ON THE EXISTENCE OF UNRAMIFIED SEPARABLE INFINITE SOLVABLE EXTENSIONS OF FUNCTION FIELDS OVER FINITE FIELDS*

HISASI MORIKAWA

In the present note, using the results in the previous paper, we shall prove the following existence theorem:

Theorem. Let k be a finite field with q elements and K/k be a regular extension of dimension one over k. Then, if $q \ge 11$ and the genus g_K of K/k is greater than one, there exists an unramified separable infinite solvable extension of K which is regular over k^2 .

§ 1. The results in [1]

1.1. Let k be a finite field with q elements and K/k be a regular extension of dimension one over k. Let L/k be an unramified separable normal extension of K which is also regular over k. We denote by G(L/K) the galois group of L/K. We denote by C_L and C_K non-singular complete models of K/k and L/k, respectively, and denote by $\hat{\pi}_{L/K}$ the trace mapping of C_L onto C_K . We denote by $J_L(J_K)$ and $\varphi_L(\varphi_K)$ the jacobian variety of $C_L(C_K)$ and a canonical mapping of $C_L(C_K)$ into $J_L(J_K)$, respectively, where we may assume that $J_L(J_K)$ and $\varphi_L(\varphi_K)$ are also defined over k. We denote by $\pi_{L/K}$ the extension of $\hat{\pi}_{L/K}$ which is a homomorphism of J_L onto J_K such that $\pi_{L/K} \circ \varphi_L = \varphi_K \circ \hat{\pi}_{L/K} + c$ with a constant point c. After a suitable translation of φ_K , we assume that

(1)
$$\pi_{L/K} \circ \varphi_L = \varphi_K \circ \hat{\pi}_{L/K}.$$

We denote by $\Lambda(-, k)$ the subgroup of k-rational points of a commutative group variety Λ .

Each element ε_{ν} of G(L/K) induces an automorphism $\{\eta_L(\varepsilon_{\nu})\}$ of J_L and

Received October 25, 1957.

^{*} This note was prepared while the author was a Yukawa Fellow at Osaka University.

¹⁾ We shall refer this paper with [1].

²⁾ We mean by an infinite solvable extension a solvable extension of infinite degree.

a translation $\{a_L(\varepsilon_k)\}$ on J_L , both defined over k, such that

$$\varphi_L(P^{\varepsilon_{\gamma}^{-1}}) = \eta_L(\varepsilon_{\gamma}) \varphi_L(P) + a_L(\varepsilon_{\gamma}) \qquad (\varepsilon_{\gamma} \in G(L/K), P \in C_L),$$

where $\eta_L(\varepsilon_v)$ and $a_L(\varepsilon_v)$ ($\varepsilon_v \in G(L/K)$) are defined over k and they are independent on the choice of P. From the definition we have

(2)
$$a_L(\varepsilon_{\nu}\varepsilon_{\mu}) = \eta_L(\varepsilon_{\nu}) a_L(\varepsilon_{\mu}) + a_L(\varepsilon_{\nu}).$$

If we put $\varphi_L' = \varphi_L + c$ and $\varphi_L'(P^{\varepsilon_{\nu}^{-1}}) = \eta_L(\varepsilon_{\nu}) \varphi_L'(P) + a_L'(\varepsilon_{\nu})$, then we have

(3)
$$a'_L(\varepsilon_{\nu}) = a_L(\varepsilon_{\nu}) + (\delta_{JL} - \eta_L(\varepsilon_{\nu})) c.$$

1.2. Let x be a generic point of J_L over k. Let $A_{L/K}$ and $B_{L/K}$ be respectively the loci of

$$\left(\sum_{\varepsilon_{\mathbf{v}} \in G(L/K)} \eta_L(\varepsilon_{\mathbf{v}})\right) x$$
 and $\left(\sum_{\varepsilon_{\mathbf{v}} \in G(L/K)} \left(\delta_{J_L} - \eta_L(\varepsilon_{\mathbf{v}})\right)\right) x^{3}$

over k. Let $\overline{A}_{L/K}$ be the quotient abelian variety of J_L by $B_{L/K}$ and $\alpha_{L/K}$ be the natural mapping of J_L onto $\overline{A}_{L/K}$. Then $A_{L/K}$, $B_{L/K}$, $\overline{A}_{L/K}$ and $\alpha_{L/K}$ are defined over k. $A_{L/K}$ and $B_{L/K}$ generate J_L and the intersection $A_{L/K} \cap B_{L/K}$ is a finite group. Moreover $B_{L/K}$ is the irreducible component of $\pi_{L/K}^{-1}(0)$. Let $\overline{\pi}_{L/K}$ be the homomorphism of $\overline{A}_{L/K}$ onto J_K such that

$$\pi_{L/K} = \overline{\pi}_{L/K} \alpha_{L/K}.$$

In [1] we have proved the following facts:

Theorem A. $\overline{\pi}_{L/K}$ is separable and $\overline{\pi}_{L/K}^{-1}(0) = \{\alpha_{L/K} a_L(\varepsilon_v) | \varepsilon_v \in G(L/K)\}$. If L/K is an unramified separable abelian extension, then the mapping $\varepsilon_v \to \alpha_{L/K} a_L(\varepsilon_v)$ is an isomorphism of G(L/K) onto $\overline{\pi}_{L/K}^{-1}(0)$.

Theorem B. If L/K is an unramified separable abelian extension, then

$$J_K(\cdot, k)/\pi_{L/K}(J_L(\cdot, k)) \cong G(L/K).$$

THEOREM C. Let $\mathfrak g$ be any subgroup of $J_K(\ ,\ k)$. Then there exists an unramified separable abelian extension $K(\mathfrak g)$ of K such that i) $K(\mathfrak g)$ is regular over k and ii) $\pi_{K(\mathfrak g)/K}J_{L(\mathfrak g)}(\ ,\ k)=\mathfrak g$.

The field $K(\mathfrak{g})$ in theorem C is given as follows:

Let Λ be the quotient abelian variety of J_K by $\mathfrak g$ and μ be the natural homomorphism of J_K onto Λ . Let $\mathfrak p_{J_K}$ be the endomorphism of J_K which is

³⁾ δ_J means the identity endomorphism of J.

induced by the automorphism $\xi \to \xi^q$ of the universal domain and λ be the homomorphism of Λ onto J_K such that $\lambda \mu = \delta_{J_K} - \mathfrak{p}_{J_K}$. Then λ and μ are separable homomorphisms defined over k. Let y be the point of Λ such that $k(\lambda y) = K$ and $\lambda y = \varphi_K(P)$ with a point P of C_K . Then the field $K(\mathfrak{g})$ is k(y) and the galois automorphisms of $K(\mathfrak{g})/K$ are induced by the translations $y \to y + t$ $(t \in \lambda^{-1}(0))$.

§ 2. The proof of the theorem

2.1. To prove the theorem, it is sufficient to prove the following two lemmas:

Lemma 1. Let L/K be an unramified separable normal extension which is also regular over k and g be a subgroup of $J_L(\ , k)$. Then L(g) is normal over K if and only if the following conditions are satisfied for every $\varepsilon_v \in G(L/K)$:

- i) $\eta_L(\varepsilon_{\nu})(\mathfrak{g}) = \mathfrak{g},$
- ii) $a_L(\varepsilon_{\nu}) \in \mathfrak{g}$.

Lemma 2. Let L/K be an unramified separable normal extension which is also regular over k and l be a prime number. Let $\mathfrak g$ be a subgroup of $J_L(\ , k)$ such that $L(\mathfrak g)/K$ is normal and $[L(\mathfrak g):L]=l$. Then if $q \ge 11$ and the genus g_K of K/k is greater than one there exists a subgroup $\mathfrak g_1$ of $J_{L(\mathfrak g)}(\ , k)$ such that i) $\mathfrak g_1 \ne J_{L(\mathfrak g)}(\ , k)$ and ii) $(L(\mathfrak g))(\mathfrak g_1)$ is normal over K.

2.2. The proof of lemma 1.

First we assume that $L(\mathfrak{g})/K$ is normal and denote by $[\varepsilon_{\nu}]$ a representative of $\varepsilon_{\nu} \in G(L/K)$ in $G(L(\mathfrak{g})/K)$. Then we have i) $\eta_L(\varepsilon_{\nu}) \pi_{L(\mathfrak{g})/L} = \pi_{L(\mathfrak{g})/L} \eta_{L(\mathfrak{g})}([\varepsilon_{\nu}])$ and ii) $a_L(\varepsilon_{\nu}) = \pi_{L(\mathfrak{g})/L} a_{L(\mathfrak{g})}([\varepsilon_{\nu}])$ ($\varepsilon_{\nu} \in G(L/K)$). Hence, by virtue of theorem C, we have

i)
$$a_L(\varepsilon_v) = \pi_{L(\mathfrak{g})/L} a_{L(\mathfrak{g})}([\varepsilon_v])$$
 and ii) $\eta_L(\varepsilon_v)(\mathfrak{g}) = \eta_L(\varepsilon_v)(\pi_{L(\mathfrak{g})/L} J_{L(\mathfrak{g})}(\ , k))$
 $= \pi_{L(\mathfrak{g})/L} \eta_{L(\mathfrak{g})}([\varepsilon_v]) J_{L(\mathfrak{g})}(\ , k) = \pi_{L(\mathfrak{g})/L} J_{L(\mathfrak{g})}(\ , k) = \mathfrak{g} \quad (\varepsilon_v \in G(L/K)).$

Conversely we assume that $\mathfrak g$ satisfies the conditions of the lemma. Let y be a point of $\overline{A}_{L(\mathfrak G)/L}$ such that $k(\overline{\pi}_{L(\mathfrak G)/L}y)=L$ and $\overline{\pi}_{L(\mathfrak G)/L}$ y is a point of $\varphi_L(C_L)$. By virtue of theorem C, $\overline{A}_{L(\mathfrak G)/L}$ is the quotient variety of J_L by $\mathfrak g$ and μ is the natural mapping of J_L onto $\overline{A}_{L(\mathfrak G)/L}$, where μ is the homomorphism of J_L onto $\overline{A}_{L(\mathfrak G)/L}$ such that $\pi_{L(\mathfrak G)/L}\mu=\delta_{J_K}-\mathfrak p_{J_K}$. Namely $k(y)=L(\mathfrak g)$. Since $a_L(\varepsilon_V) \in \mathfrak g$,

there exist points $b(\lceil \varepsilon_{\nu} \rceil)$ in $\overline{A}_{L(\mathfrak{g})/L}(\cdot, k)$ such that $\overline{\pi}_{L(\mathfrak{g})/L}b(\lceil \varepsilon_{\nu} \rceil) = a_{L}(\varepsilon_{\nu})$ ($\varepsilon_{\nu} \in G(L/K)$). From the condition i) there exist automorphisms $\eta(\lceil \varepsilon_{\nu} \rceil)$ of $\overline{A}_{L(\mathfrak{g})/L}$ such that $\overline{\pi}_{L(\mathfrak{g})/L}\eta(\lceil \varepsilon_{\nu} \rceil) = \eta_{L}(\varepsilon_{\nu})\overline{\pi}_{L(\mathfrak{g})/L}$ ($\varepsilon_{\nu} \in G(L/K)$). Let \widetilde{C} be the locus of y over k. Then $\eta(\lceil \varepsilon_{\nu} \rceil)y + b(\lceil \varepsilon_{\nu} \rceil) + t$ ($\varepsilon_{\nu} \in G(L/K)$, $t \in \overline{\pi}_{L(\mathfrak{g})/L}^{-1}(0)$) are also points on \widetilde{C} and they are conjugates of y over K. This proves that $L(\mathfrak{g})$ is normal over K.

2.3. The proof of lemma 2

We denote by ε the generator of $G(L(\mathfrak{g})/L)$ and denote by $[\varepsilon_{\nu}]$ a representative of ε_{ν} in $G(L(\mathfrak{g})/K)$. Since (ε) is normal in $G(L(\mathfrak{g})/K)$, there exists an integer s_{ν} such that $[\varepsilon_{\nu}] = [\varepsilon_{\nu}]^{-1} = \varepsilon^{s_{\nu}}$ $(\varepsilon_{\nu} \in G(L/K))$.

an integer s_{ν} such that $[\varepsilon_{\nu}] = [\varepsilon_{\nu}]^{-1} = \varepsilon^{s_{\nu}}$ $(\varepsilon_{\nu} \in G(L/K))$. Since $\sum_{\nu=1}^{l} (\delta_{J_{L(\mathfrak{g})}} - \eta_{L(\mathfrak{g})}(\varepsilon^{\nu})) = \delta_{J_{L(\mathfrak{g})}} - \eta_{L(\mathfrak{g})}(\varepsilon))$ $(\sum_{\nu=1}^{l} (\delta_{J_{L(\mathfrak{g})}} + \eta_{L(\mathfrak{g})}(\varepsilon) + \ldots + \eta_{L(\mathfrak{g})}(\varepsilon^{\nu-1}))$, we observe that $B_{L(\mathfrak{g})/L} \subseteq (\delta_{J_{L(\mathfrak{g})}} - \eta_{L(\mathfrak{g})}(\varepsilon))(J_{L(\mathfrak{g})})$. On the other hand $J_{L(\mathfrak{g})}$ is generated by $B_{L(\mathfrak{g})/L}$ and $A_{L(\mathfrak{g})/L}$ and $(\delta_{J_{L(\mathfrak{g})}} - \eta_{L(\mathfrak{g})}(\varepsilon))(A_{L(\mathfrak{g})/L}) = 0$, hence $B_{L(\mathfrak{g})/L} = (\delta_{J_{L(\mathfrak{g})}} - \eta_{L(\mathfrak{g})}(\varepsilon))(J_{L(\mathfrak{g})})$. Therefore, by virtue of (3), if we translate $\varphi_{L(\mathfrak{g})}$ suitably, we can assume that $a_{L(\mathfrak{g})}(\varepsilon)$ belongs to $A_{L(\mathfrak{g})/L}$. From (2) we have

$$\begin{split} a_{L(\mathfrak{g})}(\varepsilon^{s_{\mathcal{V}}}) &= a_{L(\mathfrak{g})}(\lceil \varepsilon_{\nu} \rceil \varepsilon \lceil \varepsilon_{\nu} \rceil^{-1}) \\ &= \eta_{L(\mathfrak{g})}(\lceil \varepsilon_{\nu} \rceil) \, \eta_{L(\mathfrak{g})}(\varepsilon) \, a_{L(\mathfrak{g})}(\lceil \varepsilon_{\nu} \rceil^{-1}) + \eta_{L(\mathfrak{g})}(\lceil \varepsilon_{\nu} \rceil) \, a_{L(\mathfrak{g})}(\varepsilon) \\ &\quad + a_{L(\mathfrak{g})}(\lceil \varepsilon_{\nu} \rceil) \\ &= \eta_{L(\mathfrak{g})}(\lceil \varepsilon_{\nu} \rceil) \, (\eta_{L(\mathfrak{g})}(\varepsilon) - \delta_{J_{L(\mathfrak{g})}}) \, a_{L(\mathfrak{g})}(\lceil \varepsilon_{\nu} \rceil^{-1}) \\ &\quad + (\eta_{L(\mathfrak{g})}(\lceil \varepsilon_{\nu} \rceil) \, a_{L(\mathfrak{g})}(\lceil \varepsilon \rceil^{-1}) + a_{L(\mathfrak{g})}(\lceil \varepsilon_{\nu} \rceil)) \\ &\quad + \eta_{L(\mathfrak{g})}(\lceil \varepsilon_{\nu} \rceil) \, a_{L(\mathfrak{g})}(\varepsilon) \\ &= \eta_{L(\mathfrak{g})}(\lceil \varepsilon_{\nu} \rceil) \, (\eta_{L(\mathfrak{g})}(\varepsilon) - \delta_{J_{L(\mathfrak{g})}}) \, a_{L(\mathfrak{g})}(\lceil \varepsilon_{\nu} \rceil^{-1}) \\ &\quad + \eta_{L(\mathfrak{g})}(\lceil \varepsilon_{\nu} \rceil) \, a_{L(\mathfrak{g})}(\varepsilon). \end{split}$$

On the other hand, since $\eta_{L(\mathfrak{g})}(\lceil \varepsilon_{\nu} \rceil)(\delta_{J_{L(\mathfrak{g})}} + \eta_{L(\mathfrak{g})}(\varepsilon) + \ldots + \eta_{L(\mathfrak{g})}(\varepsilon^{l-1})) \eta_{L(\mathfrak{g})}(\lceil \varepsilon_{\nu} \rceil^{-1})$ = $\delta_{J_{L(\mathfrak{g})}} + \eta_{L(\mathfrak{g})}(\varepsilon) + \ldots + \eta_{L(\mathfrak{g})}(\varepsilon^{l-1})$, we have $\eta_{L(\mathfrak{g})}(\lceil \varepsilon_{\nu} \rceil)(A_{L(\mathfrak{g})/L}) = A_{L(\mathfrak{g})/L}$. Therefore

$$(4) \qquad (\eta_{L(\mathfrak{g})}(\varepsilon) - \delta_{J_L(\mathfrak{g})}) a_{L(\mathfrak{g})}([\varepsilon_{\nu}]^{-1}) \in A_{L(\mathfrak{g})/L} \qquad (\varepsilon_{\nu} \in G(L/K)).$$

We denote by $\eta_{L(\mathfrak{g})}(\varepsilon)_{B_{L(\mathfrak{g})/L}}$ the restriction of $\eta_{L(\mathfrak{g})}(\varepsilon)$ of $B_{L(\mathfrak{g})/L}$. Let r be any prime except p. Then r-addic representation $\{M_r(\eta_{L(\mathfrak{g})}(\varepsilon^{\vee})_{B_{L(\mathfrak{g})/L}})\}$ of $\{\eta_{L(\mathfrak{g})}(\varepsilon^{\vee})_{B_{L(\mathfrak{g})/L}}\}$ is equivalent to

$$\left(\begin{array}{c} \zeta^{\nu}E_{2(g_{L}-1)},\\ \zeta^{2\nu}E_{2(g_{L}-1)}\\ & \ddots\\ & & \zeta^{(l-1)\nu}E_{2(g_{L}-1)} \end{array}\right),$$

where g_L is the genus of L/k, ζ is an l-th root of unity and $E_{2(g_L-1)}$ is the identity matrix of degree $2(g_L-1)$. This shows that

(5)
$$\det M_r(\delta_{B_L(\mathfrak{g}),L} - \eta_{L(\mathfrak{g})}(\varepsilon)_{B_L(\mathfrak{g}),L}) = (\prod_{\nu=1}^{l-1} (1 - \zeta^{\nu}))^{2(g_L-1)}$$
$$= I^{2(g_L-1)}$$

We denote by \mathfrak{h} the group of points t of $J_{L(\mathfrak{g})}$ such that

$$(\delta_{J_L(\mathfrak{g})} - \eta_{L(\mathfrak{g})}(\varepsilon)) t \in A_{L(\mathfrak{g})/L}.$$

Then we have

$$\begin{split} I_1 &= \left \lceil \mathfrak{h} \, : \, A_{L(\mathfrak{g})/L} \right \rceil = \left \lceil \left(\delta_{B_L(\mathfrak{g})/L} - \eta_{L(\mathfrak{g})}(\varepsilon)_{B_L(\mathfrak{g})/L} \right)^{-1}(0) \, : \, \left\{ 0 \right\} \right] \\ & \leq \det M_r \left(\left(\delta_{B_L(\mathfrak{g})/L} - \eta_{L(\mathfrak{g})}(\varepsilon)_{B_L(\mathfrak{g})/L} \right) \right) \\ &= I^{2(\mathcal{G}_L - 1)}. \end{split}$$

On the other hand, by virtue of Riemann's conjecture of congrunce ζ -functions, the absolute values of characteristic roots of $M_r(\mathfrak{p}_{B_L(\mathfrak{g}),L})^{4)}$ are all \sqrt{q} . Hence the absolute values of characteristic roots of $M_r(\delta_{B_L(\mathfrak{g}),L}-\mathfrak{p}_{B_L(\mathfrak{g}),L})$ are not less than $\sqrt{q-2}\sqrt{q}+1$. This shows that

$$|\det M_r(\delta_{B_L(\mathfrak{g})/L} - \mathfrak{p}_{B_L(\mathfrak{g})/L})| \geq (q - 2\sqrt{q} + 1)^{(l-1)(g_L - 1)}.$$

Since $J_{L(\mathfrak{g})}(\cdot, k) = (\delta_{J_L(\mathfrak{g})} - \mathfrak{p}_{J_L(\mathfrak{g})})^{-1}(0)$, $A_{L(\mathfrak{g})/L}(\cdot, k) = (\delta_{A_L(\mathfrak{g})/L} - \mathfrak{p}_{A_L(\mathfrak{g})/L})^{-1}(0)$, $B_{L(\mathfrak{g})/L}(\cdot, k) = \delta_{B_L(\mathfrak{g})/L} - \mathfrak{p}_{B_L(\mathfrak{g})/L})^{-1}(0)$ and $\delta_* - \mathfrak{p}_*$ are separable, we have

$$\begin{split} I_2 = & [J_{L(\mathfrak{g})}(\ ,\ k)\ :\ A_{L(\mathfrak{g})/K}(\ ,\ k)] = \det M_r(\delta_{J_L(\mathfrak{g})} - \mathfrak{p}_{J_L(\mathfrak{g})}) / \det M_r(\delta_{A_L(\mathfrak{g})/L} - \mathfrak{p}_{A_L(\mathfrak{g}),L}) \\ = & \det M_r(\delta_{B_L(\mathfrak{g})/L} - \mathfrak{p}_{B_L(\mathfrak{g})/L}) \geq (q+1-2\sqrt{q})(g_L-1)(l-1). \end{split}$$

From $q \ge 11$ we have $(q+1-2\sqrt{q}) > 5$. On the other hand $\log_{10} 5 > \frac{2}{3}$, hence $(l-1)\log_{10} 5 > \frac{2}{3}(l-1) > 2\log_{10} l$ for l > 1. This shows that $(q+1-2\sqrt{q})^{(l-1)} > l^2$. By virtue of $g_L > g_K > 1$, $I_2 \ge (q+1-2\sqrt{q})^{(l-1)(g_L-1)} > l^{2(g_L-1)} \ge l$ for l > 1. This proves that $\mathfrak{g}_1 = \mathfrak{h} \cap J_{L(\mathfrak{g})}(\cdot, k)$ is a proper subgroup of $J_{L(\mathfrak{g})}(\cdot, k)$. From (4) all $a_{L(\mathfrak{g})}(\varepsilon')$ ($\varepsilon' \in G(L(\mathfrak{g})/K)$) belong to \mathfrak{g}_1 . Hence, by

 $^{^{4)}}$ $\mathfrak{p}_{B_L(\mathfrak{g})/L}$ means the endomorphism of $B_{L(\mathfrak{g})/L}$ induced by the automorphism $\xi \to \xi^q$ of the universal domain.

virtue of lemma 1, it is sufficient to prove $\mathfrak{g}_1 = \eta_{L(\mathfrak{g})}([\epsilon_{\nu}]\epsilon^{\mu})(\mathfrak{g}_1)$ $(\epsilon_{\nu} \in G(L/K))$. Since ζ is a primitive l-th root of unity, $1 + \zeta + \ldots + \zeta^{\nu-1}$ $(\nu = 1, 2, \ldots, l-1)$ are units in $Q(\zeta)$, where Q means the field of rational numbers. This shows that

$$(\delta_{B_{L}(\mathfrak{g})_{\ell,L}} + \eta_{L}(\mathfrak{g})(\varepsilon)_{B_{L}(\mathfrak{g})_{\ell,L}} + \ldots + \eta_{L}(\mathfrak{g})(\varepsilon^{\nu-1})_{B_{L}(\mathfrak{g})_{\ell,L}}) \qquad (\nu = 1, 2, \ldots, l-1)$$

are automorphisms of $B_{L(\mathfrak{g})/L}$. On the other hand \mathfrak{h} is generated by $A_{L(\mathfrak{g})/L}$ and $\mathfrak{h}_{B_{L(\mathfrak{g})/L}} = \{t \mid t \in B_{L(\mathfrak{g})/L}, \ (\delta_{B_{L(\mathfrak{g})/L}} - \eta_{L(\mathfrak{g})}(\varepsilon)) \ t \in A_{L(\mathfrak{g})/L} \}$. Moreover we observe that $\eta_{L(\mathfrak{g})}(\lceil \varepsilon_{\nu} \rceil) (\delta_{B_{L(\mathfrak{g})/L}} - \eta_{L(\mathfrak{g})}(\varepsilon)_{B_{L(\mathfrak{g})/L}}) = (\delta_{B_{L(\mathfrak{g})/L}} - \eta_{L(\mathfrak{g})}(\varepsilon^{\mathfrak{s}_{\nu}})_{B_{L(\mathfrak{g})/L}}) \eta_{L(\mathfrak{g})}(\lceil \varepsilon_{\nu} \rceil)$ and $\eta_{L(\mathfrak{g})}(\lceil \varepsilon_{\nu} \rceil^{-1}) B_{L(\mathfrak{g})/L} = B_{L(\mathfrak{g})/L}$.

This shows that $\eta_{L(\mathfrak{g})}(\llbracket \varepsilon_{\nu} \rrbracket)(\mathfrak{h}_{B_{L'\mathfrak{g})/L}})=\mathfrak{h}_{B_{L(\mathfrak{g})/L}}$, namely $\mathfrak{h}=\eta_{L(\mathfrak{g})}(\llbracket \varepsilon_{\nu} \rrbracket)(\mathfrak{h})$. Hence $\eta_{L(\mathfrak{g})}(\llbracket \varepsilon_{\nu} \rrbracket)(\mathfrak{g}_{1})=\eta_{L(\mathfrak{g})}(\llbracket \varepsilon_{\nu} \rrbracket)$ ($\mathfrak{h}\cap J_{L(\mathfrak{g})}(\tt$, $k)=\mathfrak{h}\cap J_{L(\mathfrak{g})}(\tt$, $k)=\mathfrak{g}_{1}$.

REFERENCE

[1] H. Morikawa, Generalized jacobian varieties and separable abelian extension of function fields, Nagoya Journal, 12 (1957), pp. 231-254.

Mathematical Institute
Nagoya University