ON THE DIMENSION OF MODULES AND ALGEBRAS IX

DIRECT LIMITS

ISRAEL BERSTEIN

Let J be a directed set and let $\langle A_j, \varphi_{ij} \rangle$ be a direct system of rings indexed by J and with limit A. Let $\langle A_j, \psi_{ij} \rangle$ be a direct system of groups indexed by J. Assume that each A_j is a left A_j -module and that $\psi_{ij}(\lambda a) = \varphi_{ij}(\lambda) \psi_{ij}(a)$ for each $\lambda \in A_j$, $a \in A_j$. Then the limit A of $\langle A_j, \psi_{ij} \rangle$ is a left A-module.

THEOREM. If J is countable, then

$$\operatorname{l.dim}_{\Lambda} A \leq 1 + \sup_{j} \operatorname{l.dim}_{\Lambda_{j}} A_{j}.$$

COROLLARY 1. If J is countable, then

l. gl. dim $\Lambda \leq 1 + \sup_{i=1}^{n} l. gl. \dim_{i=1}^{n} J_{j}$.

COROLLARY 2. Let $\{K_j, v_{ij}\}$ be a direct system of commutative rings indexed by J and with limit K. Assume that each A_j is a K_j -algebra and that $\varphi_{ij}(k\lambda)$ $= v_{ij}(k)\varphi_{ij}(\lambda)$ for $k \in K_j$, $\lambda \in A_j$. Then A is a K-algebra. If J is countable, then

K-dim $\Lambda \leq 1 + \sup_{i \in I} K_i$ -dim Λ_i .

To derive Cor. 2 we note that

K-dim
$$\Lambda = 1$$
. dim $\Lambda^e \Lambda$, where $\Lambda^e = \Lambda \otimes_K \Lambda^*$,

and that Λ^e is the direct limit of $\{\Lambda^e_j\}$. Cor. 2 is a generalization of a theorem by Kuročkin [1] (see also [2], p. 92).

Proof of the Theorem. We consider the exact sequences

$$0 \longrightarrow R_j \longrightarrow F_j \longrightarrow A_j \longrightarrow 0, \qquad j \in J$$
$$0 \longrightarrow R \longrightarrow F \longrightarrow A \longrightarrow 0$$

where F_j is the free Λ_j -module with the elements of A_j as Λ_j -basis and

Received December 19, 1957.

ISRAEL BERSTEIN

 $F_j \longrightarrow A_j$ is the identity on the basis of F_j . Similarly for F. It is then easy to see that R may be regarded as the direct limit of the R_j 's. If $n = \sup l \lim_{\Lambda_j} A_j$, n > 0 then

$$\sup_{j} \text{ l. } \dim_{\Lambda_j} R_j \leq n-1.$$

Since also $1.\dim_{\Lambda} A \leq 1 + 1.\dim_{\Lambda} R$, it suffices to prove that $1.\dim_{\Lambda} R \leq 1 + (n-1)$. This reduces the theorem dy induction to the case n=0 i.e. to the case when each A_j is A_j -projective.

If each A_j is Λ_j -projective, then $B_j = \Lambda \otimes_{\Lambda_j} A_j$ is Λ -projective. The B_j 's form a direct system of Λ -modules with A as limit. This further reduces the theorem to the case when the direct system $\{\Lambda_j, \varphi_{ij}\}$ is constant, i.e. $\Lambda_j = \Lambda$, $\varphi_{ij} =$ identity.

The above two reductions are valid for any indexing set J. Now we assume that J is countable. There exists then a sequence $a_1 < a_2 < \ldots < a_k < \ldots$ in J which is cofinal with J. Thus we may assume that $J = (1, 2, \ldots, k, \ldots)$.

Thus the direct system $\{A_j, \psi_{ij}\}$ is a direct sequence

$$A_1 \xrightarrow{\psi_{2,1}} A_2 \xrightarrow{\psi_{3,2}} \dots \xrightarrow{\psi_{k,k-1}} A_k \xrightarrow{\psi_{k+1,k}} \dots$$

where each A_k is a projective Λ -module. By definition, the limit A is the quotient of the direct sum $B = \sum_{k=1}^{\infty} A_k$ by the submodule generated by all the elements $a - \psi_{k+1,k}(a)$, $a \in A_k$. There results the exact sequence

$$0 \longrightarrow B \xrightarrow{\gamma} B \longrightarrow A \longrightarrow 0$$

where $\gamma(a) = a - \psi_{k+1,k}(a)$ for $a \in A_k$. Since B is A-projective, it follows that $1. \dim_{\Lambda} A \leq 1.$

Bibliography

- V. M. Kuročkin, The decomposition of algebras into a semi-direct sum of the radical and a semi-simple subalgebra, C. R. (Doklady) Acad. Sci., URSS (N.S.) vol. 36 (1942), pp. 42-45.
- [2] A. Rosenberg and D. Zelinsky, Cohomology of infinite algebras, Trans. Amer. Math. Soc., vol. 82 (1956), pp. 85-98.

Bucharest, Roumania