CORRECTIONS TO MY PAPER "ON THE STRUCTURE OF COMPLETE LOCAL RINGS" ${ }^{1)}$

MASAYOSHI NAGATA

The proof of Proposition 2 and that of Corollary to Proposition 3 in my previous paper "On the structure of complete local rings" ${ }^{1)}$ are not correct." Here we want to correct them.

Proof of Proposition 2.
Since the previous proof of Proposition 2 is valid when R / m is perfect, we treat only the case when R / m is not perfect.

Starting from $K_{0}=R / \mathrm{m}$, we obtain $K_{n}(n=1,2, \ldots)$ from K_{n-1} by adjoining all p-th roots of elements of K_{n-1}.

Definition. Let a local ring R_{1} with maximal ideal m_{1} be a subring of another local ring R_{2} with maximal ideal m_{2}. We say that R_{2} is unramified with respect to R_{1} if $m_{2}=m_{1} R_{2}$ and $m_{2}^{k} \cap R_{1}=m_{1}^{k}$ for every positive integer k.
(1) Equal characteristic case.

We construct a sequence of local rings $R=R^{(0)} \subset R^{(1)} \subset$. . . such that (1) $R^{(n)}$ is unramified with respect to R, (2) $R^{(n)} / \mathrm{m} R^{(n)}=K_{n}$ and (3) $\left(R^{(n)}\right)^{p} \cong R^{n-1)}$.

The existence of such a sequence obviously follows from Zorn's Lemma if we observe that a monic polynomial $f(x)$ over a local ring, say R^{*}, is irreducible mcdulo its maximal ideal, then $R^{*}[x] /(f(x))$ is unramified with respect to R^{*}. (We may use the p-basis).

Let S be the union of all $R^{(n)}$. Then S is a local ring unramified with respect to R. For every element a^{*} of R / m. we construct a sequence $\left(a_{n}\right)$ as follows: Let b_{n} be a representative of $a^{* p^{-\prime "}}$ in R_{n} and set $a_{n}=b_{n}^{p_{n}^{n}}$. Then $a_{n} \in R$ and the limit a, which is the multiplicative representative of a^{*}, is in R. Thus we have Proposition 2 in this case.
(2) Unequal characteristic case.

As in above, we construct a sequence of local rings $R=R^{(0)} \subset R^{(1)} \subset \ldots$ satisfying the above conditions (1) and (2) as follows: Let $\mathfrak{M}=\mathfrak{M}^{(0)}$ be a sys-

[^0]tem of representatives of a p-basis of $M R / \mathfrak{m}$. Let $\mathfrak{P}^{(n)}$ be, when $\mathfrak{M}^{(n-1)}$ is already given, a set such that (1) for every element of $\mathfrak{P}^{(n-1)}, \mathfrak{P}^{(n)}$ contains one and only one p-th root of it and (2) $\mathfrak{M}^{(n)}$ consists merely of p-th roots of elements of $\mathbb{M}^{(n-1)}$. Set $R^{(n)}=R\left[\mathbb{M}^{(n)}\right]$.

Let S be the union of all $R^{(n)}$ and let \bar{S} be its completion. Then we see easily that the multiplicative representative of an arbitrary element of \mathfrak{P} is itself. Let R_{0} be the absolutely unramified local ring which is generated by multiplicative representatives for R / m. Now, for our purpose, it is sufficient to prove the following.

Lemma. For every element a of R_{0}, there exists an element a_{n} of R such that $a \equiv a_{n}\left(\bmod . \mathrm{m}^{n} \overline{\mathrm{~S}}\right)$.

Proof. For $n=1$, our assertion is evident. We assume that this is true for $n=r$ and we prove the case $n=r+1$. Since $R_{0} /(p)=R / m=\left(R_{0} /(p)\right)^{p r}(M)$, we can find an element $c_{1}=\sum_{i} b_{i}^{\Delta r} m_{i}$ (where $b_{i} \in R_{0}$ and m_{i} is a monomial on elements of \mathfrak{M}) such that $a=c_{1}+p c_{2}\left(c_{2} \in R_{0}\right)$. Let b_{i}^{\prime} be an element of R such that $b_{i} \equiv b_{i}^{\prime}(\bmod . m \bar{S})$ and let c^{\prime} be an element of R such that $c \equiv c^{\prime}$ (mod. $m^{r} \bar{S}$). Then $a_{n}=\sum_{i} b_{i}^{\prime p^{r}} m_{i}+p c^{\prime}$ is a required element.

Proof of the Corollary to Proposition 3.
As is obvious, we have only to treat the case when \bar{R}_{0} is of characteristic 0 and $p \neq 0$. Let B be a complete valuation ring (of characteristic 0) such that $B /(p)=\bar{R}_{0} /(p)$.
(1) When $\bar{R}_{0} /(p)$ is perfect:

Let $\left\{\bar{y}_{\lambda}\right\}$ be a transcendental basis for $\bar{R}_{0} /(p)$ over the prime field. Then we can find its multiplicative representative systems $\left\{y_{\nu}\right\},\left\{z_{\lambda}\right\}$ in \bar{R}_{0} and B. Then we can identify z_{λ} with y_{λ}. The same holds for $\left\{\bar{y}_{\lambda}^{p^{-n}}\right\}$ and the similar identification allows the above identification of y_{λ} and z_{λ}. Therefore we may consider that \bar{R}_{0} and B contains the same complete valuation ring B_{1} such that its residue field is the least perfect field containing $\left\{\bar{y}_{\lambda}\right\}_{\text {. S }}$ Since $\bar{R}_{0} /(p)$ is separably algebraic over $B_{1} /(p)$ and since B is complete, we see that B and \bar{R}_{0} are isomorphic over B_{1}.
(2) General case :

Considering \bar{R}_{0} as R in the above proof of Proposition 2, we construct the valuation ring $\overline{\mathrm{S}}$. Let K be the largest perfect subfield of $\bar{R}_{0} /(p)$. Then using multiplicative representatives for K in \bar{R}_{0} and B, we see that \bar{R}_{0} and B contain, respectively, complete valuation rings B_{1} and B_{1}^{\prime} with the same residue field K. Then by (1), we may identify B_{1}^{\prime} with B_{1}. Further, we may assume without loss of generality that \mathfrak{M} ($=$ a system of representatives of p-basis in \bar{R}_{0}) is also contained in B. Then our assertion follows immediately by our above
proof of Proposition 2.
Errata:
p. 63, $l .21$ and p. 64, l.27; For "form" read "forms", p. 66, Proposition 2; For "with maximal ideal" read "with maximal ideal m", p. 69, Proposition 7; For "With these conditions" read "If these conditions".

Mathematical Institute, Nagoya University

[^0]: Received 26 July, 1952.
 ${ }^{1)}$ Nagoya Math. Journ. 1 (1950), pp. 63-70.
 2) Prof. I. S. Cohen (Massachusetts Institute of Technology, U.S.A.) pointed out the error of the proof of Proposition 2. I am grateful to him for his kind communication.

