ON THE EXISTENCE OF UNRAMIFIED SEPARABLE
INFINITE SOLVABLE EXTENSIONS OF FUNCTION
FIELDS OVER FINITE FIELDS*

HISASI MORIKAWA

In the present note, using the results in the previous paper,” we shall

prove the following existence theorem:

THEOREM. Let k be a finite field with q elements and K/k be a regular
extension of dimension one over k. Then, if q =11 and the genus gx of K'k
is greater than one, there exists an unramified separable infinite solvable ex-

tension of K which is regular over k.

§1. The results in [1]

1.1. Let % be a finite field with g elements and K/k be a regular extension
of dimension one over %2 Let L/k be an unramified separable normal extension
of K which is also regular over k. We denote by G(L/K) the galois group of
L/K. We denote by C; and Cx non-singular complete models of K/k and L/k,
respectively, and denote by 7.x the trace mapping of C. onto Cx. We denote
by J.(Jx) and ¢,(¢x) the jacobian variety of C.(Cx) and a canonical mapping
of C.(Cx) into J.(Jx), respectively, where we may assume that J.(Jx) and
@ (¢x) are also defined over 2. We denote by =« the extension of #,x which
is a homomorphism of J; onto Jx such that mpxo ¢r=¢x° 7yx+c¢ with a

constant point ¢. After a suitable translation of ¢x, we assume that
(1) Lk © L =Ck ° Trk.

We denote by .1( , k) the subgroup of k-rational points of a commutative
group variety A.

Each element ¢, of G(L/K) induces an automorphism {7.(s,)} of J. and
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* This note was prepared while the author was a Yukawa Fellow at Osaka University.
) We shall refer this paper with [1].

» We mean by an infinite solvable extension a solvable extension of infinite degree.
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a translation {a.(z.)} on Ji, both defined over k, such that
(PP =qu(e) ¢(P) +aule,)  (e,€ G(L/K), PE Cy),

where 7.(e,) and a.(e,) (s, € G(L/K)) are defined over k and they are inde-
pendent on the choice of P. From the definition we have

(2) ar(e,s) =9.(s) acle) + aule).
If we put ¢ =¢,+c and ¢ (P"7) =9,(e,) ¢" (P) + a(e,), then we have
(3) aile,) = ale) + (85, — yule))e.

1.2. Let x be a generic point of J, over k& Let Ayx and B be respectively

the loci of

(> gue))x and X (85, —7(e)))x?
£,EG(L/IK)

EVEQ(L/K)
over k. Let A,x be the quotient abelian variety of J. by Bux and ax be the
natural mapping of J. onto Azx. Then Ak, Bux, Aux and ayx are defined
over k. Apx and Bpx generate J; and the intersection Ak N Bk is a finite
group. Moreover B, is the irreducible component of 77%(0). Let 7yx be the

homomorphism of Ay onto Jx such that
(4) MLk = TL/K XLIK.
In [1] we have proved the following facts:

THEOREM A. %k is separable and 71)x(0) ={ayxai(e,) e, € G(L/K)}. If
L/K is an unramified separable abelian extension, then the mapping e, > ayxarle.)
is an isomorphism of G(L/K) onto 7zx(0).

Tueorem B. If L/K is an unramified separable abelian extension, then
jK( ) k)/ﬁL/K(]L( , k)) = G(L/K)

Tueorem C. Let § be any subgroup of Ju( , k). Then there exists an
unramified separable abelian extension K(8) of K such that i) K(8) is regular

over k and ii) mrgunJig( , k) =4a.

The field X(g) in theorem C is given as follows:
Let A4 be the quotient abelian variety of Jx by 8 and u be the natural

homomorphism of Jx onto A. Let p;x be the endomorphism of Jx which is

3 6, means the identity endomorphism of J.
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induced by the automorphism £ — &% of the universal domain and i be the
homomorphism of A onto Jx such that Au =8, —psx. Then 2 and u are separable
‘homomorphisms defined over k2 Let y be the point of 4 such that k(ly) =K
and Ay = ¢x(P) with a point P of Cx. Then the field K(g8) is 2(y) and the
galois automorphisms of K(4)/K are induced by the translations v »y+¢
(te 2790)).

§2. The proof of the theorem

2.1. To prove the theorem, it is sufficient to prove the following two

lemmas:

LeMMA 1. Let L/K be an unramified separable normal extension which is
also regular over k and 8§ be a subgroup of J.( , k). Then L(8) is normal over
K if and only if the following conditions are satisfied for every e, € G(L/K):

i) 7(e)(@) =4,
i)  aule,) 4.

LemMma 2. Let L/K be an unramified separable normal extension which is
also regular over k and | be a prime number. Let § be a subgroup of J.( , k)
such that L(8)/K is normal and [L(8) : L1=1.  Then if q =11 and the genus
8x of K/k is greater than one there exists a subgroup 6, of Jug{ , k) such that

i) 6 % Jug( , k) and ii) (L(8))(8,) is normal over K.

2.2. The proof of lemma 1.

First we assume that L(4)/X is normal and denote by [s,] a representative
of ¢, € G(L/K) in G(L(8)/K). Then we have i) 7.(e,) mugyr = mrgyomngLev])
and ii) ar(e)) = mrgyrang(le]) (es € G(L/K)). Hence, by virtue of theorem C,

we have

i) aL(Ev) =7TL(g)/1,aL(g>([€u]) and ii) ﬂL(Ev)(g) =771,(€y)(771.(g)/z.]ug)( s k))
= rrgyenugyle]) Jog( 5 k) =rugieJug( , B) =8  (e&s € G(L/K)).

Conversely we assume that g satisfies the conditions of the lemma. Let y
be a point of Agygy. such that k(7.q.y) =L and Fng. ¥ is a point of ¢,(Cyr).
By virtue of theorem C, Aygy. is the quotient variety of J; by 8 and . is the
natural mapping of J. onto Apgy, where p is the homomorphism of J. onto

Eiug)/L such that mrgyou=0sx —Psx. Namely k(y)=L(8). Since a.(e,) €6,
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there exist points b([e.]) in Aygy( , ) such that Frg.b([e,]) = arle,)
(eve G(L/K)). From the condition i) there exist automorphisms 7([e,]) of
Apgy such that 7rgyp(le]) = 5.le,) Frgyr (v € G(L/K)). Let ¢ be the locus
of y over . Then y([e,Dy+8([e,]) +1¢ (e, € G(L/K), t € 7T1h,(0)) are also
points on C and they are conjugates of y over K. This proves that L(8) is
normal over K.

2.3. The proof of lemma 2

We denote by ¢ the generator of G(L(8)/L) and denote by [ a repre-
sentative of & in G(L(8)/K). Since (e) is nermal in G(L(8)/K), there exists
an integer S such that [e]ele,] ' =" (e, € G(L/K)).

Since 2(5.1,(9, = ug(e)) = Bipg — uple)) (2(51[,(9) + g e) + .
+ 119 (")), we observe that Buigyz € (8554 — 7ua(e))(Jug). On the other
hand Jig is generated by Buigy: and Augye and (8., — 70 (e)) (Arngy) =0,
hence Big)z = (8, —72(e))(Jug). Therefore, by virtue of (3), if we trans-
late ¢ suitably, we can assume that arg(e) belongs to Argyz. From (2)

we have

aig) (™) = avg)(Le,Jeles]™)

= 109 (LevD) 209y () arg) (Lev1™) + 70eg)(Le ) @rggy ()
+ang(led)

=12 ([e.) (e (e) = 8s5q,) Arigy([e,]7)
+ (rgy(Len]) anigy(Led™) + ang ([e]))
+ 7ug(ley]) ang (e)

= nug(Len]) (g (e) = 8ug) Bz (Les]™)
+ gy (Len]) @rig (o).

On the other hand, since 71()(Le]) (875 + 72 (e) + . - . + Py (&™) gy ([ev]™)
=08 Frz@le) + . .. +7ug,(¢ "), we have vL(g)([ev])(Aug)/L =Aggyz. Therefore

(4) (g (e) — 5.1L(g))(lug)([€y]—l) € Aug (ev € G(L/K)).

We denote by 7cgle)ryg,, the restriction of 7ig(e) of Bigyz. Let 7 be
any prime except p. Then r-addic representation {M:(74q(¢")zyq, )} of

{ne)(e)nyq,.} is equivalent to
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where g is the genus of L/k, ¢ is an Ith root of unity and Fag,-1, is the
identity matrix of degree 2(g. —1). This shows that

-1 v
(5) det MY(BBLIQ)/L - ”L(Q)(e)b‘L g)/l,) = ( I_]l(l —¢7))eL-n

= %€=,
We denote by Y) the group of points ¢ of J;g, such that

(8JL(g) - 771,(9)(5)) te AL(g)/L.

Then we have

I = [I) . AL(Q)/L] = [-(613ng),[1 - ﬂL(g)(E)nL(g)/L)_l(O) : {0)]

=det Mr( (58L<g)/z; - WL(Q)( E)BL(g)/L))
= J2&L~1,

On the other hand, by virtue of Riemann’s conjecture of congrunce ¢-functions,
the absolute values of characteristic roots of M;(pp,q,,)" are all ¥ g. Hence
the absolute values of characteristic roots of M;(dnyg,, — Prr,,) are not less
than Yg—2vg+1. This shows that

] det Mr(BBL(g)/L - pBL(g)/L) l % (q - 2 \/d+ 1)(1_1)(gl‘—1).

Since Jug( , k) = (8s9 — Popg) 0), Argul , k) = (Oarig, — DAL(Q),L)_I(O),
Burgi( , k) =8syq),. — Parig,)”(0) and 84 — by are separable, we have

L= []L(g)( ’ k) : AL(Q)/K( ’ k)] = det Mr(5JL(g) - pJL(g)VdEt Mr(aAL(g)/L - pAL(g),L)
= det M”(BBL(g)/L_ pBL(g)/L) = (q+ 1 —-2\/(1 )(g[, -1U-1).

From g =11 we have (¢+1-2Vq)>5. On the other hand logi5 > :23,

g(l—l)>210gml for /> 1. This shows that (g+1

-2V @) ™" > 1% By virtue of g, > gx> 1, La (g+1—2y q)¢ V€0 > e
21 for I>1. This proves that 8, =) N Jyq( , k) is a proper subgroup of
Jug( , B). From (4) all aygle') (¢€ G(L(8)/K)) belong to ¢;.. Hence, by

hence (/-1)log5>

9 pBrg),, means the endomorphism of B, g/, induced by the automorphism ¢ - §? of
the universal domain.
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virtue of lemma 1, it is sufficient to prove @ =7g([a]e*)(8) (e, € G(L/K)).
Since ¢ is a primitive /-th root of unity, 1+¢+ ...+ (»=1,2,...,1-1)
are units in Q(¢), where @ means the field of rational numbers. This shows
that

(3BL(Q,,L+ﬂL(Q)(E)Bl_(g>,L+ e +77L(g>(€v-1)1>’ug),~L) (v=1,2...,1-1)

are automorphisms of Brgy.. On the other hand Y is generated by Ay and
f)I;L(g),L ={t|t € Bugyz, (Opygy;— 120 e)) 1 E Avgys}. Moreover we observe that
79 (L&) Brpigyn — 720 () prgyr) = gy = 1@ (€™ prg,) 7@ ([e])  and
71149 (Le.1™) Brgyz = Bugyz.

This shows that 7.g(Le]) (Dssq),.) = Doy, namely B = i, (Le,]) ().
Hence 7rg)(Lev 1) () = 71y (L) DN Jrg( , B) =00 Jrg( , &) =6
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