F. Takemoto Nagoya Math. J. Vol. 47 (1972), 29-48

STABLE VECTOR BUNDLES ON ALGEBRAIC SURFACES

FUMIO TAKEMOTO

Let k be an algebraically closed field, and X a nonsingular irreducible projective algebraic variety over k. These assumptions will remain fixed throughout this paper. We will consider a family of vector bundles on X of fixed rank r and fixed Chern classes (modulo numerical equivalence). Under what condition is this family a bounded family? When X is a curve, Atiyah [1] showed that it is so if all elements of this family are indecomposable. But when X is a surface, he showed also that this condition is not sufficient. We give the definition of an H-stable vector bundle on a variety X. This definition is a generalization of Mumford's definition on a curve. Under the condition that all elements of a family are H-stable of rank two on a surface X, we prove that the family is bounded. And we study H-stable bundles, when X is an abelian surface, the projective plane or a geometrically ruled surface.

- 1. *H*-stable vector bundles
- 2. H-stable vector bundles on algebraic surfaces
- 3. H-stable vector bundles on geometrically ruled surfaces
- 4. Simple vector bundles on the projective plane
- 5. Stable vector bundles on abelian surfaces.

1. H-stable vector bundles.

In this paper, we use the words vector bundles and locally free sheaf of finite rank interchangeably. Let F be a coherent sheaf on X. Under our hypothesis on X, we can define an invertible sheaf Inv (F) (first Chern class cf. [5]), i.e. let E. be a finite resolution of F by locally free sheaves E_i . Inv (F) = $\bigotimes_i (\bigwedge E_i)^{(-1)^i}$ where \bigwedge denotes the highest exterior power. Then Inv (F) depends only on F, up to canonical isomorphism. Inv (F) has the following properties:

Received June 28, 1971.

PROPOSITION (1.1). i) $0 \to F_1 \to F_2 \to F_3 \to 0$ is an exact sequence of coherent sheaves, then there is a canonical isomorphism $\text{Inv}(F_2) \simeq \text{Inv}(F_1)$ $\otimes \text{Inv}(F_3)$.

ii) If F is locally free, then Inv (F) is canonically isomorphic to $\dot{\wedge}F$.

iii) If F is torsion, then $Inv(F) = \mathcal{O}_{\mathcal{X}}(D)$, where D is a positive Cartier divisor. Moreover if codim $(Supp(F)) \ge 2$, then D = 0.

iv) If F is torsion-free, then $\text{Inv}(F)^{-1} = \text{Inv}(F^*)$, where F^* denotes $\text{Hom}_{e_X}(F, \mathcal{O}_X)$.

Proof. For i), ii) and iii) see [5]. iv) follows from the following lemma.

LEMMA (1.2). If $0 \to F_1 \to F_2 \to F_3 \to 0$ is an exact sequence of torsion-free sheaves, then $\text{Inv}(F_2^*) \simeq \text{Inv}(F_1^*) \otimes \text{Inv}(F_3^*)$.

Proof. We have an exact sequence $0 \to F_s^* \to F_2^* \to F_1^* \to \operatorname{Ext}_{\theta_x}^1(F_3, \mathcal{O}_X)$. Since codim (Supp (Ext $_{\theta_x}^1(F_3, \mathcal{O}_X)$)) ≥ 2 by our assumption, $\operatorname{Inv}(F_1^*/\operatorname{Im}(F_2^*)) = \mathcal{O}_X$ by iii).

If F is a coherent sheaf, then we can define the rank of F as the rank of F_{ξ} for a generic point ξ of X. We denote it by r(F). We remark that F is torsion if and only if its rank is 0.

Let H be an ample line bundle on X. Let $s = \dim X$.

DEFINITION (1.3). A vector bundle E on X is H-stable (resp. H-semistable) if for every non-trivial, non-torsion, quotient coherent sheaf F of E, d(E, H)/r(E) < d(F, H)/r(F) (resp. \leq), where $d(F, H) = (\text{Inv}(F), H^{s-1})$ and (,) is the intersection pairing.

DEFINITION (1.3)*. A vector bundle E on X is H-stable (resp. H-semi-stable) if for every non-zero coherent subsheaf G of E of rank < r(E), d(G, H)/r(G) < d(E, H)/r(E) (resp. \leq).

It is obvious that (1.3) is equivalent to $(1.3)^*$. And if a vector bundle E is H-stable, then for every non-zero coherent subsheaf G of $E, d(G, H) / r(G) \leq d(E, H) / r(E)$. Indeed, if r(G) = r(E), then E/G is torsion, which induces $d(G, H) \leq d(E, H)$ by Prop. (1.1), iii).

Remark. In Definition (1.3), we may assume F is torsion-free. Indeed for any coherent sheaf E, let F be any torsion subsheaf of E, then $d(E,H) \ge d(E/F,H)$ by Prop. (1.1), iii).

PROPOSITION (1.4). i) A line bundle is H-stable.

ii) A vector bundle is H-stable if and only if it is $H^{\otimes n}$ -stable for any natural number n.

iii) If L is a line bundle, then a vector bundle E is H-stable if and only if $E \otimes L$ is H-stable.

iv) A vector bundle E is H-stable if and only if E^* is H-stable.

v) If E and F are two vector bundles, then $E \oplus F$ is never H-stable.

vi) If a vector bundle E of rank two is not H-semi-stable, then there is a unique torsion-free quotient sheaf F of rank one of E for which d(F, H) is minimum.

Proof. i), ii), iii) and v) are trivial. iv) follows from the above Remark and Prop. (1.1) iv). We show vi). In the same way as in the case of a curve, we can show that there exists a minimal *H*-degree quotient sheaf *F* of *E* of rank one. We may assume *F* is torsion-free. Let *F*, *F'* be such sheaves. Now we have an extension $0 \to G \to E \to F \to 0$. If the composition $G \to E \to F'$ is non-zero, then $d(F, H) = d(F', H) \ge d(G, H) =$ d(E, H) - d(F, H) i.e. $d(F, H) \ge (1/2)d(E, H)$. This contradicts our assumption. Hence $G \to E \to F'$ is zero, which induces $F \cong F'$.

DEFINITION (1.5) (Mumford [4]). A vector bundle E on a curve X is stable if and only if for every non-trivial quotient bundle F of E, deg (E)/r(E) < deg(F)/r(F).

PROPOSITION (1.6). Let X be a curve, and let E be a vector bundle on X. Then for any ample line bundle H, E is H-stable if and only if E is stable in the sense of Mumford.

Proof. For any closed point $x \in X$, all torsion-free modules over the discrete valuation ring $\mathcal{O}_{X,x}$ are free.

PROPOSITION (1.7). Let E, F be H-stable bundles, where r = r(E) = r(F) and d(E, H) = d(F, H). If $f: E \to F$ is a non-zero homomorphism, then f is an isomorphism.

Proof. Put G = Image of f. By definition, we have $d(E, H)/r(E) \leq d(G, H)/r(G) \leq d(F, H)/r(F)$, with strict inequalities holding unless r(G) = r. But by assumption, the two extreme sides are equal. Thus r(G) = r = r(E), and we get $E \simeq G$, i.e. f is injective. Hence since $\bigwedge^r f : \bigwedge^r E$

 $\rightarrow \stackrel{r}{\wedge} F$ is a non-zero homomorphism of line bundles and $d(\stackrel{r}{\wedge} E, H) = d(\stackrel{r}{\wedge} F, H), \stackrel{r}{\wedge} f$ is an isomorphism, i.e. f is an isomorphism.

COROLLARY (1.8). An H-stable vector bundle is simple.

We say that a vector bundle E is simple if any global endomorphism of E is constant, i.e. $H^{0}(X, \text{End}(E)) = k$.

Remark. 1) In Prop. (1.4), ii), iii) and iv), we may replace *H*-stability by *H*-semi-stability.

2) For any *H*-semi-stable vector bundle with d(E, H) < 0, $H^{0}(E) = 0$. Indeed, suppose there is a non-zero section $s \in H^{0}(E)$. Let *F* be the subsheaf of *E* generated by *s*. Then $F = \mathcal{O}_{X}$ and so d(F, H) = 0.

2. H-stable vector bundles on algebraic surfaces

In this section X will be a non-singular projective surface and H will be an ample line bundle on X. Let K be the canonical line bundle on X. We begin with a trivial lemma.

LEMMA (2.1). Let E be an H-semi-stable vector bundle on X. If the Euler-Poincaré characteristic $\chi(E)$ of E is positive and $d(E^* \otimes K, H) < 0$. then $H^0(E) \neq 0$.

Proof. Since $E^* \otimes K$ is *H*-semi-stable, $H^0(E^* \otimes K) = 0$ by the last Remark in § 1. Hence $H^2(E) = 0$ by Serre duality. Hence $H^0(E) \neq 0$.

COROLLARY (2.2). Let S be a set of H-semi-stable vector bundles of rank two on X with fixed Chern classes (modulo numerical equivalence). Then there is an integer n such that $H^{0}(E \otimes H^{\otimes n}) \neq 0$ for any $E \in S$.

Proof. For any $E \in S$, $\chi(E \otimes H^{\otimes n})$ is the same polynomial in n of degree two. Since the coefficient of n^2 is (H^2) , $\chi(E \otimes H^{\otimes n})$ is positive for sufficiently large n. On the other hand, $d((E \otimes H^{\otimes n})^* \otimes K, H) = -d(E, H) - 2n(H^2) + 2(K, H) < 0$, for sufficiently large n. Hence we have the desired result by Lemma (2.1).

COROLLARY (2.3). Let S be as in Cor. (2.2). Then there are integers n_1, n_2 such that for any $E \in S$, there is a coherent subsheaf F of E of rank 1 such that $n_1 \leq d(F, H) \leq n_2$.

Proof. Let n be an integer satisfying Cor. (2.2). So there is a coherent subsheaf of E of rank 1 such that $d(F \otimes H^{\otimes n}, H) \ge 0$. i.e. $d(F, H) \ge -n(H^2)$. On the other hand, $d(F, H) \le (1/2)d(E, H)$ by H-semistability of E.

We say that a set A of vector bundles on X is bounded if there exists an algebraic k-scheme T and a vector bundle V on $T \times_k X$ such that each $F \in A$ is of the form $V_t = V | t \times X$ for some closed point $t \in T$.

THEOREM (2.4). Let X be a non-singular projective surface, H an ample line bundle on X, and S the set of all H-semi-stable vector bundles on X of rank two and fixed Chern classes (modulo numerical equivalence). Then S is bounded.

Proof. By a theorem of Kleiman ([3] Th. 1.13), it is sufficient to show that there are integers m_1, m_2 such that for any $E \in S$, 1) $\dim_k H^0(E) \leq m_1$ 2) there is a non-singular curve C such that $\mathcal{O}_X(C) = H$ and $\dim_k H^0(E \otimes \mathcal{O}_C) \leq m_2$. We may assume H-degree is negative. Hence 1) follows from the last Remark in § 1. We now show 2). Let n_1, n_2 be the same as in Cor. (2.3). Put $n_i = d(E, H) - n_{i-2}, i = 3, 4$ and $t = \max(0, 2g - n_1, 2g - n_4)$, where $g = \chi(H^{-1}) - \chi(\mathcal{O}_X) + 1$. Let E be any vector bundle contained in S. There are torsion-free sheaves F_1, F_2 of rank 1 such that there is an exact sequence $0 \to F_1 \to E \to F_2 \to 0, n_1 \leq d(F_1, H) \leq n_2$. Hence $n_4 \leq d(F_2, H) \leq n_3$. Now F_i is locally free at any point outside a finite set Z of closed points. Hence there exists a nonsingular curve C in H, disjoint from Z. Here the genus of C is g. So the restriction of F_i to C is a line bundle on C. Since $d(F_i \otimes H^{\otimes t} \otimes \mathcal{O}_C) = d(F_i, H) + t(H^2) \geq \min(n_1, n_4) + t \geq 2g, \dim_k H^0(F_i \otimes \mathcal{O}_C) \leq \dim_k H^0(F_i \otimes \mathcal{O}_C) \leq d(F_i \otimes H^{\otimes t} \otimes \mathcal{O}_C) \leq 2c$.

We now give another definition of *H*-stability of a vector bundle. First, we recall that for any non-zero global section *s* of a vector bundle *E*, there exists a surface *Y* and a morphism $f: Y \to X$ obtained by successive dilatations, and a sub-line bundle *L* of f^*E on *Y* and a global section *t* of *L* such that the inclusion $L \subset f^*E$ maps *t* to f^*s and f^*E/L is locally free. (cf. Schwarzenberger [10])

LEMMA (2.5). Let φ be a homomorphism from a non-torsion coherent sheaf F to a vector bundle E such that codim (Supp (ker φ)) ≥ 2 . Then there is a surface Y and a morphism $f: Y \to X$ obtained by successive dila-

tations, and a vector subbundle G of f^*E on Y such that $f^*(\varphi)(f^*F) \subset G$ and r(F) = r(G) (and f^*E/G is locally free).

Proof. We proceed by induction on $r = \operatorname{rank} E$. Suppose the lemma is true for all rank $< r = \operatorname{rank} E$. We may assume there is a non-torsion global section u of F. Let s be the global section of E corresponding to u. Let Y, f, L and t be as above. Then we have exact sequences:

Now since u is not torsion, $r(f^*F/(f^*\varphi)^{-1}(L)) = r(F) - 1$. By induction, there exists a surface Y' and a morphism $f': Y' \to Y$ obtained by successive dilatations and a vector subbundle G' of $f'^*(f^*E/L)$ on Y' such that $(f'^*f^*\varphi)(f^*F/(f^*\varphi)^{-1}(L)) \subset G'$ and r(G') = r(F) - 1 (and $f'^*(f^*E/L)/G'$ is locally free). Let G be the subbundle of f'^*f^*E with $G' = G/f'^*L$.

PROPOSITION (2.6). A vector bundle E on a surface X is H-stable if and only if for any morphism $f: Y \to X$ obtained by successive dilatations and any non-trivial quotient bundle F of f^*E , $d(E,H)/r(E) < d(F, f^*H)/r(F)$.

Proof. First, suppose E is H-stable. Let f, F be as in Prop. (2.6). We may assume H is a very ample line bundle. Now there exists a finite set Z of closed points such that f is an isomorphism on X - Z. Then we find a curve D such that $\mathcal{O}_X(D) = H$ and $Z \cap D$ is empty. Let G be the kernel of $f^*E \to F$. Since $\operatorname{Supp}(G/f^*f_*G) \cap f^*(D)$ is empty, $d(G, f^*H) = d(f^*f_*G, f^*H)$. On the other hand $d(f^*f_*G, f^*H)d =$ $d(f_*G, H)$. Conversely let F be a non-zero subsheaf of E of rank < rank E, and let Y and G be the same as in Lemma (2.5). Since f^*E/G is locally free, $d(G, f^*H)/r(G) < d(E, H)/r(E)$ by assumption. On the other hand, $r(G) = r(f^*F)$ by construction and $d(F, H) = d(f^*F, f^*H) \leq d(G, f^*H)$ since the image of f^*F in f^*E is contained in G. Thus d(F, H)/r(F)< d(E, H)/r(E), and E is H-stable.

From now on, we study vector bundles of rank two on a non-singular projective surface X. It is known (Schwarzenberger [10]) that for a vector bundle E of rank two on X there exists a morphism $f: Y \to X$ obtained by successive dilatations, line bundles L_1 and L_2 on X, and a positive exceptional line bundle M on Y (i.e. line bundle on Y associated with a non-negative linear combination of exceptional curves on Y) such that f^*E is given by an extension of the form

$$0 \longrightarrow f^*L_1 \otimes M \longrightarrow f^*E \longrightarrow f^*L_2 \otimes M^{-1} \longrightarrow 0$$

Conversely, for any morphism $f: Y \to X$ obtained by successive dilatations, a quotient line bundle of f^*E is always of the form $f^*L_2 \otimes M^{-1}$ where L_2 is a line bundle on X and M is a positive exceptional line bundle. (Schwarzenberger loc. cit.)

Put $N(E) = c_1^2(E) - 4c_2(E)$, where $c_i(E)$ is the *i*-th Chern class of *E*. This integer is equal to $-c_2$ (End (*E*)). It has the following geometric meaning. Let *L* be a quotient line bundle of *E*, and *p* the canonical projection $P(E) \to X$. Then *L* defines a section *s* of *p*. Let *Y* denote s(X). Then $(Y^3)_{P(E)} = N(E)$. Note that $N(E) = N(E \otimes L')$ for any line bundle *L'*.

PROPOSITION (2.7). Let E be a vector bundle of rank two. If N(E) > 0, then E is H-stable if and only if E is H'-stable for any ample line bundle H' on X.

Proof. By Prop. (2.6), E is H-stable if we have $(L_2 \otimes L_1^{-1}, H) > 0$ for any morphism $f: Y \to X$ obtained by successive dilatations and an extension

$$0 \longrightarrow f^*L_1 \otimes M \longrightarrow f^*E \longrightarrow f^*L_2 \otimes M^{-1} \longrightarrow 0$$

where L_1 and L_2 are line bundles on X, and M is a positive exceptional line bundle on Y. By our assumption, $N(E) = (L_2 \otimes L_1^{-1}, L_2 \otimes L_1^{-1}) + 4(M^2) > 0$. But by the negative definiteness of the intersection pairing on exceptional divisors, $(M^2) \leq 0$, hence $(L_2 \otimes L_1^{-1}, L_2 \otimes L_1^{-1}) > 0$. We thus have the desired result by the Hodge index theorem ([6] Lecture 18).

DEFINITION (2.8). We say that a vector bundle E of rank two on X is of trivial type if there are line bundles L_1, L_2 on X with $H^0(L_2) = H^0(L_2^{-1}) = 0$, a morphism $f: Y \to X$ obtained by successive dilatations and a positive exceptional line bundle M on Y such that we have a non-trivial extension of line bundles $0 \to M \to f^*E_1 \to f^*L_2 \otimes M^{-1} \to 0$, where $E_1 = E \otimes L_1$.

PROPOSITION (2.9). Let E be a vector bundle of rank two on X.

Then E is simple if and only if E is either H-stable for an ample line bundle H or of trivial type.

Proof. If *E* is of trivial type, then by Oda's lemma [9], *E* is simple since Hom $(M, f^*L_2 \otimes M^{-1}) = H^0(X, f^*L_2 \otimes M^{-2}) \subset H^0(L_2) = 0$. If *E* is *H*stable, then *E* is simple by Cor. (1.8). Assume *E* is simple and not *H*stable. Therefore there are line bundles L_1 and L_2 on *X*, and a morphism $f: Y \to X$ obtained by successive dilatations and an extension of line bundles $0 \to M \to f^*E_1 \to f^*L_2 \otimes M^{-1} \to 0$, where $E_1 = E \otimes L_1, M$ is a positive exceptional line bundle and $d(E_1, H) \leq 0$. Hence $d(L_2, H) \leq 0$. Now we show $H^0(L_2) = 0$. Indeed, if $H^0(L_2) \neq 0$, then $L_2 = \mathcal{O}_X$ by $d(L_2, H) \leq 0$. And since H^0 (Hom $(M^{-1}, M)) \neq 0, E$ is not simple. This contradicts our assumption. Since Hom $(M, f^*L_2 \otimes M^{-1}) \subset H^0(L_2) = 0, H^0$ (End (E)) = H^0 (End (E_1)) = $k \oplus H^0(f^*L_2^{-1} \otimes M^2) = k \oplus H^0(L_2^{-1})$ by Oda's lemma. Thus $H^0(L_2^{-1}) = 0$. i.e. *E* is of trivial type.

We now give a result about the cohomology of an H-semi-stable vector bundle.

PROPOSITION (2.10). Let X be a surface and E an H-semi-stable vector bundle on X with d(E, H) = 0. Then $\dim_k H^0(E) \leq \operatorname{rank} E$. And the equality holds if and only if E is free.

Proof. If $H^{0}(E) \neq 0$, there is a morphism $f_{1}: X_{1} \rightarrow X$ obtained by successive dilatations and a line bundle L_1 and a vector bundle E_1 on X_1 such that we have an extension $0 \to L_1 \to f_1^*E \to E_1 \to 0$ and $H^0(L_1) \neq 0$. Since $d(L_1, H) \leq 0, L_1$ is a positive exceptional line bundle and hence $H^{0}(L_{1}) = k$, which induces $\dim_{k} H^{0}(E) \leq \dim_{k} H^{0}(E_{1}) + 1$. Moreover if $H^{0}(E_{1}) \neq 0$, there is a morphism $f_{2}: X_{2} \rightarrow X_{1}$ obtained by successive dilatations and a line bundle L_2 and a vector bundle E_2 on X_2 such that we have an extension $0 \to L_2 \to f_2^* E_1 \to E_2 \to 0$ and $H^{\scriptscriptstyle 0}(L_2) \neq 0$. Let φ denote Since $0 \leq d(L_2, H) = d(\varphi^{-1}(L_2), H) \leq 0, L_2$ is a positive ex $f_1^*E \to E_1$. ceptional line bundle. Hence $\dim_k H^0(E) \leq \dim_k H^0(E_2) + 2$. Continuing in this fashion we get $\dim_k H^0(E) \leq \operatorname{rank} E$. If $\dim_k H^0(E) = \operatorname{rank} E = r$, then we can define E_i, L_i $(i = 1, 2, \dots, r - 1)$ inductively and $E_{r-1} = L_r$ is also a positive exceptional line bundle, i.e. L_i is a positive exceptional line bundle for $i = 1, 2, \dots, r$. On the other hand, $L_1 \otimes L_2 \otimes \dots \otimes L_r =$ Inv (E), hence $L_i = \mathcal{O}_{\mathcal{X}}$, $(i = 1, 2, \dots, r)$, i.e. E is obtained by successive extensions of the structure sheaf \mathcal{O}_X , and $\dim_k H^0(E) = \operatorname{rank} E$, which implies that E is free.

3. H-stable vector bundles of rank two on geometrically ruled surfaces

Let *C* be a non-singular projective curve of genus *g* over an algebraically closed field *k*, *V* a vector bundle of rank two on *C*, and $\mathcal{O}_{P(V)}(1)$ the tautological line bundle on P(V) (See EGA II. 4.1.1 for the definition of P(V)). Then the Néron-Severi group of P(V) is $Z \oplus Z$, and is generated by the class *d* of $\mathcal{O}_{P(V)}(1)$ and the class *f* of a fibre of P(V) over *C*. And $(d^2) = \deg V = a$. In case *V* is decomposable, put $V = M_1 \oplus M_2$, where M_1 and M_2 are line bundles on *C* with deg $M_i = a_i, a_2 \ge a_1$ and $a = a_1 + a_2$. Let *p* denote the canonical projection: $P(V) \to C$. In this section, these assumptions will remain fixed.

PROPOSITION (3.1). Let L be a line bundle on P(V), and let the class of L be nd + mf. Then L is ample, if one of the following conditions is satisfied:

1.1) If V is semi-stable and char. k = 0, then n > 0 and na + 2m > 0.

1.2) If V is semi-stable, char. k = p > 0 and $g \ge 1$, then n > 0 and na + 2m > (2n/p)(g - 1).

2) If V is indecomposable, then n > 0 and na + 2m > 2n(g - 1). 3.1) If V is decomposable and either char. k = 0 or g = 0, then n > 0 and $na_1 + m > 0$.

3.2) If V is decomposable, char. k = p > 0 and $g \ge 1$, then n > 0and $na_1 + m > (n/p)(g - 1)$.

Moreover, when V is semi-stable and either char. k = 0 or g = 1, then L is ample if and only if n > 0 and na + 2m > 0. And when V is decomposable and either char. k = 0 or g = 0, 1, then L is ample if and only if n > 0 and $na_1 + m > 0$.

Proof is due essentially to Hartshorne ([2] Prop. (7.5)). He treated the case when the maximal degree of subline bundles of V is non-positive a > 0 and n = 1, m = 0, i.e. $L = \mathcal{O}_{P(V)}(1)$. (In this case V is stable.)

COROLLARY (3.2). There is a constant c depending on V such that a line bundle L on P(V), whose class is nd + mf, is ample if n > 0 and m + nc > 0.

Remark. If L as above is ample, then n > 0 and na + 2m > 0. In-

deed, (L, f) = n, $(L^2) = n(na + 2m)$.

Remark. If V is indecomposable and there is a non-trivial extension of line bundles $0 \to L_1 \to V \to L_2 \to 0$, then deg $(L_2 \otimes L_1^{-1}) \ge 2 - 2g$. Indeed, since H^1 (Hom $(L_2, L_1) \ne 0$, $H^0(L_2 \otimes L_1^* \otimes K_c) \ne 0$, where K_c denotes the canonical line bundle on C.

Proof of Proposition (3.1). Let D be any irreducible curve on P(V). Since $(L^2) = n(na + 2m) > 0$ in each case, it is sufficient, by Nakai's criterion, to show that (D, L) > 0. Let the class of D be kd + hf. Since $(D, f) \ge 0, k \ge 0$. If k = 0, then h = 1, since D is irreducible. So (D, L) = n > 0. If k = 1, then D is a section of P(V) over C, and we can write $\mathcal{O}_{P(V)}(D) = \mathcal{O}_{P(V)}(1) \otimes p^*(M)$ for a line bundle M on C of degree h. Then we have an exact sequence of sheaves on $P(V): 0 \to \mathcal{O}_{P(V)}(-D) \to \mathcal{O}_{P(V)} \to \mathcal{O}_{D} \to 0$. Tensoring with $\mathcal{O}_{P(V)}(1)$, we have $0 \to p^*(M^{-1}) \to \mathcal{O}_{P(V)}(1) \to \mathcal{O}_{P(V)}(1) \to 0$. We apply p_* . Note that $p_*p^*(M^{-1}) = M^{-1}, p_*(\mathcal{O}_{P(V)}(1)) = V, R^1p_*p^*(M^{-1}) = 0$, and $p_*(\mathcal{O}_D \otimes \mathcal{O}_{P(V)}(1))$ is a line bundle on C, since D is a section of p. Thus we have an exact sequence of vector bundles on C:

$$0 \longrightarrow M^{-1} \longrightarrow V \longrightarrow p_*(\mathcal{O}_D \otimes \mathcal{O}_{P(V)}(1)) \longrightarrow 0$$

Case 1) $d(M^{-1}) \leq (1/2)d(V)$ i.e. $a + 2h \geq 0$.

Case 2)
$$d(p_*(\mathcal{O}_D \otimes \mathcal{O}_{P(V)}(1))) - d(M^{-1}) \ge 2 - 2g$$
 i.e. $a + 2h \ge 2 - 2g$

Case 3) $d(M^{-1}) \leq a_2 = \max(a_1, a_2)$ i.e. $a_2 + h \geq 0$.

On the other hand, (D, L) = na + hn + m. Hence

Case 1) (D, L) = (1/2)(na + 2m) + (1/2)n(a + 2h) > 0.

Case 2) (D, L) > n(g - 1) - n(g - 1) = 0.

Case 3) $(D, L) = (na_1 + m) + n(a_2 + h) > 0.$

Therefore we may assume $k \ge 2$. Since $K_{P(V)} = \mathcal{O}_{P(V)}(-2) \otimes p^*(K_C \otimes Inv(V))$, the class of $K_{P(V)}$ is -2d + (2g - 2 + a)f (where $K_{P(V)}$ and K_C are the canonical line bundles on P(V) and C respectively).

Suppose either char. k = 0 or k < p. Then we can apply the Hurwitz formula to the projection of D onto C, and find $2p_a(D) - 2 \ge k(2g - 2)$. On the other hand, $2p_a(D) - 2 = (D, (D + K_{P(V)})) = (k - 1)(ka + 2h) + k(2g - 2)$. Combining these, we have $ka + 2h \ge 0$, since $k \ge 2$. (D, L) = kna + nh + mk = (1/2)n(ka + 2h) + (1/2)k(na + 2m) > 0.

Suppose char. $k = p \neq 0$, and $k \ge p$. Then we have an inequality $2p_a(D) - 2 \ge 2g - 2$. As above, we deduce $ka + 2h \ge 2 - 2g$. Thus $(D, L) = (1/2)n(ka + 2h) + (1/2)k(na + 2m) \ge n(1 - g) + (1/2)p(na + 2m)$.

If g = 0, then (D, L) > 0. In case (1.2), (2) and (3.2), we have na + 2m > (2n/p)(g-1), hence (D, L) > 0.

The first statement of the converse is trivial. Let V be decomposable and Y the image of the section associated with $V \to M_1 \to 0$. Then the class of Y is $d - a_2 f$. Hence $(Y, L) = na_1 + m > 0$. q.e.d.

LEMMA (3.3). Let E be a vector bundle of rank two on P(V). Assume $N(E) \ge 0$. Then E is H-stable if and only if E is H'-stable for any ample line bundle H' on P(V).

Proof. By Prop. (2.6), E is H-stable if we have $(L_2 \otimes L_1^{-1}, H) > 0$ for any morphism $f: Y \to P(V)$ obtained by successive dilatations and an extension of line bundles on Y

$$0 \longrightarrow f^*(L_1) \otimes M \longrightarrow f^*(E) \longrightarrow f^*(L_2) \otimes M^{-1} \longrightarrow 0$$

where L_1 and L_2 are line bundles on P(V), and M is a positive exceptional line bundle on Y. Let H be an ample line bundle on P(V) and let the class of H be nd + mf. Let the class of $L_2 \otimes L_1^{-1}$ be kd + hf. Then $(L_2 \otimes L_1^{-1}, H) = kna + nh + mk = (1/2)k(na + 2m) + (1/2)n(ka + 2h)$, and $N(E) = (L_2 \otimes L_1^{-1}, L_2 \otimes L_1^{-1}) + 4(M^2) = k(ka + 2h) + 4(M^2) \ge 0$. So $k(ka + 2h) \ge -4(M^2) \ge 0$. Now n > 0 and na + 2m > 0 by the ampleness of H. Hence $(L_2 \otimes L_1^{-1}, H) > 0$ if and only if either k > 0 and $ka + 2h \ge 0$, or k = 0 and ka + 2h > 0.

PROPOSITION (3.4). Let E be a stable vector bundle of rank two on C. Then p^*E is H-stable for any ample line bundle H on P(V). (In this case $N(p^*E) = 0$.)

Proof. Let H be an ample line bundle whose class is d + sf, where s is large enough. We remark a + 2s > 0. By Lemma (3.3), it is enough to show the Proposition for this H. Put $m = \deg(E)$. Then the class $c_1(p^*E)$ is mf and $c_2(p^*E)$ is zero. By Prop. (2.6), E is H-stable if we have $(L_2 \otimes L_1^{-1}, H) > 0$ for any morphism $f: Y \to P(V)$ obtained by successive dilatations and an extension of line bundles on Y

$$(*) \qquad 0 \longrightarrow f^*L_1 \otimes M \longrightarrow f^*p^*E \longrightarrow f^*L_2 \otimes M^{-1} \longrightarrow 0$$

where L_1 and L_2 are line bundles on P(V) and M is a positive exceptional line bundle on Y. We wish to show that $d(L_1, H) < (1/2)d(p^*E, H)$, i.e.

2ka + 2ks + 2h - m < 0, where the class of L_1 is kd + hf. On the other hand, $0 = N(p^*E) = (L_2 \otimes L_1^{-1}, L_2 \otimes L_1^{-1}) + 4(M^2) = 4k(ka + 2h - m) + 4(M^2)$. So $-4(M^2) = 4k(ka + 2h - m) \ge 0$. Now if we restrict (*) to a fibre fof P(V) over C, we have an exact sequence $0 \to \mathcal{O}_f(k) \to \mathcal{O}_f \oplus \mathcal{O}_f \to \mathcal{O}_f(-k)$ $\to 0$, where $f \cong P^1$, and hence $k \le 0$. If k < 0, then $ka + 2h - m \le 0$ and hence 2ka + 2ks + 2h - m = k(a + 2s) + ka + 2h - m < 0. If k =0, then $(M^2) = 0$ and hence $M = \mathcal{O}_Y$. Therefore the above extension is of the following form: $0 \to p^*L'_1 \to p^*E \to p^*L'_2 \to 0$, where L'_1 and L'_2 are line bundles on C such that $L_1 = p^*L'_1$ and $L_2 = p^*L'_2$. Apply p_* . Then we have an exact sequence $0 \to L'_1 \to E \to L'_2 \to 0$. By our assumption, h < (1/2)m. Hence 2ka + 2ks + 2h - m = 2h - m < 0.

PROPOSITION (3.5). There is no vector bundle E of rank two on P(V) with the first Chern class $c_1(E) = \mathcal{O}_{P(V)}(-1) \otimes p^*(L)$ for some line bundle L on C such that E is H-stable for every ample line bundle H on P(V).

Proof. Suppose there exists such a vector bundle E. Let m be the Then the class of $c_1(E)$ is -d + mf. We may assume m degree of L. is sufficiently large. Put b = N(E). Let H be an ample line bundle on P(V)whose class is d + sf. Then the Euler Poincaré characteristic $\chi(E)$ of E is equal to (1/4)(b - a + 2m) + 1 - g and $d(E^* \otimes K, H) = 4g - 4 - a - a$ Hence we may assume $\chi(E) > 0$ and $d(E^* \otimes K, H) < 0$. So m - 3s. $H^{0}(E) \neq 0$ by Lemma (2.1). Therefore there is a morphism $f: Y \to P(V)$ obtained by successive dilatations and an extension of line bundles on $Y, 0 \to f^*L_1 \otimes M \to f^*E \to f^*L_2 \otimes M^{-1} \to 0$, where L_1 and L_2 are line bundles on P(V), $H^{0}(L_{1}) \neq 0$ and M is a positive exceptional line bundle. Let the class of L_1 be kd + hf. For large enough n, any line bundle $H_{1,n}$ whose class is d + nf is ample by Cor. (3.2). By $H^{0}(L_{1}) \neq 0$, we have $d(L_1, H_{1,n}) \ge 0$ i.e. $ka + h + kn \ge 0$ for large enough n. So $k \ge 0$. On the other hand, by our assumption, $d(L_1, H_{1,n}) \leq (1/2)d(E, H_{1,n})$ i.e. $(n+a)(-1-2k)+m-2h \ge 0$ for large enough n. So $k \le -1/2$. This is a contradiction.

PROPOSITION (3.6). Let E be a vector bundle on P(V) of rank two with the first Chern class $c_1(E) = p^*L$ for some line bundle L on C and $N(E) \ge 0$. If E is H-stable for an ample line bundle H, then there is a stable vector bundle F on C such that $E = p^*F$. (It follows that N(E) = 0.)

Proof. Put m = d(L) and b = N(E). And let $H_{1,n}$ be the same as

in Prop. (3.5). By Lemma (3.3) we may assume $H = H_{1,n}$. Then $\chi(E) = m + (1/4)b + 2 - 2g$ and $d(E^* \otimes K, H) = -2a + 4g - 4 - 4n - m$. By the same argument as in Prop. (3.5), we have an exact sequence $0 \rightarrow f^*L_1 \otimes M \rightarrow f^*E \rightarrow f^*L_2 \otimes M^{-1} \rightarrow 0$ where f, L_1, L_2, M are the same as before. By $H^0(L_1) \neq 0$, we have $d(L_1, H_{1,n}) \geq 0$ i.e. $ka + h + kn \geq 0$ for large enough n. So $k \geq 0$. On the other hand, by our assumption, $d(L_1, H_{1,n}) \leq (1/2)d(E, H_{1,n})$ i.e. $2m - ka - h - kn \geq 0$ for large enough n. So $k \leq 0$. Hence k = 0 and $0 \leq h < (1/2)m$. Now since N(E) = $4(M^2) \geq 0$, we conclude that $M = \mathcal{O}_Y, N(E) = 0$ and the above extension is of the following form: $0 \rightarrow p^*L'_1 \rightarrow E \rightarrow p^*L'_2 \rightarrow 0$, where L'_1, L'_2 are line bundles on C. This extension defines an element of H^1 (Hom $(p^*L'_2, p^*L'_1)$). On the other hand, H^1 (Hom $(L'_2, L'_1) \approx H^1$ (Hom $(p^*L'_2, p^*L'_1)$) (canonically). Hence $E = p^*F$ for some vector bundle F on C which is an extension of L'_2 by L'_1 . It is obvious that F is stable.

THEOREM (3.7). Let H be an ample line bundle on P(V).

1) There is no H-stable bundle E of rank two on P(V) with N(E) > 0.

2) A vector bundle E of rank two on P(V) is H-stable with N(E) = 0 if and only if there is a stable vector bundle F of rank two on C and a line bundle L on P(V) such that $E = p^*F \otimes L$.

3) Let E be a vector bundle of rank two on P(V) with N(E) < 0, and let the first Chern class of E be kd + hf where k is odd. If E is H-stable, then there exists an ample line bundle H' on P(V) such that E is not H'-stable.

Proof. Tensoring E with a suitable line bundle $\mathcal{O}_{P(V)}(n)$, we may assume $c_1(E) = kd + hf$ with k = 0 or 1. The statement is obtained from Lemma (3.3), Prop. (3.4), Prop. (3.5) and Prop. (3.6).

We now give an example of Th. (3.7). 3). First

LEMMA (3.8). Let X be a non-singular projective surface. Let L be a line bundle on X and let H be an ample line bundle on X. Suppose the extension $0 \rightarrow \mathcal{O}_X \rightarrow E \rightarrow L \rightarrow 0$ does not split and d(L, H) = 1. Then E is H-stable.

Proof. First, remark (1/2)d(E, H) = 1/2. Suppose we are given a morphism $f: Y \to X$ obtained by successive dilatations and a surjective morphism $f^*E \to f^*L_1 \otimes M^{-1}$, where L_1 is a line bundle on X and M is

a positive exceptional line bundle on Y. If $\mathcal{O}_Y \to f^*E \to f^*L_1 \otimes M^{-1}$ is zero, then $L = L_1$ and $M = \mathcal{O}_Y$. If not, then $0 \neq H^0(f^*L_1 \otimes M^{-1}) \subset H^0(L_1)$. Hence $d(L_1, H) \geq 0$. Then if $d(L_1, H) = 0$, then $L_1 = \mathcal{O}_X$ and $H^0(M^{-1}) \neq 0$, and so $M = \mathcal{O}_Y$. Therefore the above extension splits. Hence $d(L_1, H) \geq 1$.

PROPOSITION (3.9). Assume a + 2m > 2g if V is indecomposable, and $a_1 + m > g$ if V is decomposable. Denote by $H_{1,m}$ an ample line bundle on P(V) whose class is d + mf. Let M be a line bundle on C of degree a + m + 1. Put $L = \mathcal{O}_{P(V)}(-1) \otimes p^*M$ and $s = \dim_k H^1(L^{-1}) - 1$. (In this case $s = a + 2m + 2g - 1 \ge 4g$.) If $0 \to \mathcal{O}_{P(V)} \to E \to L \to 0$ is a non-trivial extension, then E is $H_{1,m}$ -stable and is not $H_{1,n}$ -stable for any ample line bundle $H_{1,n}$ with $n \ge m + 1$. We also have N(E) = -a - 2-2m, $H^0(E) = k$, $\dim_k H^1(E) = g$, $H^2(E) = 0$, H^2 (End (E)) = 0 and $\dim_k H^1$ (End (E)) = s + 2g. Let $\xi \neq \xi'$ be elements in $P(H^1(L^{-1}))$, and let E_{ξ} and $E_{\xi'}$ be vector bundles on P(V) corresponding to the extension classes ξ and ξ' respectively as above. Then $E_{\xi} \neq E_{\xi'}$.

Proof. First, we calculate dim_k $H^{1}(L^{-1})$. $H^{1}(L^{-1}) = H^{1}(\mathbf{P}(V), \mathcal{O}_{\mathbf{P}(V)}(1))$ $\otimes p^*M^{-1} = H^1(C, V \otimes M^{-1}).$ By duality, $\dim_k H^1(L^{-1}) = \dim_k H^0(C, V^* \otimes M^{-1})$ $M \otimes K_c$), where K_c denotes the canonical line bundle on C. In case V is indecomposable, let (L_1, L_2) be a maximal splitting of $V^* \otimes M \otimes K_c$. By the result of Atiyah [1] to the effect that $2g \ge d(L_2) - d(L_1) \ge -2g$ + 2, we conclude $d(L_i) \ge (1/2)(6g-3) - g > 2g - 2$, since $d(V^* \otimes M \otimes K_c)$ $= a + 2m + 4g - 2 \ge 6g - 3$ by our assumption. Hence $H^{1}(L_{i}) = 0$. In case V is decomposable, we equally have $H^{1}(V^{*} \otimes M \otimes K_{c}) = 0$ since $d(M_i^* \otimes M \otimes K_c) = a - a_i + m + 2g - 1 > 2g - 2$. Therefore $\dim_k H^1(L^{-1})$ s = s + 1. By Lemma (3.8), E is $H_{1,m}$ -stable since $d(L, H_{1,m}) = 1$. On the other hand since $d(L, H_{1,n}) \leq 0$ for $n \geq m + 1, E$ is not $H_{1,n}$ -stable. Now since $H^i(\mathbf{P}(V), L) = 0$ for i = 0, 1 and 2, $H^i(E) \cong H^i(\mathcal{O}_{\mathbf{P}(V)})$. We now show $H^2(\text{End}(E)) = 0$. Since $0 \to \mathcal{O}_{P(V)} \to E \to L \to 0$, we have an exact sequence $0 \to E^* \to \text{End}(E) \to L \otimes E^* \to 0$ by tensoring it with E^* . On the other hand, since $E^* \otimes K_{P(V)}$ and $E^* \otimes K_{P(V)} \otimes L$ are $H_{1,m}$ -stable bundles with negative $H_{1,m}$ -degree, $H^0(E^* \otimes K_{P(V)}) = 0$ and $H^0(E^* \otimes K_{P(V)} \otimes L) = 0$. Hence $\dim_k H^2$ (End (E)) = $\dim_k H^0$ (End (E) $\otimes K_{P(V)}$) = 0. So we can calculate $\dim_k H^1$ (End (E)), since E is simple. The last statement follows from $H^0(E) = k$.

We remark the following fact: Let M_1 and M_2 be line bundles on C of degree 0, and let N_1 and N_2 be line bundles on C of degree a + m + 1.

If a vector bundle E on P(V) is an extension of $\mathcal{O}_{P(V)}(-1) \otimes p^*N_1$ by p^*M_1 which is also an extension of $\mathcal{O}_{P(V)}(-1) \otimes p^*N_2$ by p^*M_2 , then $M_1 = M_2$ and $N_1 = N_2$. Indeed we may assume $M_1 = \mathcal{O}_{P(V)}$. Since $k = H^0(\mathcal{O}_{P(V)}) = H^0(E) = H^0(M_2)$ and $d(M_2) = 0$, so $M_2 = \mathcal{O}_{P(V)}$, and hence $N_1 = N_2$.

Hence we can say that there is an algebraic family S of simple vector bundles on P(V) parametrized by $J \times J \times P^s$, in which isomorphic ones appear only once, and for any E contained in S, $\dim_k H^1(\text{End}(E))$ = the dimension of $J \times J \times P^s$. Here J is the Jacobian variety of C and P^s is the s-dimensional projective space.

Conversely,

PROPOSITION (3.10). Assume $a_1 + m > 0$. Let C be the projective line and E a vector bundle of rank two on $\mathbf{P}(V)$ with N(E) = -a - 2 - 2mwhose first Chern class is kd + hf, where k is odd. Then there is a line bundle L' on $\mathbf{P}(V)$ such that $E' = E \otimes L'$ is the extension of L by $\mathcal{O}_{\mathbf{P}(V)}$ where L is of the same type as in Prop. (3.9) i.e. there is a line bundle M on C of degree a + m + 1 such that $L = \mathcal{O}_{\mathbf{P}(V)}(-1) \otimes p^*M$.

Proof. Tensoring E with a suitable line bundle, we may assume the class of $c_1(E)$ is -d + bf. Moreover we may assume it is -d + (a + m + 1)f. Indeed if $b \equiv a + m \pmod{2}$, then $N(E) = c_1^2(E) - 4c_2(E) \equiv -a - 2m \pmod{4}$. This contradicts our assumption. Then $c_2(E) = 0$. $\chi(E) = 1$ and $d(E^* \otimes K_{P(V)}, H_{1,m}) < 0$. Hence $H^0(E) \neq 0$ by Lemma (2.1). On the other hand, since $d(E, H_{1,m}) = 1$, we have a morphism $f: Y \to P(V)$ obtained by successive dilatations and an exact sequence $0 \to M \to f^*E \to f^* (\operatorname{Inv} E)) \otimes M^{-1} \to 0$, where M is a positive exceptional line bundle on Y. Now since $0 = c_2(E) = -(M^2)$, we get $M = \mathcal{O}_Y$.

Putting all these results together we have

THEOREM (3.11). Let V be $\mathcal{O}_{\mathbf{P}^1} \oplus \mathcal{O}_{\mathbf{P}^1}(a)$ on the projective line \mathbf{P}^1 with $a \geq 0$, and let $p: \mathbf{P}(V) \to \mathbf{P}^1$ be the canonical projection. (Then for positive $m, H_{1,m} = \mathcal{O}_{\mathbf{P}(V)}(1) \otimes p^*(\mathcal{O}_{\mathbf{P}^1}(m))$ is ample.) Let S be the set of all $H_{1,m}$ -stable vector bundles E on $\mathbf{P}(V)$ of rank two with the first Chern class $c_1(E) = \mathcal{O}_{\mathbf{P}(V)}(-1) \otimes p^*(\mathcal{O}_{\mathbf{P}^1}(a + m + 1))$ and the second Chern class $c_2(E) = 0$. Then there is a bijective map φ from S to \mathbf{P}^s and a vector bundle \mathscr{V} on $\mathbf{P}^s \times_k \mathbf{P}(V)$ such that for any $E \in S$, E = the restriction of \mathscr{V} to $\varphi(E) \times \mathbf{P}(V)$, and $\dim_k H^1(\operatorname{End}(E)) = s$. Here s = a + 2m - 1 and \mathbf{P}^s is the s-dimensional projective space.

4. Simple vector bundles of rank two on the projective plane P^2

Let *E* be a vector bundle on P^2 of rank two. If *E* is simple, by the Riemann-Roch theorem, $N(E) = c_1^2(E) - 4c_2(E) = \dim_k H^0$ (End (*E*)) $-\dim_k H^1(\text{End}(E)) + \dim_k H^0(\text{End}(E) \otimes K_{P^2}) - 4\chi(\mathcal{O}_{P^2}) \leq -2$, since End (*E*) is self-dual and the canonical bundle K_{P^2} of P^2 is a sheaf of ideals. ([10] Th. 10) On the other hand, $N(E) \equiv 0$ or $1 \pmod{4}$ according as c_1 is even or odd. We know that for any negative $n \equiv 0$ or $1 \pmod{4}$ except for n = -4, there is a simple vector bundle *E* of rank two on P^2 with N(E) = n. (See [11]. The result in p. 637 is false for n = -4 as we see below.)

PROPOSITION (4.1) (Schwarzenberger [11]). Let E be a vector bundle on \mathbf{P}^2 of rank two with the first Chern class $c_1(E) = \mathcal{O}_{\mathbf{P}^2}(n)$. Put $m = \min \{k | H^0(E \otimes \mathcal{O}_{\mathbf{P}^2}(k)) \neq 0\}$. Then the following conditions are equivalent; (i) E is simple (ii) E is $\mathcal{O}_{\mathbf{P}^2}(1)$ -stable (iii) 2m + n > 0.

Proof. It is obvious that (ii) is equivalent to (iii) by definition. Since there is no line bundle L on P^2 with $H^0(L) = H^0(L^{-1}) = 0$, (i) is equivalent to (ii) by Prop. (2.9).

COROLLARY (4.2). The set of all simple vector bundles on \mathbf{P}^2 of rank two with the fixed Chern classes is bounded.

Proof. It is obvious by Th. 2.4 and Prop. 4.1.

Let E_0 be the kernel of the canonical surjection $\mathscr{O}_{P^2}^{\otimes 3} \to \mathscr{O}_P(1)$. i.e. $E_0 = \mathscr{Q}_{P^2}^1(1)$. Then E_0 is simple of rank two and with $N(E_0) = -3$. Indeed, since $c_1(E_0) = -1$ and $c_2(E_0) = 1, E_0$ is not an extension of line bundles. We now show E_0^* is $\mathscr{O}_{P^2}(1)$ -stable. Suppose we are given a morphism $f: X \to P^2$ obtained by successive dilatations and a surjection $E_0^* \to f^*\mathscr{O}_{P^2}(k) \otimes M^{-1}$, where M is a positive exceptional line bundle. By the definition of E_0 , we have $\mathscr{O}_{P^2}^{\oplus 3} \to E_0^* \to 0$. Hence there is a non-zero homomorphism $\mathscr{O}_{P^2} \to f^*\mathscr{O}_{P^2}(k) \otimes M^{-1}$, and so $k \ge 0$. If k = 0, then $M = \mathscr{O}_X$. This contradicts the fact that E_0 is not an extension of line bundles on P^2 . Therefore $k \ge 1$. On the other hand, $c_1(E_0^*) = 1$. Thus E_0^* is $\mathscr{O}_{P^2}(1)$ -stable.

PROPOSITION (4.3). 1) There is no simple vector bundle E of rank two on \mathbf{P}^2 with N(E) = -4. 2) Let E be a simple vector bundle E of rank two on \mathbf{P}^2 with N(E) = -3. Then $E = \Omega_{\mathbf{P}^2}^1(n)$ for some n.

44

Proof. 1) Let E be a vector bundle of rank two on P^2 with N(E)= -4. We may assume $c_1(E) = 0$, and so $c_2(E) = 1$. Then since $\chi(E)$ = 1 and $c_1(E^* \otimes K_{P^2}) < 0$, E is not $\mathcal{O}_{P^2}(1)$ -stable by Lemma (2.1) and hence not simple. 2) Put $V = \mathcal{O}_{P_1} \oplus \mathcal{O}_{P_1}(1)$. The surface X = P(V) has a unique exceptional curve D of the first kind. The contraction of D is Now we consider the problem on X. Let E be a simple vector bundle P^2 . on X of rank two with N(E) = -3. Put $c_1(E) = kd + hf$. By N(E) =-3, k is odd and h is even. So we may assume k = -1 and h = 2, and then $c_2(E) = 0$. Therefore since $\chi(E) = 1, d(E^* \otimes K_X, H_{1,1}) < 0$ and $d(E, H_{1,1})$ = 0, so E is not $H_{1,1}$ -stable. Hence we have a morphism $f: Y \to X$ obtained by successive dilatations and an extension of line bundle on $Y: 0 \rightarrow f^*L_1 \otimes M \rightarrow f^*E \rightarrow f^*L_2 \otimes M^{-1} \rightarrow 0$, where L_1 and L_2 are line bundles on X and M is a positive exceptional line bundle on Y with $d(L_1, H_{1,1})$ ≥ 0 . Let the class of L_1 be nd + mf. Since E is simple, $H^0(L_1 \otimes L_2^{-1})$ = 0 and $H^{0}(L_{1}^{-1} \otimes L_{2}) = 0$ by the same argument as in Prop. (2.9). And $0 = c_2(E) = -4(M^2) + (L_2 \otimes L_1^{-1}, L_2 \otimes L_1^{-1}).$ These relations are equivalent to the following: (1) $2n + m \ge 0$. (2) either $n \ge 0$ and $n + m \le 0$ or $n \geq -1 \ \ ext{and} \ \ n+m \leq 2.$ (3) $-(M^2)=n^2+2nm+m-n\geq 0.$ Only n= 0 and m = 0 satisfies these relations, and so $M = \mathcal{O}_{Y}$. Hence the above extension is of the form: $0 \to \mathcal{O}_X \to E \to \mathcal{O}_X(-d+2f) \to 0$. Since $\dim_k H^1(\mathcal{O}_X(d-2f)) = 1$, the above non-trivial extension is unique. (It is obvious that the extension bundle is simple by Oda's lemma.)

We now give an example of a family of simple vector bundles of rank two on P^2 . Let x_1, x_2, x_3 be closed points of P^2 in general position, and let f be the blowing up: $X \to P^2$ whose center consists of x_1, x_2 and x_3 . Put $L = f^*(\mathcal{O}_{P^2}(-1)) \otimes \mathcal{O}_X(C_1 + C_2 + C_3)$, where $C_i = f^{-1}(x_i)$. It is easy to see that dim_k $H^1(L^{\otimes 2}) = 3$, $H^2(L^{\otimes 2} \otimes \mathcal{O}_X(-C_i)) = 0$, $H^0(L) = 0$, $H^0(L^{-1}) = 0$ and $H^0(L^{\otimes -2}) = 0$. We have an exact sequence $0 \to \mathcal{O}_X(-C_i) \to \mathcal{O}_X \to \mathcal{O}_{C_i} \to 0$, which induces $k^{\oplus 3} = H^1(L^{\otimes 2}) \to H^1(C_i, \mathcal{O}_{C_i}(-2)) = k \to H^2(L^{\otimes 2} \otimes \mathcal{O}_X(-C_i)) =$ 0. Consider an extension $0 \to L \to E' \to L^{-1} \to 0$. By Schwarzenberger [10], E' is of the form f^*E for some vector bundle E on P^2 if and only if $E' \otimes \mathcal{O}_{C_i} = \mathcal{O}_{C_i} \oplus \mathcal{O}_{C_i}$, i = 1, 2, 3. Hence there is a non-empty Zariski open subset U of P^2 and a vector bundle \mathscr{V} of rank two on $U \times P^2$ such that for any $u \in U$, the restriction of \mathscr{V} to $u \times P^2$ is a simple vector bundle of rank two on P^2 with the first Chern class $= \mathcal{O}_{P^2}$ and the second Chern class = 2, and isomorphic vector bundles appear only once. Indeed, let E' be f^*E for some vector bundle E on P^2 . It is easy to see that

 $H^{0}(E \otimes \mathcal{O}_{P^{2}}(1)) \neq 0$. On the other hand, $H^{0}(E) = 0$ by the above fact. Hence E is simple by Cor. (2.10), iii). From $H^{0}(L^{\otimes -2}) = 0$, we can see that isomorphic vector bundles appear only once.

Remark. Conversely, let E be a simple vector bundle of rank two on P^2 with the first Chern class $= \mathcal{O}_{P^2}$ and the second Chern class = 2. Then there is a morphism $f: X \to P^2$ obtained by successive dilatations and a positive exceptional line bundle M on X such that $0 \to f^*(\mathcal{O}_{P^2}(-1))$ $\otimes M \to f^*E \to f^*(\mathcal{O}_{P^2}(1)) \otimes M^{-1} \to 0$, where $-(M^2) = 3$. Indeed, by Lemma (2.1), $H^0(E \otimes \mathcal{O}_{P^2}(1)) \neq 0$ since $\chi(E \otimes \mathcal{O}_{P^2}(1)) > 0$ and $d((E \otimes \mathcal{O}_{P^2}(1))^* \otimes K, \mathcal{O}_{P^2}(1)) < 0$. On the other hand, $H^0(E) = 0$. Hence we have the desired result.

When X is $P^1 \times P^1$, we have the almost same results as when X is the projective plane P^2 . For example, 1) there is no simple vector bundle E of rank two on X with N(E) = -2. 2) Let E be a vector bundle of rank two on X with N(E) = -4. E is simple if and only if E is $H_{1,1}$ -stable, or $H_{2,1}$ -stable, or $H_{1,2}$ -stable. Hence a set of such simple bundles is bounded etc.

On the other hand, it was shown by Schwarzenberger [11] that for any even negative integer $n \neq -2$, there is a simple vector bundle E on X of rank two with N(E) = n. (His statement is false for n = -2. We can prove there is no simple vector bundle E of rank two on X with N(E) = -2 as Prop. (4.3) (i).) Note that if E is a simple vector bundle of rank two on X, then N(E) is an even negative integer.

5. Stable vector bundles of rank two on abelian surfaces

In this section, X will be an abelian surface over k. When E is a simple bundle of rank two on X, by the Riemann-Roch theorem, $N(E) = c_1^2(E) - 4c_2(E) = 2 \dim_k H^0$ (End (E)) $-\dim_k H^1$ (End (E)) $= 2 - \dim_k H^1$ (End (E)) ≤ 2 , since End (E) is self-dual and the canonical bundle of X is trivial. When char. $k \neq 2$, $\dim_k H^1$ (End (E)) $\geq \dim_k H^1(\mathcal{O}_X) = 2$, since $\mathcal{O}_X \to \text{End}(E)$ splits. Hence $N(E) \leq 0$ when char. $k \neq 2$ and E is simple.

PROPOSITION (5.1). Let X be an abelian surface and E a vector bundle of rank two with N(E) = 0 on X. Then E is simple if and only if E is H-stable for an ample line bundle H on X. *Proof.* We use freely results about the cohomology of a line bundle on an abelian variety. (See [7] and [8]). Assume E is of trivial type. As above there is a non-trivial extension $0 \to M \to f^*E \to f^*L_2 \otimes M^{-1} \to 0$ with $H^0(L_2) = H^0(L_2^{-1}) = 0$. Therefore we have the following three possibilities:

(Case 1) L_2 is non-degenerate of index 1, i.e. $(L_2^2) < 0$.

(Case 2) L_2 is not isomorphic to \mathcal{O}_X , but algebraically equivalent to \mathcal{O}_X . (Case 3) L_2 is degenerate, but not algebraically equivalent to \mathcal{O}_X , with $L_2 \otimes \mathcal{O}_K \neq \mathcal{O}_K$ where K is the component of the zero of the kernel of $\wedge (L_2)$. In cases 2 and 3 we have $M = \mathcal{O}_X$, since by assumption (L_2^2) = 0 and $0 = N(E) = 4(M^2) + (L_2^2)$. The extension is thus of the form, $0 \to \mathcal{O}_X \to E_1 \to L_2 \to 0$. But since $H^1(L_2^{-1}) = 0$, $E_1 = \mathcal{O}_X \oplus L_2$, contradicting the assumption that E_1 is simple. In case 1, $N(E) = 4(M^2) + (L_2^2) <$ $4 (M^2) \leq 0$. This contradicts N(E) = 0.

PROPOSITION (5.2). Let X be an abelian surface and let E be a vector bundle of rank two on X with N(E) = 0. Then E is H-semi-stable if and only if E is either simple or is of the form $E' \otimes L$, where we have an extension $0 \to \mathcal{O}_X \to E' \to \mathcal{O}_X \to 0$ and L is a line bundle.

Proof. The condition is clearly sufficient. To show that it is necessary, let E be H-semi-stable and not simple. By Prop. (5.1), E is not H-stable. Hence we have a morphism $f: Y \to X$ obtained by successive dilatations, line bundles L_1 and L_2 on X and a positive exceptional line bundle M on Y such that there is an exact sequence $0 \to f^*L_1 \otimes M \to f^*E \to f^*L_2 \otimes M^{-1} \to 0$ with $d(L_1, H) = d(L_2, H)$. If $H^0(L_2 \otimes L_1^{-1}) = 0$, then H^0 (End (E)) = $k \oplus H^0(L_1 \otimes L_2^{-1})$ by Oda's lemma and hence $L_1 \simeq L_2$. This is a contradiction. Therefore $H^0(L_1 \otimes L_2^{-1}) \neq 0$, and so $L_1 = L_2$. Since $N(E) = 4(M^2) = 0$, $M = \mathcal{O}_X$.

Remark. Let X be an abelian surface over the field of complex numbers and E a vector bundle of rank two with N(E) = 0 on X. Then Oda [9] has proved that E is simple if and only if E is obtained as the direct image of a line bundle under an isogeny of a special type. And also he has shown that there is a vector bundle E of rank two on an abelian surface with N(E) = 0, which is not H-semi-stable but indecomposable. On the other hand, it is well known [1] that any indecomposable

vector bundle on an elliptic curve is semi-stable and the fact corresponding to Prop. (2.12) holds.

References

- Atiyah, M. F., Vector bundles over an elliptic curve, Proc. London Math. Soc., (3), 7 (1957), p. 414-452.
- [2] Hartshorne, R., Ample vector bundles, Publ. Math. IHES, 29 (1966), p. 63-94.
- [3] Kleiman, S., Les theoremes de finitude pour le foncteur de Picard, SGA 6, exposé 13.
- [4] Mumford, D., Projective invariants of projective structures and applications, Proc. Inter. Congress Math. Stockholm 1962, p. 526-530.
- [5] Mumford, D., Geometric invariant theory, Springer-Verlag, 1965.
- [6] Mumford, D., Lectures on curves on an algebraic surface, Ann. of Math. Studies Number 59, Princeton, 1966.
- [7] Mumford, D., Abelian varieties, Oxford Univ. Press, 1970.
- [8] Mumford, D. and G. Kempf, Varieties defined by quadratic equations, Centro Inter. Math. Estivo, Varenna, 1969, p. 31-100.
- [9] Oda, T., Vector bundles on abelian surfaces, Invent. Math., vol. 13 (1971), p. 247-260.
- [10] Schwarzenberger, R. L. E., Vector bundles on algebraic surfaces, Proc. London Math. Soc., (3), 1961, p. 601-622.
- [11] Schwarzenberger, R. L. E., Vector bundles on the projective plane, Proc. London Math. Soc. (3) 1961, p. 623-640.

Department of Mathematics Nagoya Institute for Technology