(n)), Z_{3}\right)$ is an isomorphism onto for $i \leqq n+15$. By Serre's C-theory, we obtain that $F_{*}: \pi_{i}(M(S O(n))) \rightarrow \pi_{i}\left(Y_{3}\right)$ is C_{3}-isomorphism for $i<n+15$ and C_{3}-onto for $i \leqq n+15$. This implies

$$
\begin{aligned}
& \pi_{n+8}(M(S O(n))) \cong Z+Z, \quad \bmod C_{3} \\
& \pi_{n+12}(M(S O(n))) \cong Z+Z+Z, \quad \bmod C_{3} \\
& \pi_{n+i}(M(S O(n))) \cong 0, \quad \bmod C_{3} \text { for } 8<i<12,12<i<15 .
\end{aligned}
$$

Thus we have
Proposition 5. The 3-primary components of the stable homotopy groups $\pi_{n+i}(M(S O(n)))$, for $8 \leqq i \leqq 14$, are all zero.

F. Results

Here we state the results obtained in this section $\S 2$.
Theorem 1. i) The stable homotopy groups $\pi_{n+i}(M(S O(n)))$ are for $8 \leqq i \leqq 14$:

$$
\begin{aligned}
& \pi_{n+8}=Z+Z, \quad \pi_{n+9}=Z_{2}+Z_{2}, \quad \pi_{n+10}=Z_{2}, \\
& \pi_{n+11}=Z_{2}, \quad \pi_{n+12}=Z+Z+Z, \quad \pi_{n+13}=2 \text {-group, } \\
& \pi_{n+14}=2-\text { group } .
\end{aligned}
$$

ii) Let p be an odd prime. For $i \leqq 2 p, \pi_{n+i}(M(S O(n)))$ has no p-primary components.
$\S 3$. The groups of cobordism Ω^{k}
In this section we determine the groups of cobordism Ω^{k} for $8 \leqq k \leqq 12$ and discuss some problems related to the cobordism classes.

All manifolds considered are to be compact, orientable and differentiable, unless otherwise stated.

A. Thom algebra

Here we state briefly the definition of Thom algebra Ω and the central results of Thom [18] concerning Ω.

We define the sum $V^{n}+W^{n}$ of two disjoint oriented manifolds V^{n} and W^{n} of the same dimension as the union of V^{n} and W^{n}. The sum is oriented in natural way. For an oriented manifold V^{n} an oriented manifold $-V^{n}$ is defined as follows: $-V^{n}$ is identical with V^{n} as manifold and has the orientation opposite to that of V^{n}. The product $V^{n} \times W^{m}$ of two oriented manifolds V^{n}, W^{m} of any dimensions is the oriented cartesian product,

An oriented manifold V^{n} is bounded, when there exists an oriented manifold with boundary, X^{n+1}, whose oriented boundary (with the orientation and differentiable structure induced from X^{n+1}) is identical with the given oriented manifold V^{n}. Two oriented manifolds V^{n} and W^{n} are called "cobordantes" when $V^{n}+\left(-W^{n}\right)$ is bounded. This is an equivalence relation and compatible with the operation,+- and x defined above. The equivalence classes of n dimensional oriented manifolds form an additive group Ω^{n} under the operation + and - , and its null element is the class of bounded manifolds. We call Ω^{n} the group of cobordism of dimension n. The direct sum $\Omega=\sum_{n=0}^{\infty} \Omega^{n}$ becomes an anticommutative graded algebra under the operation,+- and \times defined above.

The groups of cobordism Ω^{k} are related to the stable homotopy groups of Thom complex $M(S O(n))$ by Thom [18].

Theorem. The groups of cobordism Ω^{k} of dimension k are isomorphic to the stable homotopy groups of Thom complex $M(S O(n))$:

$$
\Omega^{k}=\pi_{n+k}(M(S O(n))), \quad \text { for } \quad k<n .
$$

The following results of Thom [18] are founded on this theorem.

1) The groups Ω^{k} are finite for $k \neq 0, \bmod 4$. The group $\Omega^{4 i}$ is the direct sum of $\pi(i)$ free cyclic groups and a finite group.
2) For $k<8$, the groups Ω^{k} are:

$$
\begin{array}{ll}
\Omega^{0}=Z, & \Omega^{1}=\Omega^{2}=\Omega^{3}=0 \\
\Omega^{4}=Z, & \Omega^{5}=Z_{2}, \quad \Omega^{6}=\Omega^{i}=0
\end{array}
$$

B. The groups of cobordism Ω^{k}

Thom's theorem and Theorem 1 give
Theorem 2. i) For $8 \leqq k \leqq 14$, the groups Ω^{k} are:

$$
\begin{array}{llll}
\Omega^{9}=Z+Z, & \Omega^{9}=Z_{2}+Z_{2}, & \Omega^{10}=Z_{2}, & \Omega^{11}=Z_{2}, \\
\Omega^{12}=Z+Z+Z, & \Omega^{13}=2 \text {-group }, & \Omega^{14}=2-\text { group } . &
\end{array}
$$

ii) Let p be an odd prime. The p-primary components of Ω^{k} are zero for $k \leqq 2 p$.

Generators of Ω^{k}.
We denote by $P C(i)$ the complex i-dimensional projective space, and by $P(m, n)$ the $(m+2 n)$-manifold defined by Dold [6]. We know that $P(m, n)$ is orientable if and only if $m \neq n, \bmod 2$ or $m=0$ (cf. Dold [6], C). We denote by $\left[V^{n}\right]$ the element of Ω which contains an n-manifold V^{n}.
i) Generators of Ω^{s} are given by $[P C(4)]$ and $[P C(2) \times P C(2)]$.
ii) Generators of Ω^{9} are given by $[P(1,4)]$ and $[P(1,2) \times P C(2)]$, where [$P(1,2)]$ is the generator of $\Omega^{5}=\mathfrak{N}^{5}=Z_{2}$ given by $\mathrm{Wu}[19]$.
iii) The generator of Ω^{10} is $[P(1,2) \times P(1,2)]$.
iv) The generator of Ω^{11} is $[P(3,4)]$.
v) Generators of Ω^{12} are given by $[P C(6)],[P C(4) \times P C(2)]$ and $\left[(P C(2))^{3}\right]$.

As is shown above, Ω^{s} and Ω^{12} are free groups, therefore i) and v) are trivial (Thom [18], Chapitre IV, §8); ii)-iv) are the direct consequences of Theorem 2 and Dold [6] (Satz 3 and H).

Remark. Among the groups of cobordism Ω^{k} there exist no free groups but Ω^{4}, Ω^{8} and Ω^{12}, because for $i \geqslant 4, \Omega^{4 i}$ has 2 -torsion $\left[V^{4 i}\right]$, where

$$
V^{4 i}=P C(2 i-8) \times P(3,4) \times P(1,2) .
$$

Now we consider the problem of Steenrod: What algebraic conditions are necessary and sufficient for an orientable manifold V^{n} to be bounded? (Eilenberg [7], Problem 26). Rohlin and Thom have given partial answers for this problem ([10], [11], [18], Chapitre IV, §8) ;
i) V^{n} is always bounded for $n=1,2,3,6,7$;
ii) V^{4} is bounded if and only if its index $\tau\left(V^{4}\right)$ is zero.
iii) V^{5} is bounded if and only if its Stiefel-Whitney number $W^{3} W^{2}$ is zero.

We apply Theorem 2 to this problem.
Theorem 3. i) An 8-manifold is bounded if and only if all its Pontrjagin numbers are zero.
ii) A 9-manifold is bounded if and only if both its Stiefel-Whitney numbers $W^{3}\left(W^{2}\right)^{3}$ and $W^{7} W^{2}$ are zero.
iii) A 10-manifold is bounded if and only if its Stiefel-Whitney number $W^{6} W^{4}$ is zero.
iv) An 11-manifold is bounded if and only if its Stiefel-Whitney number $\left(W^{3}\right)^{3} W^{2}$ is zero.
v) A 12-manifold is bounded if and only if all its Pontrjagin numbers are zero.

Lemma 1. The Stiefel-Whitney class ${ }^{3)}$ of the manifold $P(m, n)$ is given by

$$
W(m, n)=(1+c)^{m}(1+c+d)^{n+1}, \quad \text { with } \quad c^{m+1}=0, \quad d^{n+1}=0
$$

where c and d are 1- and 2-dimensional cohomology classes mod 2 respectively, and they generate $H^{*}\left(P(m, n), Z_{2}\right)$ (Dold [6], Satz 2).

Lemma 2. The Chern class ${ }^{3)}$ of the complex projective space $P C(n)$ is equal to $(1+g)^{n+1}$, where g is the generator of $H^{2}(P C(n), Z)$. The Pontrjagin class ${ }^{3)}$ of $P C(n)$ is equal to $\left(1+g^{2}\right)^{n+1}$ (Hirzebruch [8], Satz 4.10.2).

Proof of Theorem 3. For any 8 -manifold V^{8}, we can describe [$\left.V^{s}\right]$ $=a[P C(4)]+b[P C(2) \times P C(2)]$, where a and b are certain integers. As the Pontrjagin numbers are additive, a and b are uniquely determined by Lemma 2:

$$
a=\frac{1}{5}\left(P^{4} P^{4}-2 P^{8}\right), \quad b=\frac{1}{9}\left(5 P^{8}-P^{4} P^{4}\right),
$$

where $P^{4} P^{4}$ and P^{8} denote the corresponding Pontrjagin numbers of V^{8}. Therefore i) is proved. Using Lemma 1 and Lemma 2 we can prove ii)-v) by the same method as above.

Remark. The selections of Stiefel-Whitney numbers described in ii) and iv)

[^2]are not unique. It is evident from the proof that in iv), for example, we can take $W^{5}\left(W^{2}\right)^{3}$ instead of $\left(W^{3}\right)^{3} W^{2}$. However, in iii) no other Stiefel-Whitney numbers than $W^{6} W^{4}$ give a sufficient condition, because $W^{6} W^{4}$ is the unique Stiefel-Whitney number that is not zero for $P(1,2) \times P(1,2)$.

Especially we observe
Corollary 1. For $n \leqq 12$, an n-sphere S^{n} is bounded, even if it admits any differentiable structures.)

Proof. For $n \neq 8,12$, it is trivial. For $n=8,12$, we know the following index formulas (Hirzebruch [8]):

$$
\begin{aligned}
& 45 \tau=7 P^{8}-P^{4} P^{4}, \\
& 945 \tau=62 P^{12}-13 P^{5} P^{4}+2\left(P^{4}\right)^{3}
\end{aligned}
$$

where $\Pi P^{4 i}$ are the corresponding Pontrjagin numbers. Thus the corollary is the direct consequence of Theorem 3.

Corollary 2. For $n \leqq 11, n \neq 8$, the cobordism classes of n-manifolds V^{n} are topological invariants, i.e., they are independent of their differentiable structures. ${ }^{4)}$

Proof. We know that the Stiefel-Whitney classes $W^{i}\left(V^{n}\right)$ of an n dimensional manifold are topological invariants of V^{n} (Thom [17]). Therefore the corollary is the immediate consequence of Theorem 3.

Remark. If the Pontrjagin classes $P^{4 k}\left(V^{n}\right)$ of an n-dimensional manifold are topological invariants, Corollary 2 holds for $n=8$ and 12 .

References

[1] M. Adachi. Sur les groupes de cobordisme Ω^{k}, Proc. Japan Acad., 33 (1957), 143-144.
[2] A. Borel, La cohomologie modulo 2 de certaines espaces homogènes, Comment. Math. Helv., 27 (1953), 165-197.
[3] A. Borel-J. P. Serre, Groupes de Lie et puissances réduites de Steerod, Amer. J. Math., 75 (1953), 409-448.
[4] H. Cartan, Sur les groupes d'Eilenberg-MacLane $H(1 I, n)$, II, Proc. Nat. Acad. Sci. U.S.A., 40 (1954), 704-707.
[5] H. Cartan, Sur l'itération des opérations de Steenrod, Comment. Math. Helv., 29 (1955), 40-58.

[^3][6] A. Dold, Erzeugende der Thomschen Algebra \mathfrak{N}, Math. Z., 65 (1956), 25-35.
[7] S. Eilenberg, On the problems of topology, Ann. of Math., 50 (1949), 247-260.
[8] F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Springer, (1956).
[9] J. Milnor, On manifolds homeomorphic to the 7 -aphere, Ann. of Math., 64 (1956), 399-405.
[10] B. Rohlin, Une variété de dimension 3 est le bord d'une variété de dimension 4, Doklady Akad. Nauk S.S.S.R., 81 (1951), 355-357.
[11] B. Rohlin, Nouveaux résultats en théorie des variétés de dimension 4, Doklady Akad. Nauk S.S.S.R., 84 (1952), 221-224.
[12] J. P. Serre, Homologie singulière des espaces fibrés. Applications, Ann. of Math., 54 (1951), 425-505.
[13] J. P. Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math., 58 (1953), 258-294.
[14] J. P. Serre, Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comment. Math. Helv., 27 (1953), 198-231.
[15] N. Shimada, Differentiable structures on the 15 -sphere and Pontrjagin classes of certain manifolds, Nagoya Math. J., 12 (1957), 59-69.
[16] I. Tamura, Homeomorphy classification of total spaces of sphere bundles over spheres, J. Math. Soc. Japan, 10 (1958), 29-43.
[17] R. Thom, Espaces fibrés en sphères et carrés de Steenrod, Ann. Sci. École Norm. Sup., 69 (1952), 109-182.
[18] R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv., 28 (1954), 17-86.
[19] W.-T. Wu, Classes caractéristiques et i-carrés d’une variété, C. R. Acad. Sci. Paris, 230 (1950), 508-511.
[20] W.-T. Wu, Les i-carrés dans une variété grassmannienne, C. R. Acad. Sci. Paris, 230 (1950), 918-920.
[21] W.-T. Wu, Sur les classes caractéristiques des structures fibrées sphériques, Actual. Sci. Ind., 1183 (1952), 1-89.

Mathematical Institute

Nagoya University

[^0]: ${ }^{1)}$ We denote by ϵ_{n} also the fundamental class of $K(Z, n)$ reduced $\bmod p$.

[^1]: ${ }^{2)}$ In the present paper, we denote a symmetric function by its initial term preceded with Σ.

[^2]: ${ }^{3}$) Precisely, we must say the Stiefel-Whitney polynomial with the variable $t=1$ (cf. Wu [21], p. 41) or total Stiefel-Whitney class.

[^3]: ${ }^{4}$) No manifolds are known which can carry two distinct differentiable structures but 7 -sphere, 15 -sphere and certain 7 - and 15 -manifolds (cf. Milnor [9], Shimada [15] and Tamura [16]).

