
ON THE THEORY OF HENSELIAN RINGS

MASAYOSHI NAGATA

Introduction, The notion of Henselian rings was introduced by G. Azuma-
ya [ l ] . l ) We concern ourselves in the present paper mainly with Henselizations
of integrally closed integrity domains. Chapter I deals with general integrally
closed integrity domains. As a preparation of our studies, we introduce the
notion of decomposition rings analogously as in the case of fields (§1). And
then we define the notions of (local) Henselian rings and Henselizations of
integrally closed integrity domains, and obtain several results concerning
characterizations of Henselian rings and the uniqeness of Henselizations (§2).

In Chapter II, v/e restrict ourselves to the case of valuation rings. First
we show that although the definition of Henselian rings are concerned with
monic polynomials and the maximal ideal, the Hensel lemma holds also for
non-monic polynomials (§3) and even modulo not necessarily "prime ideals
I with certain conditions) (§5).

Appendix II) gives a proof of a fundamental lemma concerning extensions
of a valuation, which is quoted in § 8 and Appendix (II) shows an example of
a certain type of Henselian, special, discrete valuation ring,

As for the terms, a ring (or an integrity domain) means always commuta-
tive one with identity and a ring which has only one maximal ideal is called
quasi-local.

We refer to the notations as Dp, where o is a ring and p is its prime ideal,
the ring of quotients of p with respect to o.

Chapter I.

General theory of integrally closed Henselian integrity domains.

1. Decomposition rings.

LEMMA 1. Let o be an integrally closed integrity domain with quotient
field K. Assume that Kf is a normal (algebraic) extension of K and let o' be
the totality of o-integers in K'. If p[ and p2 are prime ideals in of such that
pίΠo = p'2Γ)o, then p[ and p2 are conjugate ΐo each other over K.

Proof, When K! is finite over K, our proof is easy,2) while the general

Received December 4, 1951.
J> The numbers in brackets refer to bibliography at the end.

-) Cf. [5, Theorem 5] or the proof of [6, Lemma 1].
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case can be proved easily by transίinite induction.

DEFINITION 1. An over-ring o' of an integrity domain o is called an inte-

gral extension of o it every element of o is integral over o and if o' is an inte-

grity domain.

DEFINITION 2. An integral extension o' of an integrity domain o is said to
be almost ήnlte over o if the quotient field of o' is finite over that of α,

Now let o be an integrally closed integrity domainβ Then every integrally
closed integral extension of of o is the totality of o-integers in the quotient
field of o'. We may use the terminologies such as normal extensions, Galois
groups, decomposition groups and decomposition rings as follows:

DEFINITION 3. An integral extension o' of o is called a normal extension
of o if it is integrally closed and if its quotient field K1 is normal over the
quotient field K of o; and when this is the case, the Galois group G of K is
called the Galois group of of over oβ (It is evident that G is the totality of
automorphisms of o' over o.) Further if pf is a prime ideal of o', the totality
H of elements of G which leave pf invariant is called the decomposition group
of pf with respect to o, which forms a subgroup of G. The decomposition ring
of pf with respect to o is the totality of elements of o; which are left invariant
under every element of H.

Remark, H is a closed subgroup of G. For a proof, assume that an ele-
ment a of G maps pf onto another prime ideal p1". Let a be an element of p*
which is not in pfa, and consider an almost finite normal extension o" of o con-
taining a and contained in o'.* Then clearly (o"Π{)')α = o"Γ\pfa*?o"Γipf, which
shows that a is not in the closure of H in G and this proves our statement.

LEMMA 2. Let o' be an almost finite, separable normal extension of an
integrally closed integrity domain o with Galois group G- Let pf be a prime
ideal of o' and pΌ = pf, p[, . . . , p'n (pi*pj if i*j) be the totality of conjugates
of pf. Let o be the decomposition ring of p* (with respect to o). Then every
element α of o which is not in pf and is in every p) in^j^.l) is a root of an
irreducible monic polynomial fix) such that f(x) = xn(x-~aύ (mod. p'Γio), aι
Eo, βiΞ« (mod. p'Πo).

Proof. Let G = H+ Ha -f . . . + Han (<;/S G), where H is the decomposition
group of p1. Then every conjugate of a is of the form a"* or a itself. By our
assumption aOί&pf ( i = l , . . . , n). Therefore the irreducible monic equation
xn+1 — aiXn— . . -an+ι = 0 (βiGo) satisfied by a satisfies the following con-
dition: βiΞfl (mod. p')9 aj&p9 if j&2. This proves our assertion.

THEOREM 1, Let o' be a separable normal extension of an integrally closed
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integrity domain o. Let pf be a maximal ideal of o' and set p-tfΠo. Let o be
the decomposition ring of pf and set p = p'Γ\o. Then (1) pf is the unique maxi-
mal ideal of of which contains p, (2) p is the primary component of po belong-
ing to p and (3) o/p = o/p.

Proof. (1) follows immediately from Lemma 1 and the remark just above.
To prove the others, we first assume that o' is almost finite over o. Let G be
the Galois group of o' over o and let H be the decomposition group of p'. De-
note by q the primary component of po belonging to p. Let G~H + Hσi-f . . .
-I- Hor. Then p'9 pfO\ . . . , p'°r is the totality of maximal ideals of o' containing
p. We show that if an element a of S is in none of pi = pf<3iΓ\o (i = 1, . . . , r)

r

then a is in qβ Indeed, b-Yίa*1 is not in p, for since aOi is in none of pf°lOi,
ί-l

. . . , p'OrOί and since pm*p* ( f=l , . . . , r) pf is one of p'Ol% . . . , p'βrOi, we
have anίφtf ( ί ^ l ) . On the other hand, ab is in p whence in p which shows

r

our statement This being said, we have q ϋ n = Dpi, where po = P* For, let a
i = 0

be as above, and let c be an arbitrary element of π, then a 4- c is in p and in
none of py (j&l), whence a, a + cGίj. Therefore c6q. Now we see that q = p
if we observe that o/n is a direct sum of fields. As for (3), if r = 0, we see
that cί=o? whence (3) is evident. Therefore we may assume that r ^ l . Set α

r

— Πpi. Then p -f α =- o. This shows that for every element a of o there exists
i-l

an element #0 of α such that «0 = « (mod. ρ) Then there exists an element a\
of o such that ai^a (mod. p) by virtue of Lemma 2. The almost finite case
being disposed of, we consider the general case. Let a be an element of o.
Let o* be an almost finite normal extension of o containing a and contained
in o'. Then there exists an element aι of o such that aι = a (mod. p),3) which
proves (3). If α Gp, there exists an element b of o*Πo which is not in p such
that β&ep(o*Πo), which proves (2). Thus our proof is complete.

COROLLARY. Let o and o' be as in Theorem 1. Assume that q' is a prime
ideal of o' and let o be the decomposition ring of q' with respect to o. Then
we have (1) q' is the unique prime ideal of o' whose intersection with o' coin-
cides with q'Πo = q, (2) q is the primary component of (q'Πo)o belonging to q
and (3) the quotient field of o/q coincides with that of o/(q'Πo).

2. Henselizations.
DEFINITION 4. Let o be a ring and let p be a prime ideal in o. o is called

a locally Henselian ring at p if the following condition is satisfied:
if a monic polynomial fix) with coefficients in o factors into a product of

monic polynomials go(x) and ho(x) modulo p and if the resultant r(go, ho) of
3> Observe that o*Πo is the decomposition ring of p'Πo* with respect to o.
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goix) and ho(x) is not in p (i.e., hoix) and go(x) have no common root modulo
p), then fix) factors into a product of monic polynomials gix) and hix) such
that g(x) =gQ(x), h{x)==ho(x) (mod. p).

DEFINITION 5. A ring o is called Henselian, if it is quasi-local and if it is
locally Henselian at its maximal ideal.

LEMMA 3. Let o be an integrally closed integrity domain with unique
maximal ideal p. Then o is Henselian if and only if every integral extension
of o is quasi-local

Proof. If an integral extension of o is not quasi-local, we can find an irre-
ducible monic polynomial xr-\~a^x7"1 -f ...-+•«/• over o such that aι<£p, (ijE:p
(j^2), r^2, by virtue of Lemma 2; therefore o is not Henselian. Conversely
if o is not Henselian, there exists an irreducible monic polynomial fix) which
factors into a product of two monic polynomials gix) and hix) modulo p such
that gix) and hix) have no common root modulo p. Then clearly the integral
extension of o which is obtained by adjoining a root of fix) is not quasi-local.

THEOREM 2. A?ι integrally closed integrity domain o with a prime ideal p
is locally Henselian at p if and only if Op is Henselian,

THEOREM 3. An integrally closed integrity domain o with a prime ideal p
is locally Henselian at p if and only if every integral extension of o has only
one prime idea.1 tvhose intersection with o coincides with p.

Proof. By virtue of Lemma 3, Theorems 2 and 3 are equivalent to each
other. First we assume that Op is Henselian and that a monic polynomial fix)
G o M factors into a product of monic polynomials g$(x) and ho(x) modulo p
such that goix) and ho(x) have no common root modulo p. Then fix) factors
into a product of two monic polynomials gix) and hix) in ΰ$[_xl such that gix)
^go(x), h(x) =ho{x) (mod. t>op). Then since fix > -g(x)h(x), every coefficient
of gix) and hix) is integral over o, and therefore gix), i U ) e o W . There-
fore o is locally Henselian at p. The converse follows from Lemma 2.

Further we see at the same time, by virtue of Lemma 2, a note-worthy

THEOREM 4. An integrally closed integrity domain o with a prime ideal p
is locally Henselian at p if and only if every monic polynomial fix) - xr + a\Xr~x

-f- . . . Λ-ar such that d^Bai&p, ai€±p (/= 2. . . . , r) has a linear factor x + a
with a = ai (mod. p).

DEFINITION 6. Let o be an integrally closed integrity domain with a prime
ideal p. Let o be the totality of separably integral elements over o (in an alge-
braic closure of the quotient field of o) and let p be a prime ideal of o such that

}). Then the decomposition ring o of p with respect to o is called the
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local Henselization of o at j>. Further Fpno is called the Henselization of o at p.
In case p is a unique maximal ideal of o, the term "at p" should be omitted in
each case.

THEOREM 5. The local Henselization and the Henselization of an integrally

closed integrity domain o at its prime ideal p are uniquely determined within

isomorphisms over o.

Proof. Immediate from Lemma 1.

THEOREM 6. Let o* be the Henselization of an integrally closed integrity
domain o at a prime ideal p. Then (1) if' is a Henselian ring, {2) pύ* is the
maximal ideal of o* and (3) o*/fr>* is the quotient field of o/p.

Proof. (1) is evident by virtue of Lemma 3 and the corollary to Theorem
1, while the others are immediate consequences of the corollary to Theorem 1.

THEOREM 7. Let o be an integrally closed integrity domain with a prime
ideal ft. If o' is an integrally closed integrity domain with a prime ideal pf such
that (I) o'io, (2) p'Πo = P and {3) o' is locally Henselian at p1, then c/ con-
tains the local He?tselization of o at # {up to an isomorphism over o).

Proof. Let c" be the totality of separably integral elements over o in o'.
Then o" is locally Henselian at j>" = D'Πo".1* Let o be the totality of separably
integral elements over o (in an algebraic closure which contains o") and let ί>
be a prime ideal of "o such that ΰΓ)otr -Pn. Then since o" is locally Henselian
at ft", this p is uniquely determined. Therefore o" contains the decomposition
ring of p with respect to o, which proves our assertion.

COROLLARY. Under the same assumption as in the preceding theorem,
suppose further that o' is Henselian and that tf is its maximal ideal. Then o'
contains the Henselization of o at p.

Chapter II.
Henselian valuation rings.

3. HensePs lemma for Henselian valuation rings.

We cite here
Fundamental lemma on the extensions of valuations.5) Let o be a valu-

ation ring with quotient field K and let a field Z be an algebraic extension of

K. Let b be the totality of o-integers in Z. Then, for every maximal ideal p

of b, bp is a valution ring.
As coroljaries to this lemma, we have the following two theorems:

4 Cf. the corollary to Lemma 4, §5.
5 Cf. [6, Lemma 2]. The proof in that paper makes use of the notion of multiplication

rings. Appendix (I) of the present paper gives another proof which does not use that

notion.
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THEOREM 8. The Henselization of a valuation ring is also a valuation ring.

THEOREM 9. Any integrally closed integral extension of a Henselian valu-

ation ring is also a Henselian valuation ring.

Further we have the following note-worthy

THEOREM 10. Let o be an integrally closed integrity domaiyi ivhich satisfies
the following condition .* Every Prime ideal p is contained in any principal ideal
ai with a φ p. If o is locally Henselian at a prime ideal pi and if p2 is another
prime ideal which is contained in pi, then o is locally Henselian at p2*

Proof. Any monic polynomial xr + atf*"1 + . . . + ar with coefficients in o
such that ait£p2, aj&pz ij^2) has a linear factor xΛ-aϊ with ai^a1 (mod. &),
because xr + xr~1 + iaja\)xr~2 + . . . -tiarlarι) has a linear factor xΛ-b with b
= 1 (mod. pi), and so fix) has a linear factor xΛ-ajb which is not congruent
to x modulo p2.

COROLLARY.6) If a valuation ring o is locally Henselian at a prime ideal p,
so is also at every prime ideal contained in p.

Now we prove

THEOREM 11 (HenseΓs lemma).7) Let o be a locally Henselian valuation
ring at its prime ideal p. If fix) is a polynomial of degree n with coefficients
in o such that fix) ==gQix)hoix) (mod. p), where gaix) = xr + aιxr~ι + . . 4- ar

(n>r>0) and hoix) are polynomials in o which are relatively prime modulo p9

then there exist a monic polynomial gix) of degree r and a polynomial hix) in
o such that fix) ~gix)hix), gix) =gaix) (mod. p), hix) = hβix) (mod. p).

n

Proof. First we assume that p is the maximal ideal of o. Let coHiax

— di) be the factorization of fix) in a suitable normal extension o' of o, where
CQ^pp' and a = 1 if c φp', denoting by pf the maximal ideal of o' (notice Theo-

r

rem 9). Then we can find / indices, say, 13 . . . , r such that goix) Ξ Π (X — di)
ί = l

(mod. pf) id = . . . =cr -1) . We may assume without loss of generality that

c/ = l if i*=s and that a&pf if i>s. We set gix) = Π(x-di), hix) = Π ix
ί = i i = r + l

s n

-di), fiix) = JJix-di), hix) =c 0 II iax-di). Then since every conjugate of
di is in o', we see that fiix) whence gix), kix) are polynomials in o. This
case being settled, we proceed to the general case8 By our above observation,
β ) This corollary may also be proved by our fundamental lemma just above.
7 ) This theorem shows that a field with a valuation w is relatively complete with respect to

w in the sense of Schilling [9] if and only if the valuation ring determined by w is
Henselian.
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we see that there exist such gix) and hix) in OpM the modulus being changed
to pop, which is however identical with p, since o is a valuation ring. There-
fore we have that g{x) and h(x) are polynomials in o. Thus the proof is com-
pleted.

4. Special valuation rings,

THEOREM 12,8) Let o be a Henselian special valuation ring and let ~o be its
completion. Then every elememt a of o which is separably algebraic over o is
in o.

Proof* It is clear that a is integral over o, by virtue of Theorem 9. Let
a be the limit of the sequence (cj = db-f . . . + djl j = 0, 1, „ . .) with diOddjo

00

if i>j and Π<ΛΌ = (O). Let f(x) be the irreducible monic polynomial satisfied
i=-0

by a. If the degree n of fix) is 1, our assertion is evident. Therefore we may
assume that n>l. Let oc\ = a, a2, . . , an be the totality of roots of fix).
Then the totality o' of o-integers in K(a\9 . . . , an) is a valuation ring, where
K is the quotient field of o. We see easily that dj+1O1 = {a - cy)o' = {a — c/)o'.
This shows that each α/ is the limit of the sequence (CJ) in 0, i.e., α = α< for
each i, which is a contradiction to the fact that a is separable. Therefore w
= 1 and we have «6Ξo.

COROLLARY. Let 0 be a special valuation ring and let 0* and "o be respec-
tively its Henselization and completion. Let K be the totality of separably
algebraic elements over the quotient field of 0. Then we have O* = JSΓΠ"O

(where K is considered as being contained in the algebraic closure of the quo-
tient field of ?).

5. Generalized Hensel's lemma.

LEMMA 4. Let 0 be an integrity domain. Assume that a polynomial f(x)
over 0 factors into a product of two polynomials g{x) and h(x) with coefficients
in an integrity domain which contains o. If the leading coefficient of g(x) is
in the quotient field K of 0 and if g(x) and h{x) have no common root, then
every coefficient of g{x) or h{x) is separable with respect to K.

Proof is easy.

COROLLARY. If moreover fix), gix), hix) are monic, then all coefficients
of gix) and hix) are separably integral over 0.

THEOREM 13 iGenerαlized Hensel's lemma). Let fix) be a primitive poly-
nomial of degree r+s with coefficients in a Henselian valuation ring 0. If
there exist two polynomials goix) and hoix) in o M with respective degrees r

*Ϊ Cf. the example in Appendix (ί ϊ) .
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and s such that g )(x) is a monic polynomial and (I) fix) and goix)hoix) have
the same leading coefficient, (2) fix) = g^ix)hoix) modulo an ideal a of o, which
is contained in a2bo where a^O is the resultant of goix) and hoix) and b is an
element of o tvhich is nilpotent modulo ao, then there exist two polynomials gix)
and hix) in oW such that {I) gix) and h{x) have the respective degrees r and
s, (//) gix) =gQix), hix) = hoix) (mod. abc~ι$) and gix) is a monic polynomial^
where c is an arbitrary non-zero element which is nilpotent modulo aΰ, but c
may be 1 if <zo is a primary ideal belonging to the maximal ideal of o, (///) fix)
= gix)hix).

Proof. We first consider the case where o is a special valuation ring. Let
"o be the completion of o. Then, as is well known/0 we can find such gix) and
hix) with coefficients in "o, and in this case, we can set c = 1. Then by Lemma
4 and Theorem 12, all coefficients of gix) and hix) are in o, which proves our
assertion.

Now we prove the general case. Let ί>i be the minimal prime over-ideal
of ao, and let p2 be the largest prime ideal contained in ao. Then we see easily
that Dp1/p20pi is a Henselian special valuation ring. Therefore, there exist two
polynomials giix) and hiix) with coefficients in Op, such that (i) giix) and hiix)
have the respective degrees r and s, (ii) giix) =go(x)9 hiix) =haix) (mod. aboPι)
and giix) is a monic polynomial, CHî  fkx) ^g\ix)hιix) (mod. ϊhθ$x). Since θpt

is locally Henselian at p2oPι by virtue of the corollary to Theorem 10. there ex-
ist polynomials gix) and hix) with coefficients in o$1 such that (I) is satisfied
and that (II)' gix) = giix) ^ gaix), hix) s hxix) s hoix) (mod. abΰPί), gix) is
monic, illlV fix)=gix)hix).

Since ab$Pι is an ideal of o contained in abc~\ we see that g(x) and hix)
are polynomials in o This gix) and hix) are required polynomials.

Remark. Theorem 13 holds even if o is a valuation ring which is locally
Henselian at a prime ideal p (not necessarily maximal) which contains the re-
sultant a of goix) and hix).

6. Some remarks on the Henseiizations of valuation rings.

LEMMA 5. Let Pi and p2 be prime ideals of a ring o such that pOfe. If
o is locally Henselian at p2 and if o/p2 is locally Henselian at pi/pz, then o is
locally Henselian at pi.

Proof is easy.

LEMMA 6. Let p be a prime ideal of a valuation ring o with quotient field
K. Let there be an element a which is a root of an irreducible monic poly-
nomial fix) of degree n such that fix) modulo p is also irreducible over o, p.

^ Cf. [8, § 11]. Virtually it is the same as that in [3, p. 71].
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If D is a valuation ring which contains o/p and a modulo p, then there exists a
valuation ring o' such that (1) the quotient field of o' is Z~K(a), (2) o'ΠϋC
= o and therefore there exists a prime ideal pf of o' such that p'Oo = p, (3) o'
9 β (4) if we consider a modulo p as a modulo p' of o'/p', the quotient field of
o'/p' is generated by a modulo p over that of o/p and further o'/p'ϋ&.

Let o" be the totality of o-integers in Z-K(a). Let p" be a prime
ideal of o" such that p"Πo = p9 We want to show that the quotient field of
c/'/p" is generated by a (modulo p) over the quotient field K of o/p. Indeed,
every element of ϋf is of a form (ci,o/c2,o) -K(ci,i/c2fi)e + . • -f (ci,n-i/c2,n-ι)an~ι

with c/,;6o (ί = l, 2 : 7 = 0, . . . , Λ —1). Since o is a valuation ring, we may
assume that C2, j = 1 unless ci, y = 1. Then since 1, α, . . , αn""x are linearly
independent over o/p, we have c%tj^p for every 7 = 1, . . . , n — 1, and this
shows our statement. Now let q" be a maximal ideal of c" such that q"ϋp"
and Q"/p" contains the intersection of maximal ideal of t) with ίf [<z modulo p],
Then we see easily that c' = o"q" is a required ring.

THEOREM 14, Let p be a prime ideal of a valuation ring o and let o* &£
#*£ Henselizaίion of o. 77*£^ ffetf/'e £#f5fc « prune ideal p* 0/ 0* sκc# f^^ί p*
Γ)o = p; and for this p*, o /̂p* ts ίλ^ Henselization of o/p.

Proof, The existence of p* is evident. Since o*/P* is Henselian, it con-
tains the Hens^Jization of o/p. As for the converse, we observe that since 0*
is locally Henselian at p*? 0* contains the local Henseίization 0 of 0 at p. De-
note by 0i the valuation ring Bq, where q is the intersection of the maximal
ideal of 0* with 0. Then, by Theorem 6, ojpi = o/p, where pi is the prime ideal
of 0i such that piΠo = pβ Since 01 is locally Henselian at pi, we see easily by
virtue of Lemma 6 that there exists a valuation ring 0' such that (1) Oiϋo'go*
and therefore there exists a prime ideal pf of 0' such that p'Π0i = pi and (2) o'/p'
is the Henselization of d/pi = o/p. Further it is easy to see that 0' is locally
Henselian at p;. Now, by virtue fo Lemma 5, 0' is Henselian, whence o'ϋo*.
Thus our proof is complete.

THEOREM 15.10) Let 0 be a valuation ring and let 0* be its Henselization,
Then every principal ideal of 0* is generated by an element of 0.

Proof, It is sufficient to show that if o#o*? there exists a valuation ring 0'
(oCo'ϋo*) such that every principal ideal of o; is generated by an element of 0.
Let ΐ be a minimal integrally closed integral extension of 0 contained in 0*.
Then we can find two prime ideals pi and p2 of 0 such that (1) there exist at
least two prime ideals in t whose intersection with 0 coincides with pi, (2) there

10> If we make use of the results concerning maximally complete valuation rings due to Krull
[4], this result is evident by virtue of the corollary to Theorem 7.
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exists unique prime ideal in ί whose intersection with o coincides with p2, (3)
there exists no prime ideal p such that pi'Dp'Dp2. Let p* and pf be prime
ideals of o* such that t>*Γlo = fc (* = 1, 2) and set q = ί>f Πt. Let K1 be the
quotient ήeld of i and set ΰ'~o*ΠKf. Then we have o'/p*Γ\tf = t/q = o/j> by
virtue of the corollary to Theorem L Therefore we may assume that pi is
maximal. Let a be the intersection of all maximal ideals qi, . . . , qr of i other
than q and let a be an element of q which is not in α. Let b be a principal
ideal of o'. (I) When b^p*Πof' It is evident that b is generated by an ele-
ment b of α. We can find natural numbers s and f such that c = £ + as(l + a
-f . . . +tf/~1)φ(ϊί ( l ^ ί ^ r ) , b = co'. Then evidently b is generated by the
norm of c with respect to o. (II) When bϋftfΠo': That b is generated by
an element of o is evident because every element of i is of a form (01,0/02,0)
+ (01,1/02,1)0 + . . . + (ai,n/a2,n)an (0f ,yeo, ^ j ' ί ^ ) , where n + 1 is the degree
of a with respect to 0.

Appendix (I)

LEMMA 7. Let Oi, . . . , o» be valuation rings with common quotient field
K. Let a be an element of K. Then there exists a natural number s such
that both 0/(1 + 0 + . . . + a8'1) and 1/(1 + 0 + . . . +#s""1) are in the inter-
section b of Oi, . . . , On. If Ms any given natural number, we can select s
such that (t, s) = 1.

Proof. It is clear that there exists a natural number s^2 such that (s, t)
= 1 and that 1 + a + . . . + a s - 1 is not in the maximal ideal p of 0 for every i
il^i<=n). This s is a required number: For, when fl£ύ, it is clear that (1 + α
+ . . . +^ s " 1 ) is a unit in o* 5 and therefore α/(l + β + . . . +α s ~ I ), 1/(1 + 0
+ . . . +tf s~1)eo, ; when aφθi, we see easily that these elements are in o, , if
we observe that Q — Wi(l)>iϋi(a)^iϋi(l-)-a+ . . . -\-as~ι), wι being a valuation
given by o, .

Theorem of independency of valuations.Π) Let ox, . . . , on be valuation
rings with common quotient field K. Assume that o/Soy */ i*?j (l£i, j^n).
Set b = 01Π . . Πθn and let pi be the maximal ideal of o, for each i. Then (I)
every (\i-piC\b (l^i^n) is a maximal ideal of b and conversely every maximal
ideal of b is one of q, . Further (2) bqί = oz .

12)

Proof. First we prove (2). Let a be an element of o, . Then there exists
a natural number s such that 0/(1 + 0 + . . . +0S"X), 1/(1 + 0 + . . . +0 S - 1 ) are
in b by Lemma 7. Then it is evident that 1/(1 + 0 + . . . + as~1)φpi, whence

JJ> This is a refinement of a KrulΓs result [4, Theorem 18].
J-' This last assertion (2) holds without the assumpion that Oi^Όj if i φ i , as is seen in the

proof.
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a GΞ bqt. Therefore bqi ϋ o, . Since o, ϋ b, q, = ft Π b, we have o* 8 bqί, hence bqί = 0/ ..
This shows, by our assumption on o, , that qi §ϋc|/ if i*tj. There exists there-
fore an element e% of b such that a is a unit in ox and is a non-unit in other oj
for each ί 18> Now we prove (1). For this purpose, it is sufficient to show that
every ideal of b is contained in one of q, , i.e., if an ideal α of b contains ele-
ments au . . . , an such that β, is a unit in o, for each /, then a^b. Now, o
contains £#;, which is a unit in o, and is a non-unit in other p . Therefore e

= Σ^ί^f is in o It is evident that e is a unit in every O/, whence e is a unit

in b. Therefore α = b. Thus our theorem is proved.

COROLLARY 1. Let b, Oi, . . . , o» be the same as in the preceding theo-
rem. Let α, be an ideal in ot and let pi be the minimal prime over-ideal of α,

for each i. If pi^pj for every pair i, j (i*j)9 then b/Πca is the direct sum
ί = l

Of

Proof* If we observe the fact that if p is a prime ideal of a valuation
ring o, pop coincides with p set-theoretically, then we can see in virtue of the
above theorem that (o/Πb)-f (α/Πb) = b if i^j: Indeed, if we consider the
ring btfnt,, then this ring is the valuation ring 0/p;, which has the maximal
ideal JΪΌ/^ =-pi. If there exists a maximal ideal qj^pjΓϊb such that j^ei, qjBpϊ
Πb, then b^nb is a valuation ring of type ojq with a suitable prime ideal ς of
Oj. Since the maximal ideal of o, q is ςoyq = ς, we have &• = q goy. Therefore ί)?
spj or ί i S ί ί , contrary to our assumption. Thus q, is the unique maximal

ideal of b containing ft Πb whence Qif]b. Thus we see that b/Πo, is the di-
i = l

rect sum of bAnΠb, . . . , b/QnΓ)b. That b/ct Πb = Of /o; is evident because bq/ = o, .

COROLLARY 2.U) Let 0i, . . . , on and K be the same as in the above and
iet Wι, . . . , wn be the valuations of K given by 0i, . . . , on respectively. Let
a\, . . . , an be elements of Oi, . , . , on respectively such that the respective
minimal prime over-ideals p[, . . . , p'n of aiOi, . . . , anon in Oi, . . . , on have
no inclusion relation, lί dι, . . . , dn is Q. given system of elements of K such
that iϋi(aidi)^0 for each i, then we can find an element d of K such that

n

Proof. Set b = OiΠ . . . Γ\on as above. Then by Corollary 1 b/ Π ώ =
2 = 1

-f . . . + 0nfa2n0n (direct sum). There exists therefore an element e of b such
that Wiiai) =Wi(e) for every i. Further we see that there exists an element /
of b such that Wiif—edi) ^Wi(al). Then evidently d-fίe is a required element.
n> Take an element of Πqj which is not in q».

J4> This is a generalization of KrulΓs result [4, Theorem 15].
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Now we come to the fundamental lemma concerning the extensions of

valuations, which is quoted in §3, But, before proving this, we prove a well

known

LEMMA 8. Let o be a valuation ring with quotient field K. Assume that

a field Z is an algebraic normal extension of K with Galois group G, If o' is a

valuation ring with quotient field Z such that o'nϋΓ=o,lδ) then the intersection

b = Π o'° is the totality of o-integers in Z.
oGG

Proof. Let b' be the totality of o-integers in Z. Since b is integrally
closed, it is clear that bϋb'. Conversely, if a is an element of b, a power of
the fundamental symmetric formulas of all distinct conjugates of a is in o.
This shows that a is integral over o, i.e., aE.V. Therefore b = b'.

Proof of the fundamental lemma. First we assume that Z is finite normal
over K. Then the theorem of independency of valuations, combined with Lem-
ma 8? shows the validity of our assertion. As for the general case, it is suf-
ficient to show that if O ^ Λ G Z then #ebp or a~ι&hy. But this can easily be
seen if we consider a finite normal extension of K containing a and contained
in Z,16) since we may assume that Z is normal over K.

Appendix (II)

Here we show an example of Henselian, special, discrete valuation ring o
such that (1) o is not complete,, (2) the completion o of o is an almost finite
integral extension of o.

Example. Let ϊ be a perfect field of characteristic p (=^0) and let 2, x\9

. . . , xn, . . . be indeterminates, Let "o be the ring of power series of z over
k(xι, . • . , # « , . . . ) , which is a discrete complete special valuation ring, Let
K be the quotient field of o". We set Ko = Kp(z, * ! , . . . , * » , . . . ) .

Then the element c = ΣΛΓ,V of K is not contained in ϋΓo. Let K be a maxi-

mat subfield of K among those which contain Ko and do not contain c. Since
the pΛh power of an arbitrary element of K is in ϋf0, K must be K(c). Now
set 0="oΠΛΓ Then o is evidently a valuation ring and "o is its completion,
Thus o is a required example,

Remark 1, "o is not finite over o. For, if 1) is finite over o, o must be
complete.

Remark 2. The completion of such a valuation ring o that is required
here is purely inseparable integral extension of oβ

15> This relation means that the valuation given by o' is an extension oί that given by o,
J6J Observe [6, Lemma 1].
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Added in Proof, The corollary to Theorem 7 can be generalized as fol-

lows :
"Let D be an integrally closed quasi-local integrity domain with maximal

ideal p. If o' is a Henselian integrity domain with maximal ideal pf such that
o'ϋo and p'Πo = p, then o' contains the Henselization of o up to an isomorphism
over 0."

This will be proved in a later paper.






