ON KRULL’S CONJECTURE CONCERNING VALUATION RINGS

MASAYOSHI NAGATA

Introduction. Previously W. Krull conjectured\(^1\) that every completely integrally closed primary\(^2\) domain of integrity is a valuation ring. The main purpose of the present paper is to construct in §1 a counter example against this conjecture. In §2 we show a necessary and sufficient condition that a field is a quotient field of a suitable completely integrally closed primary domain of integrity which is not a valuation ring.

By a ring we mean a commutative ring with identity. We refer to the notations like \(\mathcal{O}_p \) as the ring of quotients of \(\mathfrak{p} \) with respect to \(\mathfrak{o} \) when \(\mathfrak{o} \) is a ring and \(\mathfrak{p} \) is a prime ideal of \(\mathfrak{o} \).

1. A counter example.

Let \(K \) be an algebraically closed field with a non-trivial special valuation \(w \) whose value group \(G \) does not fill up all real numbers. Take a positive number \(\alpha \) which is not in \(G \). Consider a rational function field \(K(x) \) of one variable \(x \) with constant field \(K \). Let us define the following two types of valuations of \(K(x) \) which are extensions of \(w \) to:

1. For every element \(e \) of \(K \) such that \(\alpha < w(e) < 2\alpha \), we define a valuation \(w_e \) (of \(K(x) \)) such that
 \[
 w_e \left(\sum_{i=0}^{n} a_i(x + e)^i \right) = \min \left(w(a_i) + 2\alpha i \right) \quad (a_i \in K). \]

2. For every real number \(\lambda \) such that \(\alpha < \lambda < 2\alpha \), we define a valuation \(w_\lambda \) such that
 \[
 w_\lambda \left(\sum_{i=0}^{n} a_i x^i \right) = \min \left(w(a_i) + \lambda i \right) \quad (a_i \in K).
 \]

Theorem 1. Let \(\mathfrak{c}_e \) and \(\mathfrak{c}_\lambda \) be the valuation rings determined by \(w_e \) and \(w_\lambda \), respectively (\(\alpha < w(e) < 2\alpha \), \(\alpha < \lambda < 2\alpha \)) and let \(\mathfrak{o} \) be the intersection of all such \(\mathfrak{c}_e \) and \(\mathfrak{c}_\lambda \). Then \(\mathfrak{o} \) is completely integrally closed and primary, but \(\mathfrak{o} \) is not a valuation ring.

Received May 22, 1951.

\(^2\) A ring is called primary if it has at most one proper prime ideal.

\(^3\) Observe the fact that \(2\alpha \notin G \), because \(K \) is algebraically closed.

\(^4\) Since \(2\alpha \notin G \), \(w_e \) is uniquely determined by the relation \(w_e(x + e) = 2\alpha \).
valuation ring.

Proof. Let \(c(\neq 0) \) be an element of \(\mathfrak{a} \). First we prove that (1) if \(w_\lambda(c) = 0 \) for some \(\lambda_0 \) (\(\alpha \leq \lambda_0 \leq 2\alpha \)), then \(w_\lambda(c) = 0 \) and \(w_\varepsilon(c) = 0 \) for every \(w_\lambda \) and \(w_\varepsilon \), and that (2) if \(w_\varepsilon(c) > 0 \), there exist the least and the largest values \(\varepsilon > 0 \) and \(\delta \) among values of \(c \) taken by \(w_\lambda \) and \(w_\varepsilon \) (\(\alpha \leq \lambda \leq 2\alpha, \alpha < w_\varepsilon(c) < 2\alpha \)).

Since \(K \) is algebraically closed, \(c \) is of the form

\[
c_0 \prod_{i=1}^n (x + a_i) / \prod_{j=1}^m (x + b_j) \quad (c_0, a_i, b_j \in K).
\]

Every factor \(x + d \) (\(d = a_i \) or \(b_j \)) such that \(w(d) > 2\alpha \) may be replaced by \(x \), since we only consider the values of \(c \) taken by \(w_\lambda \) and \(w_\varepsilon \). Similarly we may replace by \(d \) every factor \(x + d \) (\(d = a_i \) or \(b_j \)) such that \(w(d) > \alpha \). Therefore we may assume without loss of generality that (i) \(\alpha < w_\lambda(a_i) < 2\alpha \) or \(a_i = 0 \), \(\alpha < w_\varepsilon(b_j) < 2\alpha \) or \(b_j = 0 \) for each \(i \) and \(j \) (\(1 \leq i \leq n, 1 \leq j \leq m \)), (ii) \(a_i \neq b_j \) for every pair \((i, j) \) and (iii) \(w_\lambda(a_i) \leq w_\lambda(a_{i+1}), w_\lambda(b_j) \leq w_\lambda(b_{j+1}) \) (\(1 \leq i < n, 1 \leq j < m \)).

First we assume that \(w_\lambda(c) = 0 \) for some \(\lambda_0 \) (\(\alpha \leq \lambda_0 \leq 2\alpha \)). If there exists one \(j \) such that \(w_\varepsilon(b_j) = \lambda_0 \), then we have \(w_{\lambda_0}(c) < 0 \), which is a contradiction. Therefore no \(w(b_j) \) is equal to \(\lambda_0 \). Assume that \(w(a_i) < \lambda_0 \) if \(i \leq i_0 \), \(w(a_i) = \lambda_0 \) if \(i > i_0 + s \), \(w(b_j) < \lambda_0 \) if \(j \leq j_0 \), \(w(b_j) > \lambda_0 \) if \(j > j_0 \). Set \(\lambda_1 = \max(\alpha, w(a_i), w(b_j)), \lambda_2 = \min(2\alpha, w(a_{i_0 + s + 1}), w(b_{j_0 + 1}). \)

Then

\[
\begin{align*}
w_\lambda(c) &= w_\lambda(c_0) + \sum_{i=1}^n w(a_i) - w_\lambda(b_j) + (n - i_0) \lambda_1 - (m - j_0) \lambda_1 \geq 0, \\
w_\varepsilon(c) &= w_\varepsilon(c_0) + \sum_{i=1}^n w(a_i) - w_\varepsilon(b_j) + (n - i_0) \lambda_0 - (m - j_0) \lambda_0 = 0, \\
w_{\varepsilon}(c) &= w_\varepsilon(c_0) + \sum_{i=1}^n w(a_i) - w_\varepsilon(b_j) + s \lambda_0 + (n - i_0 - s) \lambda_2 - (m - j_0) \lambda_2 \geq 0.
\end{align*}
\]

Hence we have

\[
w_\lambda(c) - w_\lambda(c) = (n - i_0)(\lambda_1 - \lambda_0) - (m - j_0)(\lambda_1 - \lambda_0) \geq 0,
\]

whence \(n - i_0 \leq m - j_0 \).

\[
(\text{If } \alpha = \lambda_0 \text{ or } 2\alpha = \lambda_0, \text{ we see easily that } n - i_0 = m - j_0 \text{ because } x \notin G. \text{ In this case, } s = 0 \text{ is also clear.})
\]

Similarly we have

\[
w_\lambda(c) - w_\lambda(c) = (n - i_0 - s)(\lambda_2 - \lambda_0) - (m - j_0)(\lambda_2 - \lambda_0) \geq 0,
\]

whence \(n - i_0 - s \leq m - j_0 \).

Thus we have \(s = 0 \) and \(n - i_0 = m - j_0 \). \(s = 0 \) shows that no \(w(a_i) \) is equal to \(\lambda_0 \). Further, \(n - i_0 = m - j_0 \) shows \(w_\lambda(c) = w_\lambda(c) = 0 \). Therefore neither \(w(a_i) \) nor \(w(b_j) \) are equal to \(\lambda_1 \) or \(\lambda_2 \), by the above observation. This means that \(\lambda_1 = \alpha \) and \(\lambda_2 = 2\alpha \). From \(\lambda_1 = \alpha \) we have that \(i_0 = j_0 = 0 \), whence \(m = n \); From \(\lambda_2 = 2\alpha \) we have that \(a_i = 0, b_j = 0 \) (\(1 \leq i \leq n, 1 \leq j \leq m \)). By our assumption

\[
\text{if } \alpha = \lambda_0 \text{ or } 2\alpha = \lambda_0, \text{ we see easily that } n - i_0 = m - j_0 \text{ because } x \notin G. \text{ In this case, } s = 0 \text{ is also clear.}
\]
that \(a_i \neq b_j \), it follows that \(m = n = 0 \), i.e., \(c = c_0 \in K \). Since \(w_{v_0}(c) = 0 \), we have \(w(c) = 0 \). This proves (1). Next assume that \(w_v(c) > 0 \). Let us consider \(w_v(c) \) as a function of variable \(\lambda \) \((\alpha \leq \lambda \leq 2\alpha) \). Then it is evidently continuous, and it takes the least and the largest values \(\varepsilon_1 \) and \(\delta_1 \) in \(\alpha \leq \lambda \leq 2\alpha \). By virtue of (1), we see that \(\varepsilon_1 \) is positive. Then (2) follows easily from the fact that \(w_v(c) \neq w_{v(e)}(c) \) holds only if \(e \) is one of \(a_i \) or \(b_j \) and in this case \(w_v(c) \neq 0 \), whence \(w_v(c) = 0 \).

These being proved, we see that \(\varpi \) is primary. Let \(a(\neq 0) \) and \(b(\neq 0) \) be two non-units in \(\varpi \). Then there exist positive numbers \(\varepsilon \) and \(\delta \) such that \(w_\lambda(a) \geq \varepsilon, w_\lambda(b) \leq \delta, w_\lambda(b) \leq \delta \) \((\alpha \leq \lambda \leq 2\alpha, \alpha < w(e) < 2\alpha) \). Let \(k \) be an integer such that \(k\varepsilon > \delta \). Then we have \(w_\lambda(a^k/b) \geq 0, w_\lambda(a^k/b) \leq 0 \) \((\alpha \leq \lambda \leq 2\alpha, \alpha < w(e) < 2\alpha) \), whence \(a^k/b \in \varpi \), i.e., \(a^k \in b\varpi \).

It is evident that \(\varpi \) is completely integrally closed, because \(\varpi \) is an intersection of special valuation rings. That \(\varpi \) is not a valuation ring follows from that \(c/\varpi \notin \varpi, c/\varpi \notin \varpi \) if \(\alpha < w(e) < 2\alpha \).

2. An existence theorem.

Lemma 1. Let \(r \) be an integrally closed integral domain which has only one maximal ideal \(\varpi_0 \). Let \(K \) be the quotient field of \(r \). If \(Z \) is a field containing \(K \), \(\varpi_0 \cap K = r \), where \(\varpi \) is the totality of \(r \)-integers in \(Z \) and \(\varpi_0 \) a maximal ideal of \(\varpi \).

Proof. We may assume without loss of generality that \(Z \) is algebraic over \(K \) because the quotient field of \(\varpi \) is algebraic over \(K \).

First we assume that \(Z \) is finite normal over \(K \). Let \(\{a_i, \ldots, a_n\} \) be the totality of automorphisms of \(Z \) over \(K \). We show that every maximal ideal of \(\varpi \) is one of \(\varpi_0^n \). Assume that a maximal ideal \(\varpi_0^n \) of \(\varpi \) is none of \(\varpi_0^n \). Then there exists an element \(c \) of \(\varpi_0^n \) such that \(c \notin \varpi_0^n \) for every \(i = 1, \ldots, h \). A power \(e \) of \(\Pi_i^n c^{a_i} \) is in \(K \), whence in \(r \). Since \(c \in \varpi_0^n \), we have \(e \in \varpi_0^n \), whence \(e \in \varpi_0^6 \). Therefore one of \(c^{a_i} \) must be in \(\varpi_0^n \), i.e., \(c \) is in some \(\varpi_0^n \), which is a contradiction. This being shown, we have \(\varpi = \bigcap_i^n (\varpi_0^n) \). Therefore \(\varpi_0 \cap K = (\varpi_0^n) \cap K = (\bigcap_i^n (\varpi_0^n)) \cap K = \varpi \cap K = r \).

Next we assume that \(Z \) is finite algebraic over \(K \). Let \(Z^* \) be a field containing \(Z \) which is finite normal over \(K \). Let \(\varpi^* \) be the totality of \(r \)-integers in \(Z^* \) and let \(\varpi^* \) be a maximal ideal of \(\varpi^* \) which contains \(\varpi_0^* \). Then evidently \(\varpi_0^* \supseteq \varpi_0 \). Since \(\varpi_0^* \cap K = r \), we have \(\varpi_0 \cap K = r \).

Making use of this, we prove the general case. Let \(c \) be an element of \(\varpi_0 \cap K \). \(c \) may be written in a form \(a/b \) \((a, b \in \varpi, b \notin \varpi) \). We consider \(Z^* = K(a, b) \). We set \(\varpi^* = \varpi \cap Z^* \), and \(\varpi^* = \varpi \cap \varpi^* \). Then \(\varpi^* \) is a maximal ideal because \(\varpi \)
is integral over \(o^* \). It is clear that \(a, b \in o^*, b \in p^* \) whence \(o_p^* \subseteq c \). Since \(Z^* \) is finite over \(K \), we have \(o_p^* \cap K = c \), which proves our assertion.

Lemma 2. Let \(K \) be a field with a valuation ring \(v \) and let \(Z \) be a field containing \(K \) which is algebraic over \(K \). Let \(o \) be the totality of \(v \)-integers in \(Z \) and let \(\{v_{\lambda}; \lambda \in \Lambda \} \) be the totality of maximal ideals of \(o \). Then every valuation ring \(w \) of \(Z \), such that the valuation given by \(w \) is an extension of that given by \(v \), is one of \(o_{v_{\lambda}} (\lambda \in \Lambda) \). Conversely, every \(o_{v_{\lambda}} (\lambda \in \Lambda) \) is a valuation ring.

Proof. It is clear that any such valuation ring \(w \) contains one of \(o_{v_{\lambda}} \). Hence we have only to prove the converse part. But this follows immediately from the following facts:

1) An integrally closed domain \(m \) of integrity is a multiplication ring if and only if \(m_p \) is a valuation ring for every maximal ideal \(p \) of \(m \).

2) Let \(m \) be a multiplication ring with quotient field \(K \). If a field \(Z \) containing \(K \) is algebraic over \(K \), then the totality \(o \) of \(m \)-integers in \(Z \) is also a multiplication ring and \(Z \) is the quotient field of \(o \).

Lemma 3. Let \(r \) be a completely integrally closed integral domain with quotient field \(K \). If \(Z \) is a field containing \(K \), the totality \(o \) of \(r \)-integers in \(Z \) is also completely integrally closed.

Proof. Assume that \(Z \) is finite normal (algebraic) over \(K \). Let \(\{\sigma_1, \ldots, \sigma_n\} \) be the totality of automorphisms of \(Z \) over \(K \). Set \(r = [Z:K]/h \). Assume that \((a/b)^n c \in o \) for every natural number \(n \), where \(a, b \) and \(c \) are non-zero elements of \(o \). Let \(f \) be an arbitrary elementary symmetric formula of \([(a/b)^n] \), \(\ldots, [(a/b)^n] \), and set \(c' = (\prod_{i=1}^n c_i)^n. \) Then \(f^n c' \in o \), whence \(f^n c' \in r \) for every natural number \(n \). This shows that \(f \in r \), whence \(a/b \) satisfies a monic equation with coefficient in \(r \), i.e., \(a/b \in o \), which proves our assertion when \(Z \) is finite normal over \(K \). This being proved, we can reduce our problem to the general case by the same way as in the proof of Lemma 1.

Theorem 2. Let \(K \) be a field. Then there exists a completely integrally closed primary domain of integrity which is not a valuation ring such that its quotient field is \(K \) if and only if \(K \) satisfies one of the following two conditions:

1) \(K \) is of characteristic 0 and \(K \) is not algebraic over its prime field.

2) \(K \) is of characteristic \(p \) (\(\neq 0 \)) and \(K \) contains at least two algebraically independent elements over its prime field.

5) W. Krull, Beiträge zur Arithmetik kommutativer Integritätsbereiche, Math. Zeit. 41 (1936), Theorem 7 (p. 554).

8) Früher, Untersuchungen über die Teilbarkeitseigenschaften in Körpern, Crelle 168, p. 31 or 1. c. note 6) Theorem 8 (p. 555).
Proof. (I) The case where K satisfies neither of these conditions. Let \mathfrak{o} be any integrally closed primary domain of integrity with quotient field K. When K is algebraic over its prime field, let K_0 be its prime field. When K is not algebraic over its prime field, let K_0 be its subfield which is isomorphic to the rational function field of one variable with its prime field as the constant field. Then evidently $\mathfrak{o} \cap K_0$ is a valuation ring. Then by Lemma 2 it follows that \mathfrak{o} is also a valuation ring.

(II) Assume that K satisfies one of the above two conditions. Then it is easy to see that there exists a subfield K_0 of K such that K_0 has a non-trivial discrete special valuation and such that K has transcendental degree 1 over K_0, that is, there exists an element x of K such that x is not algebraic over K_0 and K is algebraic over $K_0(x)$. Let \overline{K}_0 and \overline{K} be the algebraic closures of K_0 and K respectively. Then by Theorem 1 we can construct a completely integrally closed primary domain \mathfrak{r} of integrity which is not a valuation ring and whose quotient field is $\overline{K}(x)$. Let $\overline{\mathfrak{o}}$ be the totality of \mathfrak{r}-integers in \overline{K} and let $\overline{\mathfrak{b}}$ be a maximal ideal of $\overline{\mathfrak{o}}$. Set $\mathfrak{o} = \overline{\mathfrak{b}} \cap K$. Then since \mathfrak{r} is completely integrally closed, $\overline{\mathfrak{o}}$ is so too by Lemma 3. Therefore \mathfrak{o} is also completely integrally closed. Since \mathfrak{r} is primary, so is $\overline{\mathfrak{b}}$ too, whence \mathfrak{o} is primary. On the other hand, since $\overline{\mathfrak{b}} \cap K_0(x) = r$ by Lemma 1, $\overline{\mathfrak{b}}$ is not a valuation ring and therefore \mathfrak{o} is not a valuation ring again by virtue of Lemma 2. Thus our proof is complete.

Mathematical Institute,
Nagoya University

5) We need not assume here that \mathfrak{o} is "completely" integrally closed.