
ON THE THEORY OF HENSELIAN RINGS, II

MASAYOSHI NAGATA

In a previous paper,υ we studied a general theory of integrally closed

Henselian integrity domains and some properties of Henselian valuation rings.

The present paper is its continuation. The main aim of the present paper is

to study a general theory of Henselian local integrity domains in the present

paper we call a ring o a local ring if o is a quasi-local ring and if the intersec-

tion of all powers of the maximal ideal of o is zero, and in this case we intro-

duce a topology by taking the system of all powers of the maximal ideal as a

system of neighbourhoods of zero.

Chapter I is concerned mainly with integrally closed local integrity domains :

We prove that 1) if a Henselian ring ί) contains an integrally closed quasi-local

integrity domain o, then ί) contains the Henselization of o, provided that the

maximal ideal of ί) lies over that of o and 2) if o is an integrally closed local

integrity domain then its Henselization o* is a local ring which contains o as a

dense subspace here, if o is Noetherian then so is o*, too.

In Chapter II, we prove first the following: Let o be an integrally closed

quasi-local integrity domain and let o* be its Henselization. If p is a prime

ideal of o then J)ΰ* is a semi-prime ideal when o/p is integrally closed, then

jw* is a prime ideal. Then we study the nature of o*/po* and study some proper-

ties of general Henselian integrity domains.

In our treatment we make use of following two lemmas*. 1) If an in-

tegrity domain o is finitely generated (over a prime integrity domain), then

for any prime ideal Ίp of the integral closure o of o in its quotient field, pjp is

Noetherian.

2) Let o be a Noetherian local integrity domain. If the completion of o

has no nilpotent elements, then the integral closure Ίo of o in its quotient field

is a finite o-module. These lemmas will be discussed in Appendix.

Received September 30, 1953.
*> On the theory of Henselian rings,- Nagoya Math. J. 5 (1953), pp. 45-57, which will be

referred as [H.R.] in the present paper.
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Chapter I. Henselizations of integrally closed

local integrity domains

§ 1. A lemma on finite module over a ring

When o is a ring, the intersection of all maximal ideal of o will be called

the /-radical of o. Then it is evident that if m is the /-radical of a ring o, every

element a of o such that α = l mod m is a unit in o. Therefore we can show

LEMMA 1.2) Let o be a ring and let m be its J-radical Let M be a finite

^-module. If Mm = M, then M= (0).

Proof. Let ui, . . ., un be a basis of M over o. Then we have m

^'ΣaijUj, aijEiiu (l^i^n). Let d be the determinant \δij-aij\ (where δij
3

denotes the Kronecker δ). Then it is evident that d = l mod m. Therefore d

is a unit in o. On the other hand, it is evident that duj = 0 for each j , whence

Uj = 0 for each /. Thus we see our assertion.

COROLLARY. Let ni and o be the same as above. Let M be a finite o-module.

If N is a sub-o-module of M such that N+ Mm = M, then M= N.

Proof Set M = M/N. Then Mm = M and M is a finite o-module. There-

fore M = (0), that is, M=N.

§ 2. Quasi-decompositional extensions

DEFINITION. A decompositional extension o' of an integrally closed integrity

domain o with respect to its prime ideal p is an integrally closed integral ex-

tension of o such that there exists a separable normal extension o" of o in which

there exists a prime ideal J) such that o' becomes the decomposition ring of p

with respect to o and p Π o = p. The prime ideal pΓ)o' is called a characteristic

prime ideal of this extension.

DEFINITION. Let o be an integrally closed quasi-local integrity domain with

maximal ideal p. An integral extension 3 of o is called a quasi-decompositional

extension of o, if 3 is obtained by adjoining an element a which is a root of

an irreducible monic polynomial xr + dιxr~ι + . . . 4- dr over o and if dr is in p

and dr-i is not in p. Such an element a is called a characteristic element of

this extension and the maximal ideal (p,a)$ is called the characteristic prime

2> This lemma and the corollary were proved in Nagata, On the structure of complete
local rings, Nagoya Math. J. 1 (1950).
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ideal of this extension.

Remark. Since 0= Umod (p, <z)3) is a simple root of xr-f dixr~x -f . . .

Λ dr mod p, a is a simple root of #r-f d\Xr~x + . . . +dr. Therefore we see

that this polynomial / - f d / ~ 1 + . . . -\-dr is separable.

Now we prove

THEOREM 1. Let o &e αw integrally closed quasi-local integrity domain with

maximal ideal p. Assume that 3 = oE<2ll is a quasi-decompositional extension of

o with characteristic element a. Set m = (p,a)3. Then 3m is integrally closed.

If moreover o is a local ring, then 3m is a local ring and contains o as a dense

subspace.

Proof. (1) We first assume that o is a local ring and we will prove that

3m is a local ring and contains o as a dense subspace: It is evident that 3/w

= o/p. Let fix) = xr~\- dix7"1 -\- . . . Λ-dr be the irreducible monic polynomial

over o which has a as a root. Set a! - — {ar^ + diar~2 + . . . + A -i). Then

since J r-i φ p, # G m, we see that a1 is a unit in 3m. Since dr G p, we see that

0 is in p3m, which shows that p3m = ni3m Next we show that m*3m Π o E p*

for any natural number k. Let b be an arbitrary element of mfe3mΠo. Since

mk is a primary ideal of 3> m*3m Π 3 = m*. Since tπ = (p, β) 3 ? ^ can be ex-

pressed as follows: b-bo-\-b±a+ . . . +bua
u, bi G p*~f if k — i>0, bk, . . . ,

«̂ G o. Since aaf -dr^p, we can write bafU = ̂ 0 + ̂ i« + . . . -f er-iar~1 (a e p/e).

Then spur (te'*) = Σ spur (e/αOep*. On the other hand, spur (to'1*)

= Z> (spur (a'u)). Therefore if we show that spur (a'u) is not in p, we complete to

show that m^3m Π o i / . Thus we will show that spur (afU) is not in p: Let

α = 0i, α2, . . . , flr be the totality of roots of fix). Then it is evident that a!

— 02 ar. Let o be an almost finite separable normal extension of o contain-

ing a. Let p be a maximal ideal of o which lies over m. Then a is in p and

0' = 02 -ar is not in p. Now, spur ( f l ' " )=Σβf 0?-i0?+i * "0?, whence
i

spur (0'M) =0? «? = 0>M mod ρr. Therefore spur(<3'M) is not in p', hence it is

not in p. Thus we see that mέ3m(Ίo E pk. Since the inverse inclusion ni*$m

Π o i / is evident, we see that m^3m Πo = / for any natural number k*] Since

Γ\pk=(O) and since 3m is algebraic over o, we see also that Πm^3m~(0),

3 ) This equality holds in general without assumption that o is a local ring.
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which shows that 3m is a local ring. Further, it follows easily that o is a

dense subspace of 3m from 3m/m3m = 3/m = o/p and m*3?mΠo = }>* (for any

k).

(2) Let o' be the integral closure of 3 in its quotient field. We show that

mo' has only one prime divisor: Let o be again an almost finite separable

normal extension of o containing o' and let mi, . . . , m* be the totality of prime

divisors of mo. We denote by G the Galois group of o" over o and by H the

subgroup of G which corresponds to o'. Then it is evident that if σ £ G and

if a & H then m° contains a° ( # # ) and therefore m,? is not any of my. There-

fore if σ e G and if m,? is one of my, then aEiH. Since there exists an ele-

ment a of G such that m,? = my for any given pair (i, j)9 nϊi, . . . , rΰt are transi-

tively transposed by elements of H. Therefore mi Π o' = my Π o; for any j , be-

cause H is the Galois group of "o over o'. This proves that mo' is contained in

only one maximal ideal p1 = m"i Π o'.

(3) We prove our assertion when o is Noetherian: With the same no-

tation as in (2), we have only to show that o^ = 3xn, by virtue of (1). Since

ΰf is separable over o and since o is Noetherian, it is evident that o' is a finite

o-module. Let S be the complementary set of m with respect to $. Then

since mo' has the unique prime divisor p', oi is a local ring with maximal ideal

p'o's, whence Op, = 0̂ . Therefore we see that o(y is a finite Onrmodule.

(3, a) When o' is a decompositional extension of o with characteristic

prime ideal pf: By Theorem 1 in [H.R.], we see that pΌp, = pop, and ofpf/po^ = o/p

= θm/mΰ'm. Therefore we have that mop, + 3m = Op/. Since o'p* is a finite 3m-

module, we see that Op* = 3m by virtue of Lemma 1.

(3, b) Now we treat the general case (under the assumption that o is

Noetherian). We use the same notations as in (2). Let o be the decomposition

ring of mi.4) Then by (3, a) above, we see that δfπ (where ίτί = oΠmi) contains

o and of as dense, subspaces, which shows that Op, contains o as a dense subspace.

Therefore we see that mof = pΰp, = pΌp,. Thus we see also in this case that

roop/-f-3τn = θp/, and we see that Cy coincides with 3m.

(4) Now we prove our theorem in general case. By virtue of (1) above,

we have only to show that 3m is integrally closed. Let b/c {b, c e 3, c # 0)

4> In this case, the decomposition ring £ of uu over o is the decomposition ring of nu
over o' as will be easily seen from arguments in our proof in (2).
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be an element of the quotient field of 3 which is integral over 3m * (b/c)n

-\ Cι(blc)n~ljr . - . -f c« = 0 (c, ε 3 m ) . Choose an element d of 3 which is not

in m so that a J G 3 for any L Considering bd/c instead of b/c, we may as-

sume that Ci, . . . , cn are in 3. Then we can write b — ίo-h ha -f- + tr-\ar~x,

c = uo + uχa+ . . . +Wr-i0 r ~ 1

? Cι = t;, fo + t;j,iβ-f . . . Λ-Vi%r-\ar~1 (tj, Uj, tι, , y e o ) .

Let 3 ' be the subring of o generated by 1, to, . . . , *r-i9 «o, . . , #r-i, #i,o,

. . . , vUr-u V2,o, . . . , vn,r-u and let 3 " be the integral closure of 3 ' in its

quotient field. Set m" = p Π 3' ' and consider 3* = 3"m". Then since 3 ' is

finitely generated, 3* is Noetherian (for the proof, see Appendix §2). There-

fore by (3), we see that b/c is in 3*M(mr,8*[a3>> which shows that b/c is in

3m Therefore 3m is integrally closed and our proof is completed.

COROLLARY 1. Let o be an integrally closed quasi-local integrity domain

with maximal ideal p. Assume that o' is an almost finite decompositional exten-

sion of o with respect to p. Let p' be a characteristic prime ideal and let a be

an element of pf which is in none of maximal ideals of o' other than p1. Set 3

=-- o M , m = pf Π 3 Then we have tp, = 3rrt. When, in this case, o is a local

ring, then o'ψ is a local ring and contains o as a dense subspace.

COROLLARY 2. Let o, p, of and pf be the same as in Corollary L Let a' be

an element of o' which is not in pf and is in every maximal ideal of o' other

than p'. Set 3 ' = oLV] and m' = p' Π 3 ' . Then of - 3m-

Proof. Set « = α'~spur (a1). Then it is evident that this a satisfies the

condition of a in Corollary 1.

§ 3. Henselizations of integrally closed local integrity domains

THEOREM 2. Let o be an integrally closed quasi-local integrity domain with

maximal ideal p and let ί) be a Henselian ring which contains o as a subring.

If the maximal ideal 2R of f) lies over p (i.e., 9ttΠo = J>), then f) contains the

Henselization o* of o (up to an isomorphism over o). When o is a local ring, o

is a dense subspace of o*.

Proof. Let f be the totality of pairs (r, a) of εubrings r of f) and isomor-

phisms a such as 1) r is an integrally closed quasi-local integrity domain (and

531 lies over the maximal ideal of r), 2) a is an isomorphism from r into the

Henselization o* of o. In f we introduce a partial order as follows: (rj, σi)

= (r2, o2) if and only if i) rx is a subring of r2 and ii) σι is the restriction of
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a2 in ri.5) Then as is easily seen, f is an inductive set. Therefore by Zorn's

lemma, we see easily that there exists a maximal member (r', a1) in f. If r'

is not Henselian, then we have easily a contradiction by virtue of Theorem 1.

Therefore r' must be the Henselization of o. Now we assume that o is a local

ring. Let f be the subset of j which is consisted all of (r, a) such that r con-

tains 0 as a dense subspace. Then it will be also easy to see that f is also

inductive. Therefore there exists a maximal member U", σ") in ]'. If r" is not

Henselian, we have easily a contradiction by Theorem L whence r" must be

also the Henselization of o, which shows that the Henselization of o contains o

as a dense subspace.

COROLLARY. Let o be an integrally closed local integrity domain with maxi-

mal ideal p. If o' is a decompositional extension of o ivith respect to p and with

characteristic prime ideal pf, then of is a local ring and contains o as a dense

subspace.

Proof is easy if we observe that the Henselization of of is the Henseliza-

tion of o.

THEOREM 3. If o is an integrally closed Noetherian local integrity domain,

then the Henselization o* of o is Noetherian (and contains o as a dense subspace).

Proof. Let "o be the completion of o. Then we may consider "o also as the

completion of o*, by Theorem 2. Since "o is Noetherian, we have only to show

that if a is an ideal of o* which has a finite basis then αo Π o* = α. Let a\9 . . . ,

an be a basis of α and let b be an element of no Π o*. We may assume that

aι, . . . , an and b are integral over o. Then we can find a finite decomposi-

tional extension o' of o with respect to the maximal ideal p of o, such that aί9

. . . , an, b are in o' and that p1 = po* Π o' is a characteristic prime ideal of this

extension. Then by Theorem 2 we see that of is contained in o* as a dense

subspace. Therefore "o is also the completion of of. Since of is Noetherian,

(<2i, . . . , β«)"oΠof = (al9 . . . , αrt)of. Therefore b&{au . . . , tfΛ)of, which

shows that b e αo Π o*. Therefore αo Π o* = α.

By virtue of this theorem, when we consider completions of integrally

closed Noetherian local integrity domains, we may consider the completions of

the Henselizations of the given local integrity domains. In this sense, it will

5 ) It will be not hard to see that (r, σ) ^ (r'f σ'j if r ϋ r'.
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be important to consider a problem that under what condition Henselian local

integrity domain is algebraically closed in its completion.65 Here we will prove

some lemmas concerning algebraically closedness of Henselian local integrity

domains in their completions:

DEFINITION. Let o be a local integrity domain. Then: (1) We say that o

is algebraically closed in its completion o if "o is an integrity domain and if

every element α of o which is algebraic over o is already in o. (2) We say

that o is separably algebraically closed (or purely inseparably algebraically

closed) in its completion o" if o" is an integrity domain and if every element a

of o" which is separably algebraic (or purely inseparably algebraic) over o is

already in o.

LEMMA 2. Let o be a Noetherian Henselian local integrity domain. If o is

algebraically closed (or separably algebraically closed or purely inseparably alge-

braically closed) in its completion, then so is the integral closure o' of o in its

quotient field and o' is a finite ^-module. Conversely, if o' is a finite o-module

and if o' is algebraically closed (or separably algebraically closed or purely in-

separably algebraically closed) in its completion, then so is o, too.

Proof. Assume that o is algebraically closed in its completion o. Then it

is easy to see that o' is a finite o-module (for the proof, see Appendix, §1).

Assume that an element a of the completion c' of o' is algebraic over o'. Let

d be an element of o such that do' ϋ o (d*0). Then da is algebraic over o

and is in o. Therefore we see that da is in o and therefore a is in the quotient

field L of 0. Since o; = LΓio' (for the proof, see Appendix, §1), we see that a

is in o'. Thus we see that o' is algebraically closed in o'.7) Conversely, assume

that o' is a finite o-module and that o' is algebraically closed in its completion

δ'. Since o ϋ o', o is an integrity domain. If an element a of o is algebraic over

o, then a is algebraic over o' and therefore a is in o', hence a is in L. Since

o = LΠo, we see that a is in o. Separable case or purely inseparable case can

be treated similarly.

LEMMA 3. Let o be a Noetherian Henselian integrity domain. Then o is

6> As was shown in [H.R.], there exists a valuation ring which is not algebraically closed
in its completion. Some sufficient conditions for our problem will be shown in a latter paper.

7) Since do' ϋ d, that o' is an integrity domain is evident.
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algebraically closed {or separably algebraically closed or purely inseparably alge-

braically closed) if and only if for any finite integral {or separably integral or

purly inseparably integral) extension o' of o such that o' = o[α] by an element a

of o', the completion of o' is an integrity domain.

Proof. Assume that o is algebraically closed in its completion. Let o" be

the integral closure of o in its quotient field. Then by Lemma 2, o" is algebrai-

cally closed in its completion "o". Let fix) be the irreducible monic polynomial

over o" which has a as a root. Then since o" is algebraically closed in o",f{x)

is irreducible over the quotient field of o". Therefore the completion of o'Έdϋ

is an integrity domain, whence so is the completion of o M = o'. Conversely,

assume that o is not algebraically closed in its completion o. Then there exists

an element a of o" which is integral over o and is not in o, when o is an integrity

domain. Then the completion of o M is not an integrity domain. For the case

when o is not an integrity domain, our assertion is evident Separable case or

purely inseparable case are settled similarly.

COROLLARY 1. If a Noetherian Henselian integrity domain o is algebraically

closed {or separably algebraically closed) in its completion, then so is any sepa-

rable finite integral extension of o.

COROLLARY 2. Assume that a Noetherian Henselian integrity domain o is

algebraically closed in its completion. If o is of characteristic zero, then any

finite integral extension of o is algebraically closed in its completion.

COROLLARY 3. Assume that a Noetherian local integrity domain o is sepa-

rably algebraically closed in its completion. If o' is a finite integral extension of

o, then the zero ideal of the completion of o' is a primary ideal.

COROLLARY 4. If a class © of Noetherian local integrity domains satisfies

the following three conditions, then every member of © is algebraically closed

in its completion:

1) If o is a member of ©, then there exists a local integrity domain o' which

is contained in o such that i) o is a finite tf-module and ii) o' is algebraically

closed in its completion*

2) If D is a member of ©, then every almost finite integral extension of o

is a finite s-module and is in ©.

3) If o is a member of © and if p is a prime ideal of o, then o/p is in ©.
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Proof. Our condition 2) and 3) shows that for every member o of ® the

completion of o has no nilpotent element.8) On the other hand, by Corollary 3

and by condition 1), we see that the zero ideal of the completion of o is a pri-

mary ideal. Thus we see that the completion of o is an integrity domain. This

holds for any member of ©, whence by Lemma 3 and by condition 2), we see

that o is algebraically closed in its completion.

Chapter II. General Henselian integrity domain

§ 4. Preliminaries

LEMMA 4. Let o be an integrally closed quasi-local integrity domain with

maximal ideal p and let q be a prime ideal of o. Assume that an integral ex-

tension 3' = o M is a quasi-decompositional extension of o ivith respect to p and

with characteristic element a. Set m = (p, α ) 3 and 3 * = 3m ; If Q* is a prime

divisor of Q3*, then q* Π o = q.

Proof. Assume the contrary, Then we can find an element b of o which

is not in q and an element c of 3* which is not in q3* such that be G q3*. We

can find an element cf of 3 which is not in m so that cc' G 3, bec' G C|3 Then

we can write cc1 = Co + C\a + . . . -f cr-iar"1 (a ε o , r = E3 : cϋ). Since 1, a, . . , ,

ar~ι are linearly independent over o, bec1 G Q3 shows &rt G q for every /, Since

<1 is prime, c; G q for every * and therefore ccf G q3 which is a contradiction.

Now let o be again an integrally closed quasi-local integrity domain with

maximal ideal p and let q be a prime ideal of o. Let o" be an almost finite sepa-

rable normal extension of o with Galois group G and let q be a prime ideal of

o such that q Π o = q. Further let p be a maximal ideal of o which contains q.

Let J7P and Hq be the decomposition groups of 15 and q respectively and let H

be the subgroup generated by H$ and Hq. Let o' be the integrally closed in-

tegral extension of o which corresponds to H. Set p' = ? Π o1, q' = cjΠ o' and o"

= qp' and let S be the complementary set of q with respect to o. Let b be an

element of pf which is in none of maximal ideals of o' other than p' and set

3 ' = o M , in' = p' Π 3'. Then by Corollary 1 to Theorem 1 we see that o" - 3m'.

Therefore it is evident, by virtue of Theorem 1 in [H.R J and its corollary, that

LEMMA 5. o'/q' is an integral extension of o/q and has the same quotient

field with o/q. Therefore there exists an element cb-d ( C , J G O ) such that cb- d

8 ) See Theorem 4 in Nagata, Some remarks on local rings, Nagoya Math. J. 6(1953).
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e q', c φq and (q, cb - d) o" = q'o".

Now let o be the decomposition ring of p and set p = pΓ\o, q = q Π o.

LEMMA 6. Let a be an element of p which is in none of maximal ideals of

o other than p. Let fix) -xr Λ dιxr~1 Λ . . . + dr be the irreducible monic poly-

nomial over o' having a as a root. Then fix) = (/(#) modq') *s irreducible over

the quotient field L of o'/q'. Therefore q'Op is a -prime ideal.

Proof. By our choice of o', o; is the intersection of the decomposition ring

of p and that of q. Assume that there exist prime ideals of o which lie over

q' other than q let cjΊ, . . . , qs be the totality of them. Let c be an element

of q which is in none of qj. Then it is evident that c is contained in both

decomposition rings of J> and q, which is a contradiction. Therefore q is the

unique prime ideal of o which lies over q'. Therefore fix) = gix)e with an irre-

ducible polynomial gix) over Z. On the other hand, by our choice of a, ia mod

q') is a simple root of fix). Therefore e = l, which shows that fix) is irreduci-

ble over Z.

LEMMA 7. We set o$ = o*. Then qo* is a semi-prime ideal, that is, q£* is

the intersection of all prime ideals of o* which lie over q.

Proof. Let the prime divisors of qo* be < ? * , . . . , q*. Then by Lemma 4

they lie over q. Therefore we see that qo* Π o* = qo* (with the same S as above).

Since o' is contained in the decompositional extension of q, we see that q' is the

primary component of qo' belonging to q' (see our proof of Theorem 1). There-

fore by virtue of Lemma 6, we see that each q* is the primary component of

qo'* belonging q*. We consider 5*/qo*. By Lemma 5 we see that q,*o*/q5* is

generated by an element. Therefore 5*/q5* is a Noetherian ring, and therefore

qofS* = q?o? Π Π q*o*, whence qo* = qf (Ί Πqf.

§ 5. Prime ideals and Henselizations

In the present paragraph, let o be an integrally closed quasi-local integrity

domain and let o* be the Henselization of o. Further Jet p be the maximal ideal

of o and let q be a prime ideal of o.

THEOREM 4. qo* is the intersection of all prime ideals o/o* which lie over q.

Proof. Let q* be a prime divisor of qo*. If q* Π o =*F q, then taking an ele-

ment a of q* Π o which is not in q and an element b of o* which is not in qo>::
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such that ab ε= qo*, we have a contradiction easily by Lemma 4. Therefore

<l*Πo = q. Let α* be the intersection of all prime ideals of o* which lie over

q. Then we see that α* ϋ qo*. Assume that α* =*F qo*. Then taking an element

c of α* which is not in qz*5 we have easily a contradiction by Lemma 7. Thus

we see our assertion.

THEOREM 5. If q* is a prime divisor of qo*, then o*/qo* /s minimal among

Henselian integrity domains which contain o/q α ί̂f whose maximal ideal lie over

p/q. Further if an Henselian integrity domain ί) contains o/q and if its maximal

ideal lies over p/(\, ίftew f) contains a Henselian ring ivhich is isomorphic to o*/q*

with a suitable prime divisor q* of qo*.

Proof. We first prove the last assertion. Let f be the totality of pairs

(r, a) of subrings r of o* containing o and homomorphisms a such that 1) r is

an integrally closed quasi-local integrity domain (and po* lies over the maximal

ideal of r) and 2) a is an homomorphism from r into ί) under which o/p is mapped

identically. Then by the same way as in the proof of Theorem 2, we introduce

a partial order in f. Then it is easy to see that f becomes an inductive set.

Therefore there exists a maximal member (r', σ1) of f. If r' is not Henselian,

then we can find a quasi-decompositional extension x'Zali of r' with a charac-

teristic element a. Let fix) be the irreducible monic polynomial over o having

c a s a root. Then since fj is Henselian, fix) = σ'ifix)) has a linear factor x - a

(and a is in the maximal ideal of ί)). Therefore there exists a homomorphism

o" from t'ίal onto σ'iϊ')[ά~l such that a' is the restriction of σ" in r' and σ"ia)

= ά. Since f) is quasi-local and since a is in the maximal ideal of % we may

consider that a" is an homomorphism from r'Mm' into % where πt' denotes the

maximal ideal of x'ίal containing a. By theorem 1, r 'Mm' is integrally closed,

which is a contradiction to our choice of (r', σf). Therefore r' must be Henselian,

which shows our last assertion. Assume that o*/q* is not minimal. Then there

exists a Henselian ring f) which is contained properly in o*/q* and whose maxi-

mal ideal lies over p/q. Then by above proof, we see that § contains o*/q* by

a suitable prime divisor q* of qo*. Therefore a contradiction will be easily

shown by the following

THEOREM 6. There is a one to one correspondence between maximal ideals

of the integral closure o' of o/q in its quotient field and the prime divisors of
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qo*: If a maximal ideal pf of o' and a prime divisor q* of qo* correspond to

each other, then the integral closure of o*/q* in its quotient field is the Henseli-

zation of θp>.

Proof. Let o be the totality of separably algebraic element over o (in an

algebraically closed field containing o) and let G be the Galois group of o over

0. Let 5 be a maximal ideal of o. Let o be the decomposition ring p and set

p = p Π o. Then we may assume that o* = tfp. On the other hand let q be a

prime ideal of o which lies over q. Let Hq and Hp be the decomposition groups

of q and p respectively. Now we will show the following lemmas:

LEMMA 8. The Galois group of o/<\ over o' is a homomorphic image of Hq.

Proof It is evident that every element of Hq induces an automorphism

of o7q over o'. For the converse, considering ΰq instead of o, we may assume

that q is maximal. Then by the same way as in the case of algebraic integers,

we can prove our lemma.

LEMMA 9. The totality of maximal ideals of o which contain q and whose

residues modulo q contains the maximal ideal p' of o' is {ρHvoH(*} with an ele-

ment a of G.

Proof is easy by virtue of Lemma 8 and by Lemma 1 in [H.RJ,

On the other hand, it is evident also that

LEMMA 10. Let q* be a prime divisor of qo* and set q = q* Π o. Then the

totality of prime ideals of o which are contained in ~p and lie over q is

{qHQ"HP} with an element τ of G.

Now we will proceed our proof of Theorem 6: By Lemma 9, we can give

a one to one correspondence between maximal ideals p' of o' and two-sided

classes H^oHq of G as is given there. We take a maximal ideal pΌ of o'. Then

by a rechoice of p, we may assume that pΌ corresponds to HpHq (and that 15

contains q). Now by Lemma 10, we can find a one to one correspondence be-

tween prime divisors of qo* and two-sided classes HqzHp of G as is given there.

Since we can give a one to one correspondence between two-sided classes HpσHq

and two-sided classes HqτHp such that HpσHq corresponds to Hqo~ιH$, we can

give a one to one correspondence between maximal ideals of o' and prime di-

visors of qo*. Assume that a maximal ideal p1 of o' corresponds to a prime di-
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visor q* of qo* by the correspondence given above. Let HpaHq be the two-sided

class which corresponds to pf.

1) When HpσHq = HpHq. In this case p' = pΌ by our choice. Set q =qΠo.

Then it is evident that q* = qo*. On the other hand, it is evident that the de-

composition group of p/q is the homomorphic image of Hq Π Hp by the natural

mapping, whence the Henselization of o$, contains o*/q* and has the same quo-

tient field with o*/q*. It is evident that the Henselization of θp> is integral over

o*/ς*, whence we see our assertion in this case.

2) Now we show our assertion in general case. Considering ψ instead of

p, we construct the Henselization of o* by the decomposition ring of Jf\ Then

the same holds for this case if we consider qσ~x instead of q. Therefore we see

our assertion also in this case.

COROLLARY. If o/q is integrally closed, then qo* is a prime ideal and o*/q*

is the Henselization of o/q and therefore, in this case, o*/q* is integrally closed.

Remark. This corollary can be proved directly by Lemma 6 and the fol-

lowing

LEMMA 11. With the same notations as in Lemma 5, if o'/q' = o/q, then qo"

is a prime ideal.

Proof Since o'/q' = o/q, we may assume that the element b, which we chose

in Lemma 5, is in q'. Let fix) = Z + A / " ^ . . . +dr be the irreducible monic

polynomial over o which has b as a root. Then dr is in q and dr-i is not in p.

Set y = δf""1 + rf16
r"2+ . . . H-rfr-i. Then V is not in m, therefore qo" contains

b. Thus we see that qo" is a prime ideal.

Next we show

THEOREM 7. A quasi-local integrity domain ί) is Henselian if and only if

every integral extension of ί) is quasi-local.

Proof. It is easy that if f) is Henselian, then every its integral extension

is quasi-local by virtue of Theorem β.9) Therefore we will show the converse

part of our assertion. Let d be an integrally closed quasi-local integrity domain

which has a prime ideal qi such that Oi/qi = f). Let o* be the Henselization of

9> Making no use of Theorem 6, we can prove this directly; see, G. Azumaya, On maxi-

mally central algebras, Nagoya Math. J. 2 (1950).
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Oi. Since the integral closure fj of ϊj in its quotient field is Henselian, we can

find a prime divisor q* of o* such that o*/q* is contained in §. Let o be a quasi-

local integrity domain which is maximal among integrally closed quasi-local

rings such that 1) they are contained in o*, 2) they contains Oi and 3) the re-

sidue class rings of them modulo q*10) coincides with \ (Exsistence of such o

will be easy by virtue of Zorn's lemma). Now it is sufficient to show that o

is Henselian, because every homomorphic image of Henselian ring is also Hen-

selian. Assume that o is not Henselian. Then we can find a quasi-decompo-

sitional extension o[β] of o with a characteristic element a (which is not in o).

Let o' be the integral closure of o [ d in its quotient field and set p' = p* Γ\o\

where p* is the maximal ideal of o*. Further set q' = q* Π o'. Then since o'/q'

is an integral extension of % o'/q' is quasi-local, which shows that if we denote

by α' the intersection of all maximal ideals of o' other than p', then (α', q')o' = o'.

Therefore we can find an element b of q' which is in none of maximal ideals

of o' other than pf. Then it is evident that o[/>] is a quasi-decompositional ex-

tension of o with a characteristic element b and that b is not in o. Therefore

we may assume that b = a. Then it is evident that oM/q* Π oW = ί). There-

fore we see that OpYq* Π o^ = % because Oy = oMm with m = p1 Π oίά} by virtue

of Theorem 1. Since Op/ is integrally closed and is contained in o*, we have a

contradiction. Thus we see that o is Henselian and therefore we see our as-

sertion.

§ 6. Supplementary remarks

I) We may define the Henselization of a quasi-local integrity domain o as

follows: Let o' be an integrally closed quasi-local integrity domain with a prime

ideal q such that o'/q = o. Let o* be the Henselization of o'. Then we call o*/qo*

the Henselization of o.

We can prove easily the uniqueness of the Henselization in this sense.

II) Theorem 5 shows in particular the following assertion, which will be

useful to the theory of local rings:

With the same o, q, o* as in § 5, if there exists an integrally closed quasi-

local integrity domain o' such that o /q is a ring of quotients of a finite integral

extension of o' with respect to its maximal ideal, then o*/q* is a finite module

10) This means "modulo the ideal which is the intersection of q* with the ring of con-
sideration."
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over the Henselization of or, where q* is a prime divisor of qo*.

III) Lemma 2 in [H.R.] can be generalized as follows:

LEMMA A. Let o be an integrally closed integrity domain with a maximal

ideal p. Assume that o' is an almost finite separable integral extension of o ivhich

is integrally closed. Let pΊ, . . . , ph be the totality of maximal ideals of o' which

He over p. If an element a of o' is not in p[ and is in every one of pi, . . . , ph,

then a satisfies an irreducible monic polynomial fix) = xr + dιXr~1-{- . . . + dr

such that d\ φ p, d2, . . . , dr G p.

Proof Let o" be an almost finite separable normal extension of o contain-

ing o'. Let G be the Galois group of o and let H be the subgroup of G which

corresponds to o'. Let p be a maximal ideal of o which lies over p[. Then

{pH} is the totality of maximal ideals of o which lie over p[. We may assume

that the quotient field of o' is generated by a over the quotient field of o. Then

cC — a iσ EE G) if and only if σ 6= H. Therefore any conjugate of a which is dif-

ferent from a is in p. Therefore we see our assertion easily.

LEMMA B. Let o, p, of, p[, . . . , pΉ be the same as in Lemma A above. If

an element b of p[ is in none of pί, . . . , p\ϊ9 then b satisfies an irreducible monic

polynomial fix) = xr + eιx7"1 Λ- . . . -her over o such that er^p and er-i Φ p.

Proof is similar to that of Lemma A.

COROLLARY. With the same notations as above, a and b are in the decompo-

sition ring of p.

IV) Here the writer wishes to add two conjectures on completions of Hen-

selian local integrity domains:

Co?ιjecture 1. If o is a Noetherian Henselian integrity domain, then the

zero ideal of the completion of o is a primary ideal.

Conjecture 2. There exists a Noetherian integrally closed Henselian in-

tegrity domain such that its completion is not an integrity domain.

Remark. Conjecture 1 has much relation with the following problem:

"Let o be a Noetherian local integrity domain. Then does the number of

maximal ideals of the integral closure of o in its quotient field coincide to the

number of prime divisors of zero of the completion of o? Has the zero ideal
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of the completion of o no imbedded prime divisor ?'?

As for the second conjecture, it is equivalent to the following problem:

"is there exists an integrally closed Noetherian local integrity domain

whose completion is not an integrity domain ?"

Appendix

§ 1. Finiteness of integral closure

PROPOSITION 1. Let o be a Noetherian complete local integrity domain.

Then the integral closure of o in its quotient field is a finite o-module.

Since this is an assertion properly concerned with the theory of local rings,

the writer wishes to write a proof of this assertion in a latter paper on local

rings.Π) Therefore we omit the proof in the present paper.

LEMMA 12. Let o be a Noetherian local integrity domain and let K be the

quotient field of o. Let o be the completion of o. Then o Π i ί = o .

Proof. Assume that alb {a, b G o, b # 0) is in o. Then a is in bo. Since

^ Π o = bo, we see that a is in bo, whence alb is in o. Thus we see our as-

sertion.

Now we prove

LEMMA 13. Let o be a Noetherian local integrity domain. Assume that the

completion o of o has no nilpotent element. Then the integral closure o' of o in

the quotient field K of o is a finite o-module.

Proof. Assume the contrary. Then we can find an infinite ascending chain

of subrings on of o' which begins from o = oo, such that each on is a finite o-

module. Then as is well known, the completion o» of on is imbedded in the

total quotient ring of o. Since on are integral over o and since o is a subdirect

sum of complete local integrity domains, there exists a number n such that

o»+i = On by Proposition 1. Then by Lemma 12, we see that oM+i = on, which is

a contradiction.

§ 2. Finitely generated integrity domains

We say that a local ring o is of finitely generated type, if o is a ring of quo-

tients of a finitely generated ring (over a prime integrity domain) (with respect

Some remarks on local rings II, Memo. Kyoto.
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to its prime ideal).

We say that a local ring o is of finitely generated type over its subring o>

which is a local ring, if there exists a finitely generated subring o" over o' such

that o is a ring of quotients of o" with respect to its prime ideal which lies-

over the maximal ideal of o'.

Now to prove the lemma, which is stated in the introduction, on finitely

generated integrity domains, it will be sufficient to show the following

LEMMA 14. // a local integrity domain o is of finitely generated type, then

the integral closure of o in its quotient field is a finite o-module.

Before proving this lemma, we must prove some preliminary results:

LEMMA 15. Let k be a field and let xu * - . , Xn be algebraically independent

element over k. Then 1) every maximal ideal of k\_Xu - > Xnl can be generated

by n elements and 2) if p is a prime ideal of kίxi, . . . , xnl then rank p +dim p

= n and dimp is equal to the transcendence degree of kLxu , Xnlp over k.

Proof. The first assertion is evident and the second one can be proved

easily by Noether's normalization theorem.12)

LEMMA 16. Let t> ba a discrete valuation ring with a prime element p and

let Xι, . . . , Xn be algebraically independent elements over t>. Then any maximal

ideal m of Ό{.Xi, . . . , xΰ\ which contains p is generated by n + 1 elements, whence

t>Dti, . . . , Xnlm is a regular local ring of dimension n-\ l.

Proof Set k = t>/pύ. Then applying Lemma 16 we see our assertion easily*

Since it is well known that if o is a regular local ring then for any prime

id^al p of o rank p + dim p - dim o,13) we see easily the following

COROLLARY. Let q be a prime ideal of ΰLxi, . . . , Xnl such that (q, p) does

not contain identity. Then rankq-j-dimq = n + 1 , dimq = dintφlxi, . . . , Xnlm

for any maximal ideal m containing q and p.

Now since a finitely generated ring over to is a homomorphic image of a

polynomial ring (in a finite number of indeterminates), it will be easy to see

l2) It must be a generalized assertion also for the case of finite field. A proof of such
generalization was given in a previous paper 1. c. note 8).

13> See, for inst., W. Krull, Dimensionstheorie in Stellenringen, J. Reine Angew. Math. 179
(1938).
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the following assertion by virtue of the corollary to Lemma 16:

THEOREM 8. Assume that a local integrity domain o is of finitely generated

type over a discrete valuation ring ti. Let d be the transcendence degree of the

residue field of o over that of &. Then the transcendence degree of o over b is

equal to d+ dim o — 1.

Remark. If we consider a local integrity domain o which is of finitely

generated type over a field k. then we see easily that the transcendence degree

of o over k is equal to the sum of the dimension of o and the transcendence

degree of the residue field of o over k.

On the other hand, it is easy to find a discrete valuation ring t>', for a local

integrity domain o which is of finitely generated type over a valuation ring D,

such that 1) to' is a subring of o and 2) o is of finitely generated type over t)'

and the residue field of o is a finite algebraic extension of that of t>': Such a

valuation ring t>' is called a basic ring of o. Then Theorem 8 shows in particu-

lar the following

PROPOSITION 2. Assume that a local integrity domain o is of finitely gener-

ated type over its basic ring Ό and let p be a prime element of Ό. If p, xx>

. . . , xn is a system of parameters of o, then o is algebraic over t>[>i? - . . , Xnl.

Next we consider a discrete valuation ring t> which has only countably many

elements (here we assume that D is of rank 1). Let xu . . , Xn be algebrai-

cally independent elements over i> and let o be a local integrity domain which

is a ring of quotient of t>[#i, . . . , xn~\ with respect to a maximal ideal m which

contains a prime element p of Ό. Then o is an integrally closed Noetherian

local integrity domain and has only countably many elements. Let o* be the

Henselization of o. Then we can find a sequence of subrings o, of o* such that

1) each o, is a finite decompositional extension of o with a characteristic prime

ideal pi, 2) ^ C o , +i f t+l for each i and 3) the union of all o^ coincides with

ô  (existence of such sequence is easy because the algebraic closure of the field

of quotients of o has countably many elements). Therefore, for this o, we can

prove easily our assertions in the present paper (in Chapters I and II), making

no use of the lemma which we want to prove.

By the same reason, we see that our results in the present paper holds

good for regular local rings which are of finitely generated type over a finite
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neld.Π)

On the other hand, we can prove

PROPOSITION 3. Let r be a Henselian regular local ring and let m be its

maximal ideal. Assume that r satisfies the following two conditions:

1) If p is a minimal prime ideal of r, then any finite integral extension of

x/p is algebraically closed in its completion.

2) Any almost finite integral extension of r is a finite r-rnodule.

Then r is algebraically closed in its completion.

And then

PROPOSITION 4. Let r be a regular local ring of finitely generated type over

a (finite) field. Then the Henselization of r is algebraically closed in its com-

pletion.

And at last

PROPOSITION 5. Let ΰ a local integrity domain which is of finitely generated

type. Let t) be a basic ring of o. We assume that t) is not a field but a discrete

valuation ring of characteristic zero let p be a prime element of Ό. If p, χu

. . . , xr is a system of parameters of o, then the Henselization of r = &[>i, . . . ,

Xrlιρ,χίt...,xr) is algebraically closed in its completion and for any imbedding of

o in an algebraic extension of the Henselization r* of r, r * M is a finite module

over r. And furthermore, the completion of o has no nilpotent element.

Proofs of them will be stated in a latter paper (1. c. note 10)).

Now by the last statement in Proposition 5, we see the assertion in Lemma

14, by virtue of Lemma 13.

Added in proof. The writer found a better proof of Lemma 13 than that

given here, which will be contained in a latter paper on algebraic geometry

over Dedekind domains.

Mathematical Institute,

Kyoto University

U) When an integrally closed quasi-local integrity domain o contains a field, then con-
sidering a finitely generated subring over a subfield of o, we can pτove our results in the
present paper, also without making no use of the lemma which we want to show now.






