FIXED POINTS OF ISOMETRIES
SHOSHICHI KOBAYASHI*

1. Statement of Theorem

The purpose of this paper is to prove the following

THEOREM. Let M be a Riemannian manifold of dimension n and let & be
a Killing vector field (i.e., infinitesimal isometry) of M. Let F be the set of
points x of M where ¢ vanishes and let F= U V;, where the Vi’s are the con-
nected components of F. Then (assuming F to be non-empty)

(1) Each V; is a totally geodesic closed submanifold (without singularities)
of M and the co-dimension of Vi (ie., dim M —dim V;) is even.

(2) The structure group of the normal bundle over Vi can be reduced to
GL(7, C), where 2r is the co-dimension of Vi.

(3) If x&V; and yE Vj and i = j, then there is a 1-parameter family of
geodesics joining x and y provided M is complete; hence x and y are conjugate
to each other.

(4) If M is, moreover, compact, then the Euler number of M is the sum of

Fuler numbers of Vi's:
L(M) =37(V),

(the summation is well defined, as the number of connected components V; is
finite).

Remarks. (2) implies that if M is orientable, then V; is orientable.

If F consists of only isolated points, then (4) is a particular case of the
Index Theorem, as the index of a Killing vector field at an isolated zero point
is 1.

CoroLrARY 1. Let L be an abelian Lie algebra of Killing vector fields of
M. Let F be the set of points x of M where every element of L vanishes. Then
the same statements as in Theorem hold.
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Remark. Let G be a torus group acting on a manifold M as a differ-
entiable transformation group. Then we take a Riemannian metric on M
invariant under G and apply Corollary 1, thus obtaining the same results as

in Theorem.

CoROLLARY 2. Under the same assumption as in Corollary 1, if M is a
symmetric space in the sense of E. Cartan, so is each V.

CoroLLARY 3. Under the same assumption as in Corollary 1, if the sec-
tional curvature of a complete Riemannian manifold M is non-positive, then F
is either empty or connected.

CoroLLARY 4. Let M be a compact manifold of dimension 2m. Suppose
that a torus group of dimension m acts on M (differentiably and effectively).
Then the Euler number of M is zero or positive according as the fixed point set
F is empty or not. If M is orientable and F is non-empty, then the Euler
number of M is greater than or equal to 2.

2. Proof of Theorem

(1) Let x be any point of F and let T.(M) be the tangent space to M at
x. Then £ induces an endomorphism of T.(M) and it is a skew-symmetric
matrix with respect to an orthonormal basis of T:(M). (In classical termino-

logies, it is an endomorphism defined by the covariant derivatives of £.) If we

choose a proper basis e;, ..., es, then this matrix can be reduced to the
following
0 a; A
- a 0 .
0 ar
-a, 0 0
L 0

The 1-parameter group of local isometries generated by £ induces on Ti(M)
rotations of the form
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cos ta; sin ta,

—sin ta; costa

cos ta, sin ta,

—sin ta, costa,

\ In-2r |

where ¢ is the parameter. If »n—27 =0, then x is an isolated zero of £ and we
are done. Suppose #»—27> 0. If » is a vector spanned by ez+1, . . ., ex, then
v is invariant under this 1-parameter group. Hence the geodesic issued from x
to the direction of v is also left fixed (pointwise) by the group. In a certain
neighborhood U of x the set of these geodesics forms an (# — 27)-dimensional
submanifold U’ of U. (Take, for instance, U to be a neighborhood of x such
that for every y of U there exists a unique geodesic in U joining x and y.)
Now we shall show that the zeros of ¢ in U are exactly U'. If y is a zero of
¢ in U, then we take a geodesic in U joining y and x. Since both x and y are
left fixed by the 1-parameter group, this geodesic is also left fixed by the group.
Hence the tangent vector to this geodesic must be spanned by ex+s, . .., én.
This shows that y is in U’. Hence each V; is a submanifold of M and its co-
dimension is even. The fact that V; is totally geodesic follows immediately.
In fact, let x and ¥ be any points of V; sufficiently close to each other so that
there is a unique shortest geodesic from x to y. Then this geodesic is left fixed
pointwise by the group. Hence the geodesic is contained in V;.

Remark. As it can be seen from the proof, the statement that V; is a
totally geodesic submanifold of M is true not only for 1-parameter group of
isometries but also for any group of isometries.

(2)" Let A be a non-singular linear transformation of the 27-dimensional
vector space R* with a positive definite inner product. By the inner product
we can identify A with a bilinear form on R*. Assume that this bilinear form
is skew-symmetric. Then there is a unique decomposition of R*” into subspaces
S, . .., Sk such that

i) Each S; is invariant by the transformation A and if 7= 7 then S; and S;
are orthogonal to each other.

1 The result of (2) is due to A. Dold and R. Thom. The proof presented here is a
modification of theirs.
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ii) Restricted to S;, A® is equal to — b}I, where I is the identity transfor-
mation and b; is a positive real number. If i « j, then b; is different from b;.

Let ¢;=1/vVbi. Let C be a non-singular linear transformation of R*" defined
by the following two properties: (i) C maps each S; into itself, (ii) Restricted
on S;, C is equal to ¢;I. Let J be the transformation CAC. Then J*= — I

We showed in (1) that the endomorphism of T.(M) induced by & induces
a non-singular linear transformation, denoted by A., of the normal space to V;
at . Since A, is skew symmetric with respect to the inner product on T:(M)
defined by the Riemannian metric, we define, by'the above argument, a linear
transformation J, of I'»(M) such that J5= — I It can be easily shown that J.
is a differentiable field of linear transformations. Now, J. defines a complex
structure on each normal space to Vi; hence the structure group of the normal
bundle over V; can be rebuced to GL(7, C).

(3) Let x€V;, yeV; and i=xj. Let g be any geodesic from x to ». This
geodesic can not be left fixed by the group generated by £. If it were left fixed,
then V; and V; would be the same connected component.

(4) Let ¢ be a small positive number. We define S, to be the set of points
y in M such that there is a geodesic from % to y of the length not greater than
¢ and normal to V; at x. Thus, to every point ¥ of V;, we attach a solid sphere
Sx with center ¥ and radius ¢ which is normal to V; and has the dimension 27
( = codimension of V;). Let N; =zéJV.Sx. Taking ¢ very small, we may assume
that N; N\ N; is empty if 7 % 7 and t..:hat every point in NN; is exactly in one S..
Let N=UN;. Let K be the closure of M—N. Then NN K is the boundary
dN of N.

Lemma. (M) =%Z(N)+£(K)-Z(dN).
Proof. Consider an exact sequence of vector spaces:
> Ar—> B> Cr> Ap-1-> Bp-1~> . ..
Then it can be shown easily that
S(-1)*dim Ar - 3 (-1)*dim B+ 33 ( - 1)* dim Ce = 0.

We apply this formula to the exact sequences of homology groups induced
by
K->M- (M, K) and dN-> N- (N, dN)
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and we obtain
WK)—/Z(M)+72(M, K)=0 and Z(dN)-7(N)+/(N, dN) =0.

By Excision Axiom, (M, K) and (N, dNV) have the same relative homology.

Hence
Z(M, K)=J/(N, dN).

This completes the proof of Lemma.
The 1-parameter group generated by ¢ has no fixed point in XK nor dN.
By Lefschetz Theorem, /(K)=/(dN)=0. Hence Z(M)=/(N). As N; is a

fibre bundle over V; with solid sphere S as fibre, we have

TN =72(V) Z(S) =72( V).
Finally we obtain
M) =200(N;) =>37(Vi).

3. Proof of Corollaries

Let ¢ and y be Killing vector fields on M commuting with each other. Let
F= U V; be the zeros of £ as before. Since the group generated by 7 commutes
with the group generated by ¢, it maps F into itself. Since it is a connected
group, it transforms each V; into itself. Hence % can be considered as a Killing
vector field on V;. Let F; be the zeros of 7 on V; and let F;= U; Wi; be the
decomposition into the connected components. We apply Theorem to each V,
and repeat this process and obtain Corollary 1.

Now, Corollary 2 follows from the fact that every totally geodesic sub-
manifold of a symmetric space is a symmetric space. Note that if A is locally
symmetric in the sense that the curvature tensor is paralle]l, then a simple
calculation shows that every totally geodesic submanifold of Af is also locally
symmetric. Suppose M is globally symmetric. A symmetry of M around any
point of a totally geodesic submanifold of M maps the submanifold into itself
and induces a symmetry of the submanifold. Hence the submanifold is globally

symmetric.

Remark® It is not known whether the homogeneity of M implies the

homogeneity of V;.

2 (Added in proof) We shall prove elsewhere that every totally geodesic sub-
manifold of a homogeneous Riemannian manifold is homogeneous Riemannian.
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Corollary 3 follows from (3) and the well known fact that a Riemannian
manifold of non-positive curvature has no conjugate points.

Before going into the proof of Corollary 4, we shall make the following

Remark. Suppose that a torus group of dimension m acts on a manifold
M of dimension n. Assume that the fixed point set F is non-empty. If 27 is
the co-dimension of V;, then m < 7.

To prove this, take any Riemannian metric on M iﬁvariant by the torus
group G. Let x&€ V;. Every element of G induces an orthogonal transfor-
mation of T»(M) which is trivial on T«(V;). Hence G can be considered as a
group of orthogonal transformations of the normal space to V; at x. G being
abelian, dim G can not be greater than the rank of 0(27), which is 7.

The above remark shows than m = n/2. It is therefore of interest to
consider the extremal case 2m =mn. The above argument shows that in this
case F consists of only isolated points, thus proving the first half of Corollary 4.

Suppose M is orientable and F consists of a single point x. If we take a
proper basis of T:(M), the group G, considered as a group of orthogonal

transformations of T.(M), can be written as follows.

cost; sin

—sin#; cost

cos bn  Sin tm

—sin t;,  COS Im

where (4, . .., tm) is a parameter of G. Let G’ be a torus group of dimension
m—1 depending on #, ..., tm-1. Let F' be the fixed point set of G’ and let
V' be the connected component of F' containing x. Then V is a manifold of
dimension 2 and is orientable by (2) of Theorem. The 1-parameter group
depending on #, maps V into itself. The fixed points of this 1-parameter group
on V are in F={x}). Hence #(V) is equal to 1. On the other hand, the Euler
number of a compact orientable surface is always even. This shows that F is

either empty or contains more than 1 point.
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