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FAMILIES OF K-3 SURFACES

ALAN L. MAYER*

§ 0. Introduction

Let V be a 2-dimensional compact complex manifold. V is called a
K-3 surface if: a) the irregularity q = dim H\V, Θ) of V vanishes and
b) the first Chern class cx of V vanishes. The canonical sheaf (of holo-
morphic 2-forms) K of such a surface is trivial, since q = 0 implies that
the Chern class map cx: Pic (V) —> H\V, Z) is injective: thus V has a
nowhere zero holomorphic 2-form.

Max Noether showed that the family of nonsingular quartic surfaces
in P3 form a family of K-3 surfaces depending on 19 moduli. The col-
lection of double coverings of P2 branched at a nonsingular sextic also
form a family of K-3 surfaces depending on 19 moduli. Enriques and
Severi (see [7]) showed how to construct, for each even integer d > 2, a
family of K-3 surfaces, depending on 19 moduli, such that 'generic' sur-
faces of different families are non-isomorphic. The surfaces are non-
singular surfaces of degree d in P9, where d = 2g — 2, generalizing the
family of Noether. The construction of Enriques and Severi depends
upon the technique of degeneration and the proofs are incomplete. We
shall effect this construction, using the transcendental methods developed
by Andreotti, Weil, and Kodaira. (A somewhat weaker result is con-
tained in Tjurina, [14] ch. IX) The notion of "generic" is interpreted
as 'with Picard number p — Γ, which phenomenon occurs everywhere
outside a countable union of subvarieties.

Implicit in the work of Enriques-Severi is the claim that any alge-
braic K-3 surface is in some sense a specialization of a surface in one
of these families (including the family of double planes).
We shall see that this is the case if specialization is taken to mean
"direct deformation" in the sense of Kodaira-Spencer. We also investi-
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gate when birational models (with singularities) of these specialized sur-
faces occur on the boundary of the Chow variety of the Enriques-Severi
families. We show that this occurs precisely for surfaces having the
"platonic singularities" discussed by du Val (cf. [1], [2], [4]). This
generalizes results of Brieskorn [3] in the d = 4 case.
We should note that the irreducibility of the Enriques-Severi families
is unsettled except in the case d < 8. However the families have certain
natural "closures" (which are not compact) and the union of the closures
of the families was shown to be connected by Kodaira [9] (see also
Tjurina [14]). Very little is known about the boundary phenomena in
general: we have some discussion of the "overlaps" of the closures of
the various families which can occur.

One should remark on the analogy presented by the different families
of (polarized) abelian varieties, corresponding to the different elementary
divisors. In this case the different families are isogeneous, while there
is no description of the relation between the families in the K-3 case.
(The K-3's are more intimately connected with rational pencils of ca-
nonically embedded curves of positive genus, as we shall see.)

We shall give a "homological" criterion for ampleness and the
analogue of the Lefschetz embedding theorem which points out the
analogies with abelian varieties.

§ 1 . Series without fixed components

Let J*f be an invertible sheaf on a K-3 surface V, h%^) = dim H%V, &)9

cλ{^) = the Chern class of S£. The Riemann-Roch theorem gives
K\&) + h\£"1) = 2 + (l/2)c1(cίf)

2[y] + h\&). If the complete linear
series \S£\ contains a positive divisor D > 0, then h\S?-1) — 0, so l(D)
= 2 + (1/2)D2 + hι(D), where h\Ώ) = Λ«(J2?(D)), 1{D) = h\D) and d = D2

= c^YίV], the selfintersection number, is called the degree of D. Since
the canonical sheaf X = Θv the arithmetic genus g of D is given by
d = 2g — 2. So for a positive D

(1) l(D) - dim|D| + 1 = # + 1 + h\D)

If D is a curve with k connected components it follows from a theorem
of Kodaira ([8] Theo. 4) that h\D) = k - 1. Thus if C is an irreducible
curve with dim|C| = 0 then C is nonsingular rational of degree —2.
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Such curves will be called "conies"*.

Let S£ be an invertible sheaf of degree d = cλ(&)2[V\ > 0. The Riemann-

Roch formula shows that either S? ^ Θv or either \&\ or \Se~ι\ contains

a positive divisor.

PROPOSITION 1. Let \£?\ contain a positive divisor but have no fixed

components. Then either

i) d — degree of <£ is positive, h\£?) = 0, and \££\ has no base

points and contains an irreducible nonsίngular curve D of genus g =

(l/2)d + 1, or

ϋ) d — 0, h\&) = k — 1 and \£f\ is composed of k copies of an

elliptic pencil, i.e., each element of \S£\ can be written as Ex + + Ek

with Eie\F\,F being nonsingular elliptic.

Proof, a) Assume |J5?| contains an irreducible D. If furthermore

d is positive then the assertions of i) are proved in [14] ch. VIII sec. 3**.

If d is < 0 then D positive and h\D) = 0 implies d = - 2 or 0. But if

d = — 2, D is a conic and a fixed component of | ^ | , and if d — 0 then

I if I has no base points, so by Bertini's second theorem a generic D is

nonsingular, and since d = 0, elliptic.

b) If I if I does not contain an irreducible divisor, by Bertini's first

theorem \JP\ is composed of a pencil. If the pencil in question were

irrational it would have no base points (Zariski, Algebraic Surfaces

p. 25), so its members would have zero selfintersection and thus give a

fibre space of elliptic curves. But an elliptic fibre space whose total

space is a K-3 must have a rational base. For if E is a general fibre

and E Φ Er e\E\, then E'' (any fibre) = 0, but since Ef must intersect

some fibre, it must coincide with a fibre. This gives a rational map of

* This is perhaps a misleading word e.g. in [5] actual conies occur, but we shall
use it for the moment.

** Note: The proof in [14] that |D| has no base points and a generic fibre is
nonsingular is vague, as it uses the Bertini theorem which is proved only for very
ample linear series. However the desired result may be proved as follows: the proof
of Lemma 2 p. 187 of [14] shows that no base points can be singular points of D.
It follows that the base points of a generic pencil containing D are nonsingular points
of D blowing up these points we obtain a morphism of the blown up surface onto P1.
Its generic fibre is nonsingular (Sard's theorem) but a generic fibre is the proper
transform of a generic curve of D and isomorphic to it, since the singular locus of
this curve may be assume disjoint from the base locus. Thus a generic element of D
is nonsingular. It follows that \D\ cuts out the canonical series on the curve, and
since this has no base points, the series \D\ has no base points.
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the series \E\ onto the base space, so by Lueroth's theorem, the base is

rational. Thus the pencil in question is rational. If F is a generic

member of the pencil we must have d i m | F | = 1, otherwise there would

be an Fr in | F | not in the pencil, and this would contradict the com-

pleteness of |jSf |. Since h\F) = 0 w e have F2 = 0, so F is elliptic. Thus

the elements of |if\ have the form D = Eλ + + Ek with Et in \F\:

since EfEj — 0 and the Et are in general distinct, the generic D is a

curve with k connected components, and so h\&) = k — 1. We see that

d = D2 = 0 and dim | if | = k. Note that the elliptic pencil has no base

points

We shall examine the case i) in more detail.

PROPOSITION 2. Let |if| have no fixed components and contain a

positive divisor of degree d > 0. Then either

ia) |if| contains an irreducible nonsingular nonhyperelliptic curve

D of genus g = (l/2)d + 1 and the morphism φ^: V —> P(H°(V, &)) defined

by the sheaf S£ is a birational map of V onto a protectively normal

surface of degree d whose only singularities are rational double points.

The fibres over these double points are one of the five types of con-

figurations of du Val: cf. Figure 2.8 in Artίn [1].

or ib) The general curve D is hyperelliptic of genus g and φ^ is a

rational map of degree 2 of V onto a normal rational surface of degree

g — 1. However φsz is a birational morphism, and so is ψs% unless g = 2.

Proof. Since JfF is trivial the adjunction formula gives S£ (x) ΘD =

XΌ the canonical sheaf on D, a nonsingular member of |jίf |. The exact

sequence 0->Θv-*&->£?(g)(9D^άr

D->0 with the fact that H\V,Θv)
= 0 shows that \&\ cuts out the complete canonical series \3fΏ\ on D.

More generally tensoring the above sequence with <£n and observing that

H\Vy S£n) — 0 (by Prop. 1) for all positive n, we have exact sequences

0 _> sen -> if n + ι --> $Γn

D

+1 -> 0, and S£n+1 cuts out the (n + l)-pluricanonical

series on D. Since ifn has no base points we have a morphism <p#n: V

—> P(HXV, ifn)) for all positive n. Now JfD is very ample in the non-

hyperelliptic case so φs\D is birational: this holds at almost all fibres

D of I if I so ^ is generically 1-1 and so birational. In the hyperelliptic

case c^z

D is very ample (or cf*D if g ψ 2) so by the same argument the

morphisms φ^ (or φ^ if g Φ 2) are birational. In the hyperelliptic case
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I ctifΏ I is compounded of the hyperelliptic involution, and φXΌ is a 2-1 map
onto a twisted rational curve: thus φs is generically a 2-1 map onto a
rational surface. The image V of ψx clearly has degree d/2 or d accord-
ing to whether or not D is hyperelliptic. We shall not deal with the
structure of V in the hyperelliptic case. To show that V is projectively
normal in the nonhy per elliptic case, we must show that H°(V, if) gener-
ates the graded ring © HXV,^71)*. One proceeds by induction on n, the

case n = l being clear. Let /0? ,Λ s P a n H°(V,£f) where fQ is the
section whose vanishing defines D. Then the restrictions fl9 ,fg of
the other ft to D span H°(D, JfD)9 and by the theorem of M. Noether
(see e.g. Seven's Vorlesungen uber algebraische Geometrie) they generate
the graded ring 0£Γ°φ, Jf J). Now let / be an arbitrary element of

H0(Vf^
n+l)9 and let / be its restriction to D: so / = P(f19 >,fg) where

P is a homogeneous polynomial of degree n + 1. The section / —
P(fu '' 9 fg) then vanishes on D9 so by the abovementioned exact
cohomology sequence it may be expressed as foh, with h in H°(V,^n).
But by the induction hypothesis h — Q(f0, 9fg) where Q is a homo-
geneous polynomial of degree n. Thus / == P(f19 9fg) - /0Q(/0, ,fg)
so the fO9- 9fg are seen so generate all of 0H°(V9Jδfn). (A similar
argument shows F normal in the hyperelliptic case). Thus V9 in par-
ticular, has at most isolated singularities. If Ct are the irreducible
components of φi\P)9 for P any singular points, the intersection number
matrix \\(CiCj)\\ is negative definite by a theorem of Mumford [12]. In
particular C\ < 0 for all i and by the Riemann-Roch formula this means
the C\ = - 2 i.e. the C« are conies. Thus ψ-^\F) (see Artin [1] Fig. 2.8)
is one of the five possible types of 'platonic configurations' of du Val,
that is, P is a rational double point. (Artin [1], Brieskorn [4])

§ 2 . Generic Surfaces

Let p(V) = rank (Pic (V) = H\V9 Of)) denote the Picard number of a
K-3 surface V. Let us call V a generic surface of type d if p(V) = 1
and if Pic(V) is generated by a sheaf «£? of degree d: i.e. cx(^f)2[y] = d.
Note that d is always even (see [14] ch. IX)

* For by Zariski's projective normalization [171 the normalization of V is projectively
embedded by a multiple of the hyperplane section, hence the normal model is embedded
by the sheaf &n for some n. But since the sections of gn come from sections of if, it
follows that V is already normal. (I am indebted to T. Matsusaka for this argument).
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PROPOSITION 3. Let V be a generic surface of type d. Then

a) if d < — 2, V contains no curves.

b) if d = — 2, V contains a unique conic, and has no nonconstant

meromorphίc functions.

c) if d = 0, V is a nonalgebraic elliptic fibre space over a rational

curve, whose only singular fibres are rational curves with either a node

or a cusp.

d) if d = 2, V is a double cover of P2 branched at an irreducible

sextic.

e) if dy 2, then V is a nonsίngular surface of degree d — 2g — 2

in P9 whose generic hyperplane section is a canonically embedded non-

hyperelliptic curve of genus g.

Proof, a), b) By the Riemann-Roch formula an irreducible curve

has degree > — 2, and equality occurs only for a conic, and by the same

argument if d = —2, either dim |Jδ?| or dim \S£~ι\ is > 0 and so V contains

an irreducible curve, which is seen to be a conic C which is unique on

V since dim|C| = 0.

c) If d = 0 replacing 3? by J£~ι if necessary, one sees that the

elements of |«£?| form an elliptic pencil without base points, that is an

elliptic fibre space over P1. Since p(V) — 1, no multiple or reducible

fibres can occur, so the fibres are either nonsingular or rational curves

with a node or a cusp (by [9]). Since an ample sheaf has positive degree

V is nonalgebraic.

d) If d = 2 then |jδf| (or, again \^~ιS) contains a nonsingular curve

D of genus 2, and since p(V) = 1, the fundamental locus of ψs is empty

(for its components are disjoint from D), so ψa is a double covering of

P2. If B is the branch curve, then B intersects D in the 6 distinct

Weierstrass points of D, and Be\SD\. If B = Bf + B" is reducible, then

(say) β ; e |Z) | , so B' Γi D = Pλ + P2 is a canonical divisor on D, where

Pλ and P 2 are distinct Weierstrass points. But this is impossible since

2Pλ is a canonical divisor.

e) If d > 2, then |if| (or l^f"1!) contains a nonsingular curve D :

we shall show that D is nonhyperelliptic, then the desired result follows

from Proposition 1, since p(V) — 1 implies that the J£? ample, so ψ3 is

an isomorphism. In the case d = 4, if D is hyperelliptic F — p*(7) is

a quadric surface in P3. If H is a hyperplane in P3 such that H Π V = 2
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lines, then the pullback of H to V is a reducible element of |«S? | and so

S£ cannot generate Pic (V). For d > 4, if D were hyperelliptic ^ would

be a double covering branched at a curve B, with B ί) = 2g + 2, since

ψXΏ is ramified at the 2# + 2 Weierstrass points of Zλ Since <£ generate

Pic (V) we must have B ~ mD for some positive integer m, so 2# + 2 =

m(2g — 2). Clearly m > 2 s o # + l > 2 # — 2 which is impossible since

g > 3 if d > 4. Thus D cannot be hyperelliptic.

§3. Existence of K-3s.

In this section we shall give a sort of converse to case ia) of Prop-

osition 2. Let V be an irreducible surface of degree d = 2g — 2 in P9,

with g > 3. F will be called a "canonical surface" if

a) V has at most rational double points as singularities

b) if H is a generic hyperplane in Pg then D = H-V is a non-

singular curve of genus g canonically embedded in H. (This merely

means that V lies in no hyperplane of P9.)

PROPOSITION 4. Let V c P9 be a canonical surface. Then there is

a K-3 surface V with an invertίble sheaf & such that φs(V) — V, with

Proof. Let H be a generic hyperplane in P9 so that D = H-V is

a nonsingular curve on V, disjoint from the singular locus. Let π: V

—• V be an admissible resolution of singularities of V, in the sense of

Brieskorn [4], so that Rιπ*(V9 Θψ) = 0, and the resolving fibres contain

no exceptional curves of the first kind. Let if be the pullback of the

sheaf Θψ(X) by π. For each positive integer n we have an exact sequence

(*n) 0 -> ΘΨ(n - 1) -> Θy(n) -> JΓJ -* 0

Note that ft°(tfV(l)) = ff + 1 (since F cannot lie in a hyperplane, otherwise

D would not span the generic H) and h°(JfD) == #, h\c4ΓD) ~ 1, and h\Jfn

D)

— 0 for ^ > 1. Thus the exact cohomology sequence of (*1) is

0 - iϊo(F, (Pr) - iϊo(F, M
C - ίί2(F, ί?F) - H\V, MD) - 0 .

This shows that ff(F, ^F) C ffCF, MD). In the same way the cohomology
sequence of (*n) for all n shows
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y) c HKV,σrO)) c HKV9βψ(2)) c
HXV,ΘΨ(l)) C H\V,Θy{2)) c

and so by "theorem B" (cf. [16]) fc2(0F) = 0 and h\ΦΨ(ΐ)) = 0. Applying
the latter to cohomology of (*1) we obtain h\Θψ) — 1, and so the
Euler characteristic χ(P, Θψ) = 2. It follows from the Leray spectral
sequence and the fact that R\π*(V,Φv) = 0 that χ(V,Φv) also = 2 (cf.
Artin [1] Theo. 2.7). So by the duality theorem Λ°(XF) = /*,2(0F) = hι(Θv)
+ 1, where JΓF is the canonical sheaf on V. Identifying D with π'\D)
on V, if = 0(D) and we have the exact sequences

(**n) 0 -> J&?1*-1 -> ifw -> JΓ* -> 0

for all positive integers w. Now fc2(if) = h\Xv (x) if"1) must vanish.
For if F e \c*Tv <g) ^ - χ | then F + ΰ e | JTF|. But since ^ = (if (g) JΓ F ) (X)
^ (by the adjunction formula) XV%OD is trivial, so D{F + ΰ) = 0,
i.e. D'F — —d < 0. But this is impossible since F is > 0,D irreducible
and d — D2 > 0. Thus the exact cohomology sequence of (**1) gives

0 -> H\V, Θy) -> H\V, ^)->C-> H2(V, Θy) -> 0

This sequence gives hι{^) + 1 = fe2(6?F) - h\Θv) which = 1. Thus
= 0 and so by the same sequence h\Θv) = 0, and so h\ctΓv) = 1. It
follows that Λ°(JΓF) are > 1 for all positive n. But since c^v (g) (P̂  is
trivial, any element of \n$fv\ is disjoint from D, and hence lies on the
fundamental locus of π. Thus dim|nJΓ|:=0 for all n. Sincely has
arithmetic genus and all plurigenera = 1, by the classification theorem
of Enriques (see [14]) V is the result of applying (perhaps) some modi-
fications on a K-3 surface. But if V contains exceptional curves, they
are part of a canonical divisor, and hence do not intersect D. Thus any
exceptional curves must lie on the fundamental locus of π, which is ruled
out by our construction. Thus V is itself in fact a K-3 surface, and ^
an invertible sheaf of the type described in Proposition 2, case ia). We
have a morphism from V to P(H°(V, &)) since H\V, £>) = H%V, OψQ))
and |ίV(l)| has no base points. This gives a birational morphism of V
onto φχ(V), and since if P Φ Q on V there is a hyperplane through P
but not Q, this morphism is injective, and so by Zariski's main theorem,
an isomorphism.

Remark. Note the dim H\Pg, ΘP{h)) = 1° j~ h) while, since we see
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that I hD I has no fixed components l{hD) = 2 + h\g — 1) by the Riemann-
Roch theorem. It follows that V lies in the intersection of precisely
(g — 2)(g — 3)/2 linearly independent quadric hypersurfaces. In the case
g = 4 we see that there are 15 = 35 — 20 linearly independent cubics
through V, and precisely one quadric. Thus V is the intersection of a
cubic and a quadric. It is an elementary excercise to see that the
intersection of a generic cubic and quadric is a K-3 surface in P 4: thus
we see that the collection of all our F's in P4 form an open set on an
irreducible component of the Chow variety. In the case d — 8, g — 5 V
is contained in 3 linearly independent quadrics, and their intersection,
being of degree 8, coincides with F*. Conversely the intersection of 3
generic quadrics in P5 is easily seen to be a K-3 surface, so again our
family is irreducible. Since 2g~2 > 2g — 2 except if g < 5, it is clear
that for g > 5 our V cannot be the complete intersection of g — 2 hyper-
surfaces. On the other hand one might conjecture that V, in general,
is an intersection of a large number of quadric hypersurfaces, in analogy
with the theorem of Enriques-Petri for the case of canonical curves.
Incidentally, the above shows that the generic curve of genus < 5 (the
cases g = 1 and g = 2 deserve special treatment) appears as a curve on
a K-3 surface. However a heuritic count of moduli shows that the
curves in | if | for generic V exhaust an open part of the modular variety
of curves only if g + 19 > Sg — 3, i.e. for g < 8. (Whether this in fact
happens for g = 6,7, does not seem to be known.) Nevertheless one
might conjecture** for any g the family of F's is irreducible (cf.
Enriques [7]), and the suggestions of B. dΌrgeval [5]).

§ 4 . Fixed components and ampleness

Let if be an invertible sheaf of degree d > 0 on a K-3 surface V.
Then (replacing S£ with if"1 if necessary) |if | contains a positive divisor
D and the union F of all its fixed components is a union of its connected
components Ft. Since dim \Ft\ = 0, each Ft is a union of conies, F\ =
— 2, and the F/s have the 'platonic' structures described [1]. The fixed
divisor Df of \££\ has support F, and the residual linear series |if | =
\D ~ Df\ contains a positive divisor Ώr with Dn = df > 0. By Proposi-
tion 1 either Df can be assumed nonsingular of genus gf — d'/2 + 1 > 1

* V is reduced so we do not get the double Veronese surface.
** This follows from the recent work of (Safarevic and Piatetskii-Sapiro: Izvestia

Akad. Nauk. 1971).
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or Όf is a disjoint union of k nonsingular elliptic curves E3 of an

elliptic pencil.

We shall call a connected component Ft a type I component if Ft is

disjoint from Όf: otherwise, we shall call Ft a type II component. For

any Fi9 since D; < U + F* < D, we have Z(Z?O = l(Df + Ft) = Xφ).

If Ό' is irreducible and F% is type II then U + F* is connected, so

h\U + F€) = tΐφ') = 0. Thus by the Riemann-Roch formula, Dn =

(IK + F*)2 so D'F* = 1. If on the other hand D' is a union of elliptic

curves E19 ,Ete then /^φ') = k — 1, and if F* is of type II it intersects

all the Ej so again Όf + F* is connected and h\U + Ft) = 0. The

Riemann-Roch formula then gives Jfc - 1 = φ' + F*)2/2 or k = D'Fί =

Fi, so that Ej Fi = l for all /. Note that in this case (J*?| must
3

contain at least one type II component, for otherwise we would have

D2 = φ' + Df)
2 = D2

f < 0. Let F o be any such component. Now let us

define DQ to be Ό' in the case where Ό' is irreducible and to be D' + Fo

in the case where Όr is a union of k elliptic curves. Then d^~ Ό\ — df

in the first case and d0 = 2fc — 2 in the second case. Then Do has

arithmetic genus g0 = do/2 + 1, which is in any case half the first Betti

number of DQ (in the elliptic case go = ΐ). Note that dim|J*?| = dim|D 0 |

= gQ in all cases. Note that in the elliptic case FQ is uniquely determined:

for if F1 were another component of type II then FιD{)>F1'D
f = k

and since Do + Fx < D> dim \D0 + ί\| = k: but Z?o + F 2 would be connected

so the Riemann-Roch theorem would give (Do + ί\)2 > 4& — 4 equal to

2k — 2. Note also that Fo will consist of a conic meeting the Eό plus

some bad components of the elliptic fibration, which do not intersect the

general elliptic curve. Collecting this:

PROPOSITION 5. Let D be a positive divisor with d = D2 > 0, then

there is a connected curve DQ <D which is either irreducible or consists

of g0 elliptic curves in an elliptic pencil joined by a platonic rational

curve Fo meeting each elliptic curve once. The series \D0\ has no fixed

points, except, in the elliptic case, those on the rational curve, and

Dl — 2g0 — 2, g0 = dim|D 0 | = dim|D|. Any divisor in \D\ consists of a

divisor in \D0\ plus some fixed components. If g is the arithmetic genus

of D then g = gQ — h\D). If Ft is any connected component of the locus

of fixed components of \D\ other than FQ, then either F r Z ) 0 = 0 (type I)

or FrD0 = l (type II).
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COROLLARY. // D is divisor with D2 > 0 then the linear series |3D|

is gives a birational morphism of V.

Proof. It suffices to show that |3D0 | gives a birational morphism

where Do is an above. In the case where Do is irreducible this follows

from Proposition 2. In the case where Do = F o + E1 + + Ek the

variable part of the linear series has no base points and no two elliptic

curves of the fibration are identified under the morphism. On the other

hand on a general elliptic curve |3D0 | cuts out a linear series of degree

3 some generic elliptic E, and if this is complete, it will be very ample

on E and the map, being generically biregular, will be birational. To

show that the linear series is in fact complete, it suffices by the usual

exact sequence to show that hι(3DQ — E) = 0. Now (3D0 — E)2 > 9dQ —

6 > 0 and since 3D0 — E > DQ, the only fixed component 3D0 — E could

have would be Fo, Now since 3D0 — E > 2D0 it suffices to show that Fo

is not a fixed component of 2D0. It could only occur as a fixed com-

ponent with multiplicity one or two. Since 2D0 — FQ = 2g0E + Fo has a

fixed component, it would have to occur with multiplicity two. But then

l(2D0) = l(2D0 - 2F0) = 2 + 2g0 - 1 while we have Z(2D0) > 2 + (2D0)
2/2

= 2 + 2d0 = 4<?0 - 2. But 2gQ + 1 > 4g0 - 2 only if g0 = 1, i.e. dQ = 0,

contradicting our assumption d > 0. Now assume that a positive divisor

D of degree d > 0 is ample (in the sense of Grothendieck) i.e. for some

N the series \ND\ defines a protective embedding and has no fixed com-

ponents (is very ample). By Kodaira's vanishing theorem h\D) — 0 and

so by Proposition 5, D2 = D2

0. By Nakai's criterion [13], D must have

positive intersection with any curve on V, so D can have at most fixed

components of type II. Writing D = Do + Dn we have D2

n + 2D0Dn = 0

and since Do and Du are positive D-Du = DODU + D2

U < 0, thus there

can be no fixed components, except in the elliptic case. In the latter

case Fo has one irreducible component CΊ which meets the Eά. If we

write D = Do + Σ ni^i where the d are the irreducible components of

Fo the same argument gives all nt = 0: Thus in the elliptic case Fo is

an irreducible conic and D = Do. Thus we have

PROPOSITION 6. // D is ample then D = DQ.

COROLLARY. // D is ample then 3D is very ample.

Proof. By the corollary to Proposition 5 3D = 3D0 defines a bira-

tional morphism. No curve C can collapse otherwise we would have
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CD = 0, so this gives a protective embedding. If Do is irreducible then
|3Z?| has no fixed components since \D\ itself has none. It remains to
show that, for D = Fo + Ex + + Ek,F0 is not a fixed component of
13D I, which follows a fortiori from the proof of the Corollary to Prop-
osition 5. (Note the analogy this presents with Lefschetz's embedding
theorem for abelian varieties.)

Remark. One can construct a series \D\ with fixed components of
either type. For the Fo in the elliptic case it suffices to take a section
of the elliptic fibre space. In the other cases, if Do is connected with
Dl > 0 and C is a curve collapsed under the morphism φDo then the
Riemann-Roch theorem shows that l(D0) = l(D0 + C), (since h\D0 + C)
= h\DQ) + 1 = 1 and (D0)

2 = (DQ + C)2 + 2) and C is a type I fixed com-
ponent of \DQ + C\. On the other hand let Do, which may be ample, be
linearly equivalent to a divisor of the form Dx + C, with C a conic and
D\ — Dl — 4 (so A C = 3): for example we can have Do a plane section
of a nonsingular quadric in P3 which degenerates into the union of a
line and a planar cubic, jointed at 3 points. Let D — D^ + C: Then
C D — 1, D2 — Dl and the fact that D and Z)o are connected shows that
lφ) = ί(D0) so C is a fixed component of type II of \D\. In general
these components seem more mysterious than the type I.

§5. Numerical criteria

We assume that V is an algebraic K-3 surface. Intersection product
induces a quadratic form < , > on Pic (V) which may be thought of as
an additive subgroup of H\V, Z). A class c in Pic(V) is called ample
if it is the class of an ample divisor. Let c be some given ample
divisor class. Then let K+ = the set of a ψ 0 in Pic (7) such that (a, α>
> — 2, and <c,α> > 0. If <α, α> > — 2, a Φ 0, either a or - α is the
class of a positive divisor, so either (a, c> or <—a, c> is positive. Thus
the definition of K+ is independent of the choice of the ample class c,
and furthermore, the class of any irreducible curve lies in K*.

PROPOSITION 7. A class c in Pic (V) is ample if and only if (c, c>
> 0 and <c,α> > 0 for all a in K+.

Proof. One part follows from the definition of K+. Conversely, if
<c,α> > 0 for all a in K+ then c is the class of a divisor having positive
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intersection with every irreducible curve, and since the divisor has
positive selfintersection, it is ample by the criterion of Nakai [13].

Remark. A purely numerical characterization of K+ (rather than
± K+) cannot be given. For the numerical equivalence ring of V is
canonically isomorphic to the numerical equivalence ring of the complex
conjugate surface to V (also an algebraic K-3) and considered as such,
the new ample divisors are the negatives of the old ample ones. We
shall call a class b pseudoample if <&,&> > 0 and <6,α> > 0 for all a in
K\ (cf. S. Kleiman, Thesis Harvard 1964)

PROPOSITION 8. A class b is pseudoample if and only if it is the
class of a divisor D with D2 > 0 such that \D\ has no fixed components,
except perhaps the fixed component FQ, in the case where the free part
of D is an elliptic pencil, {in the terminology of Proposition 5 this
means \D\ — |D0|)

Proof. Assume that b is the class of D with D = DQ. Then |3J9|
gives a birational morphism of V and has no fixed components: hence
if C is any irreducible curve CD > 0 unless C is collapsed by the
morphism in which case C D = 0. Thus D Z > 0 for any positive Z
and hence <δ,α> > 0 for any a in K+, so b is pseudoample. Conversely
assume that the class of D is pseudoample, where D2 > 0. Write D =
DQ + Dτ + Du where Do is as in Proposition 5 and Dτ and Du are divi-
sors whose supports are on the fixed components of type I and II. We
must have Dτ = 0, for otherwise D Dτ — Dτ Dτ < 0 and so some conic
of type I must have negative intersection with D, contradicting the fact
that <6,α> > 0 for all a in K+. So all the connected fixed components
are of type II. To show that such components do not exist (except Fo),
we look first at the case where Do is irreducible. Let E be the part of
Du concentrated on some connected component F. Then E D0 > 0, and
so E D = ED0 + E2 = (E Do + E2) - E D0 < E2 + 2E D0. However E2

+ 2E-D0 = φ 0 + E0)
2 - Dl, which equal -2h\D0 + E) since l(D0) =

l(D0 + E) and h\D0) = 0. Thus D E is < 0, and hence D C < 0 for
some irreducible component C of F: this contradicts the pseudoampleness
of the class of D. It remains to consider the case where DQ = Fo + Ex

+ + Ek, the Ej elliptic curves in a pencil. Since FQ is the only
component of type II, D = Do + 2 nfii where Fo = J] Ci9 and Ct-Es =
1, d-Ej = 0 for i > 2. Now if nx = 1 we can argue just as in the case
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of Do irreducible, and we see, in fact, that we must have Fo — C1

irreducible in this case. If nx > 2 then 2CΊ is a fixed divisor in [2CΊ +

£ ? ! + . • • + Ek\, so 1(20, + # ! + + Ek) = 1(0, + £?,+ . . . + £7,).

The Riemann-Roch theorem then gives (2CΊ + £Ί + + # f e)
2 + 2hl(2C,

+ E,+ . . . + Ek) = (Ct + J27χ + + # f c)
2 which gives Λ1(2C1 + £7X +

+ £7fc) = 3 — 2fc, which is impossible since fc > 2.

COROLLARY. If D is pseudoample then h\D) = 0. (This suggests

that pseudoampleness might have some significence on surfaces in gen-

eralizations of the vanishing theorem.)

Scholium. Let J2? be an invertible sheaf with cλ(S£y = d > 0 and

with a pseudoample class. Then ^ : V -> JP(iϊo(y, L)) = Έg (2g - 2 = d)

is a rational morphism of V onto either

general case i) a surface of degree 2g — 2 with rational double points

8, and ψs is birational.

hyperelliptic case ii) a rational surface of degree g — 1, and φa is a

double covering

elliptic case iii) the #-fold Veronese embedding of P1.

The image of φ^ is always a rational surface, or a birational image

with rational double points of V. Finally φ^ is a birational map of V

onto a surface with rational double points of degree 9d in (9d + 2)/2

dimensional projective space. If the class of S£ is ample, then φ& is a

protective embedding.

§6. The transcendental moduli of K-3 surfaces

We shall review Kodaira's theory. Let V be a K-3 surface. Then

L(V) = H2(V, Z) is a free abelian group of rank 22, on which the cup

product induces a quadratic form denoted by < , > (extending the previous

usage) which is unimodular and of index —19. Furthermore this form

is even, i.e. <α,α> = 0 mod 2 for all a in L(V). It is known then that

there is some isometric isomorphism of L(V) with Z2 2 provided with a

standard quadratic form < , >0, which we fix, for example by the matrix

/A 0\

A \ = M where A = (Y Q (hyperbolic plane) and B is a well

Vo BI
known definite unimodular matrix (EQ) with even diagonal coefficients
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which may be found in [14], An element a of L(V) is called primitive

if it cannot be expressed as nb, with b e L(V), n an integer, unless

n = ± 1. It follows from a general theorem of Eichler ([6] p. 60) that

if a and b are primitive and <α, α> = <6, &> then there is an automorphism

of the quadratic space L(V) taking a to b. By a marking a of V we

mean an isometry of Z22 with L(V) (for the given quadratic forms),

giving a bases αx, , a22 of L(V).

Since 7 is regular the spectral sequence H (Ω') => ίf (C) of de Rham

cohomology degenerates so V is homologically kaehlerian. Thus H\V, /?)

= L(F) (x) 1? has a type decomposition into Hr + iϊ ( 1 ' υ where iϊα ' 1 ) is the

space of classes of real (1,1) forms and H' is the space of classes of

imaginary parts of holomorphic 2-forms: in fact H°(V, K) —> W by φ —>

Im (φ) gives an isomorphism of real vector spaces, from which H' inherits

a complex structure. If Θ is the sheaf of holomorphic vectors on V one

checks via Serre duality that H\V, Θ) = 0 while H\V, Θ) = Hom c (iϊo(y, θ),

H1(V9Ω
/)) which is canonically isomorphic to Hom Λ (ίί / , i ϊ ( 1 ' 1 ) ).

Let S denote the set of oriented 2-dimensional subspace E of i?22 on

which the quadratic form <( , ) 0 (inherited from Z22) is positive definite.

S is a real symmetric space which can be given the structure of a

complex manifold as follows: S can be identified with its embedding in

P21 by ^ - > C = (d: - : C22) where ζ, = ζ, + V ^ ^ ^ , f = (f1? ,f22) and

37 = C?7i» >W being an oriented orthonormal basis for < , >0 restricted

to E. S is then the open subset of the quadric hypersurface <ζ, ζ>0 = 0

given by the condition <ζ, ζ>0 > 0. Note that S is not hermitian sym-

metric : also the group of units Go of the form < , ) 0 operates on S in

an obvious manner, but not in a properly discontinuous fashion (Siegel

[15]).

Now let v e Z22 be a primitive vector (for the form < , >0. Let S(υ)

= {ζ in S with <ζ, ̂ >0} = 0. Equivalents, S{υ) is the set of planes E

whose orthogonal complement contains v. If (v,v}0 = (w,w}0 then Siv)

and S(w) are conjugate by the units G> Furthermore if <v,v} > 0 then

S(v) is an hermitian symmetric space of type IV (or type BDI, cf.

Helgason: Differential Geometry and Symmetric Spaces, p. 354). If

(v,vyQ > 0 then the isotropy group G^ of units at v acts property dis-

continuously on S(v) and the quotient V{v) is a 19 dimensional normal

Note: S(v) is nonsingular since the quadric <ζ,ζ> = 0 and the hyperplane <ζ,/y> = 0
are transversal at ζ of ζ W-v.
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analytic space which, by a theorem of Borel-Baily can be embedded as

a Zariski open set in a protective variety. Let S(v)/ be the complement

in S(v) of the union of all S(v) Π Siw) where w runs over all primitive

vectors not = to ±v. By the Baire category theorem Sw/ is dense in

Siv\ and the complement of a countable union of complex submanifolds.

Let WCv)/ be its image in Ww. If we let Sd be the union of all S(v) with

ζvy v}0 = d then the quotient of Sd under Go, which we call Wd is

canonically isomorphic with any of the W{υ\ In the same way define

Si and Wd. An important lemma of Tjurina [14] states that : for any

even d,S'd is dense in S.

Now Let (V,ά) be a marked K-3 surface. Under the isomorphism

ex ® 1/2 of R22 with H\Vy R) Rf corresponds to one of our space E, with

an orientation given by the complex structure which H' carries. This

gives a point λ(V,a) in S: if its homogenous coordinates are ζ19 , ζ22

this means that ζλaλ +,•••, + ζ22tf22 is the class of a holomorphic 2-f orm

on V. Note that the Picard number of V — the rank of the lattice con-

tained in the orthogonal complement of the space E corresponding to

λ(V,a). The fundamental theorem of Andreotti-Weil-Kodaira (see [9])

states that if (Vt,at) is a locally complete family of deformations of

(7, a) then the map t-> λ(Vt,at) is a locally biholomorphic map of the

parameter space onto an open subset of S. It follows that the set U of ζ in

S of the form λ(Vy a) is open in S: it is also clearly Go invariant. On the

other hand U is also connected: for by the Lemma of Tjurina mentioned

above, to prove this it suffices to prove that U Π Sd is connected for

some d. But if λ(V9 a) e Sd V is a generic K-3 and can be characterized

by our Proposition 3. Kodaira proved the irreducibility of the family

of all such V for d — 0, and, as we have remarked, for d = 2,4,6,8,

this is also easy to prove. Thus U is a connected open set in S.
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