ON EXCEPTIONAL VALUES OF A MEROMORPHIC FUNCTION

MAKOTO OHTSUKA

1. M. Brelot [1] has shown that if u(z) is subharmonic in an open set D in the z-plane with boundary C and is bounded from above in a neighborhood of a boundary point z_0 , which is contained in a set $E \subset C$ of inner harmonic measure zero with respect to D, and such that z_0 is a regular point for Dirichlet problem in D, then

(1)
$$\overline{\lim_{\substack{z \to z_0 \\ z \in D}} u(z)} = \overline{\lim_{\substack{z' \to z_0 \\ z' \in C - E}} (\overline{\lim_{z \to z'}} u(z)).$$

Furthermore, it was shown that if f(z) is meromorphic in D, then, for any z_0 of E, which is in the closure of C - E, whether a regular point or not, the same relation holds when u(z) is replaced by |f(z)| whenever the left side of (1) is finite. It is easy to see that this last relation is equivalent to the relation:

(2) boundary of
$$S_{z_0}^{(D)} \subset S_{z_0}^{(C-E)}$$
,

where the cluster set $S_{z_0}^{(D)}$ is the set of values approached sequencewise by f(z) in any neighborhood of z_0 and the boundary cluster set $S_{z_0}^{(C-E)}$ from C-E is the limit of the closure of $\bigcup_{z'\in (C-E)_r} S_{z'}^{(n)}$ as $r\to 0$, $(C-E)_r$ being that part of C-E in $|z-z_0|< r$.

Later M. Tsuji [5] showed that in the special case that D is a domain and E is a closed set of logarithmic capacity zero, the exceptional values in $\Omega = S_{z_0}^{(D)} - S_{z_0}^{(C-E)}$, that is, the set of values in Ω which f(z) does not assume in some neighborhood of z_0 form a set of inner logarithmic capacity zero.

2. In this note we shall prove that this is true in the general case.

THEOREM. Let D be an open set in the z-plane, C its boundary, $E \subset C$ a set of inner harmonic measure zero with respect to D, z_0 a point of E in the closure of C - E, and f(z) a meromorphic function in D. Then every value of

Received May 30, 1955.

¹⁾ See [4], for instance.

 $S_{z_0}^{(D)} - S_{z_0}^{(C-E)}$ is assumed by f(z) in any neighborhood of z_0 except for a set of (outer) logarithmic capacity zero.

Proof. If there is a disc: $|z-z_0| < r$ such that the part C_r of C in this disc is contained in E, this part is of harmonic measure zero with respect to this disc minus C_r and hence of logarithmic capacity zero. Hence in any neighborhood of z_0 in D f(z) takes on every complex value except for a closed set of logarithmic capacity zero, or else f(z) is continuous at z_0 , by a theorem of Kametani [3]. Thus our theorem is true in this case.

Next we consider the case when z_0 is in the closure of C-E and suppose that the exceptional values in $S_{z_0}^{(D)} - S_{z_0}^{(C-E)}$ form a set of positive inner logarithmic capacity. Then there exists a closed bounded set F of positive logarithmic capacity lying in a component Ω_1 of $S_{z_0}^{(D)} - S_{z_0}^{(C-E)}$ such that the values of F are not assumed by f(z) in D_{r_0} : $D \cap \{|z-z_0| < r_0\}$. Let K be a compact set in \mathcal{Q}_1 containing a closed subset $F_1 \subseteq F$ of positive logarithmic capacity in its interior and bounded by a smooth curve γ . If we take $r_1 < r_0$ sufficiently small, K is disjoint from the closure of $\bigcup_{z'\in(\mathcal{C}-E)r_1} S_{z'}^{(D)}$. Brelot's result (2) shows that $S_{z'}^{(D)} \cap K = \phi$ or $S_{z'}^{(D)} \supset K$ at any regular point $z' \in E_{r_1} : E \cap \{|z - z_0| < r_1\}$. However, the latter case cannot occur. For, if we apply Brelot's result (1) to the composed function in D_{r_1} of f(z) with the equilibrium potential of F_1 , we get a Therefore if we exclude all regular points from E and denote the remaining set by E_1 , that component of $S_{z_0}^{(D)} - S_{z_0}^{(C-E_1)}$ containing K is equal to \mathcal{Q}_1 ; that is, this set remains unchanged. Let us consider the inverse image in D_{r_1} of the interior of K and denote it by D_0 . The boundary of D_0 consists of (i) part of $|z-z_0|=r_1$, (ii) certain arcs in D_{r_1} on which $f(z) \in r$ and (iii) a closed subset E_2 of E_1 of logarithmic capacity zero. If there is no connected component of D_0 containing z_0 on its boundary, then z_0 is a regular point with respect to D_0 and the reasoning used above is applied again. If there is a domain containing zo on its boundary, we can apply the result of Tsuji, stated at the beginning, to obtain a contradiction to the fact that K contains a closed set of exceptional values of positive logarithmic capacity. Since the set B_n of values in $S_{z_0}^{(D)} - S_{z_0}^{(C-E)}$ not taken by f(z) in $D_{1/n}$ is a countable union of closed sets of logarithmic capacity zero, it is of (outer) logarithmic capacity zero. Hence the set of exceptional values which is equal to the union $\bigcup_{n} B_n$ is of (outer) logarithmic capacity zero. Thus our proof is completed.

Finally we remark that if we use the ramified topology in D (see [2] for this) and define the vanishing of harmonic measure and the cluster sets with respect to this topology, then we can extend our result to this case.

BIBLIOGRAPHY

- [1] M. Brelot: Sur l'allure à la frontière des fonctions harmoniques, sousharmoniques ou holomorphes, Bull. Soc. Roy. Liège. (1939). pp. 468-477.
- [2] M. Brelot: Le problème de Dirichlet ramifié, Ann. Univ. Grénoble, 22 (1946), pp. 167-200.
- [3] S. Kametani: The exceptional values of functions with the set of capacity zero of essential singularities, Proc. Imp. Acad. Tokyo, 17 (1941), pp. 429-433.
- [4] K. Noshiro: On the singularities of analytic functions, Jap. Journ. Math., 17 (1940), 37-96.
- [5] M. Tsuji: On the cluster set of a meromorphic function, Proc. Imp. Acad. Tokyo, 19 (1943), pp. 60-65.

Mathematical Institute, Nagoya University