L.J. Goldstein

Nagoya Math. J.
Vol. 45 (1971), 119-127

ON PRIME DISGRIMINANTS

LARRY JOEL GOLDSTEIN ${ }^{11}$

1. Introduction.

Let $L=\boldsymbol{Q}(\sqrt{d})$ be a quadratic field of discriminant d. We say that d is a prime discriminant if d is divisible by exactly one rational prime. It is classically known that the prime discriminants are given by

$$
-4, \pm 8,(-1)^{\frac{p-1}{2}} p \quad(p \text { an odd prime }) .
$$

Further, it is known that every discriminant d of a quadratic field can be written uniquely in the form

$$
d=d_{1} \cdots d_{t}
$$

where d_{1}, \cdots, d_{t} are distinct prime discriminants. (See, for example, [2, p. 75].) In this paper, we will prove a generalization of these facts.

Let K be an algebraic number field of narrow ${ }^{2)}$ class number 1 and let L be a quadratic extension of K. Let \mathcal{O}_{K} (resp. \mathcal{O}_{L}) denote the ring of integers of K (resp. L). Since K has class number $1, L$ has a relative integral basis $\left\{\alpha_{1}, \alpha_{2}\right\}$ over K. The relative discriminant

$$
\Delta_{L / K}\left(\alpha_{1}, \alpha_{2}\right)
$$

is a non-zero integer of K. Furthermore, if $\left\{\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right\}$ is another relative integral basis of L over K, then

$$
\begin{equation*}
\Delta_{L / K}\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right)=\varepsilon^{2} \Delta_{L / K}\left(\alpha_{1}, \alpha_{2}\right), \tag{1}
\end{equation*}
$$

where $\varepsilon \in U_{K}, U_{K}=$ the group of units of \mathscr{O}_{K}. Let

[^0]$$
\mathscr{S}(K)=\left\{\Delta_{L / K}\left(\alpha_{1}, \alpha_{2}\right)\right\}
$$
where L varies over all quadratic extensions of K and $\left\{\alpha_{1}, \alpha_{2}\right\}$ varies over all relative integral bases of L over K. An element of $\mathscr{S}(K)$ is called a K-discriminant. A K-discriminant which is divisible by exactly one K-prime is called a prime K-discriminant. We say that two K-discriminants d, d^{\prime} are equivalent if $d=\varepsilon^{2} d^{\prime}$ for some $\varepsilon \in U_{K}$. The first main result of this paper is

Theorem A. Let K be totally real of narrow class number 1, and let $d \in \mathscr{S}(K)$. Then d can be written in the form

$$
d=\pi_{1} \cdots \pi_{\iota},
$$

where $\pi_{i}(1 \leq i \leq t)$ are distinct prime K-discriminants.
Let $d=\pi_{1} \cdots \pi_{t}=\pi_{1}^{\prime} \cdots \pi_{s}^{\prime}$ be two decompositions of the K-discriminant d into the product of distinct prime K-discriminants. We will say that the two decompositions are equivalent if $s=t$ and, after suitably renumbering π_{1}, \cdots, π_{t}, we have π_{i} equivalent to π_{i}^{\prime} for $1 \leq i \leq t$. Our second main result is

Theorem B. Let K be totally real of narrow class number 1, and let $d \in \mathscr{S}(K)$ and let L be a quadratic extension of K having d as the discriminant of some relative integral basis of L over K. Let d be divisible by t distinct K-primes, and let $L^{*}=$ the maximal abelian extension of K which is unramified over L at all finite primes. Then:
(1) $\quad \operatorname{deg}\left(L^{*} / L\right) \geq 2^{t-1}$.
(2) All decompositions of d into a product of prime discriminants are equivalent to one another $\Leftrightarrow \operatorname{deg}\left(L^{*} / L\right)=2^{t-1}$.

The author wishes to thank Professor Tomio Kubota for several valuable suggestions.

2. Generalization of Furuta's Genus Formula.

In this paragraph, let K be any number field and let L / K be an abelian extension. Let L^{*} denote the maximal abelian extension of K which contains L and is such that L^{*} / L is unramified at all finite L-primes. We will refer to L^{*} as the weak genus field of L / K, and $\operatorname{deg}\left(L^{*} / L\right)$ as the weak genus number of L / K. Furuta [1] has introduced a similar notion which assumes
that L^{*} / L is unramified also at infinite L-primes. In this case, we will refer to the strong genus field of L / K and the strong genus number of L / K.

Let h_{K} denote the ordinary class number of $K, S_{\infty}=$ the set of infinite K-primes, $S_{\infty, 1}=$ the set of real K-primes, $S_{\infty, 2}=$ the set of complex K-primes, $r_{i}=$ the number of elements in $S_{\infty, i}(i=1,2)$. We will prove

Thoerem 2.1. The weak genus number of L / K is given by

$$
\operatorname{deg}\left(L^{*} / L\right)=\frac{h_{K} 2^{r_{1}} \prod_{p \neq S_{\infty}} e_{p}}{\operatorname{deg}(L / K) \cdot\left[U_{K}: U_{L / K}\right]},
$$

where \mathfrak{p} runs over primes of $K, e_{\mathfrak{p}}=$ the ramification index of \mathfrak{p} in $L / K, U_{K}=$ the group of units of the ring of K-integers, $U_{L / K}=$ the group of units of the ring of K-integers, which are local norms at all finite primes and are totally positive.

Our proof will follow the derivation of Furuta's formula [1] for the strong genus number.

Lemma 2.2. [1, p. 282]. Let J_{L} denote the group of ideles of L and let \hat{H} be an admissible subgroup of $J_{L}, \hat{L}=$ the class field over L corresponding to \hat{H}. Let \hat{L}_{0} be the maximal abelian extension of K which is contained in \hat{L}. Then $K^{\times} \cdot\left(N_{L / K} \hat{H}\right)$ is the admissible subgroup of J_{K} corresponding to \hat{L}_{0}, where $N_{L / K}$ denotes the idele norm from L to K.

Lemma 2.3. Let H^{*} denote the admissible subgroup of J_{K} corresponding to L^{*}, where $J_{K}=$ the idele group of K. Then

$$
H^{*}=K^{\times} \cdot \prod_{p \in S_{\infty}, 1} \boldsymbol{R}_{+} \times \prod_{p \in S_{\infty}, 2} \boldsymbol{C}^{\times} \prod_{p \in S_{\infty}} N U_{\mathfrak{B}},
$$

where $\boldsymbol{R}_{+}=\{x \in \boldsymbol{R} \mid x>0\}, \boldsymbol{C}^{\times}=\boldsymbol{C}-\{0\}, \mathfrak{F}=$ a prime divisor of \mathfrak{p} in $L, U_{\mathfrak{B}}=$ the local unit group at \mathfrak{P} and $N=$ the local norm from $L_{\mathfrak{B}}$ to $K_{\mathfrak{p}}$.

Proof. Let $\hat{L}=$ the maximal abelian extension of L which is unramified at all finite L-primes. Then the admissible subgroup of J_{L} corresponding to L is given by

$$
L^{\times} \cdot \prod_{\mathfrak{B} \text { real }} \boldsymbol{R}_{+} \prod_{\mathfrak{B} \text { complex }} \boldsymbol{C}^{\times} \times \prod_{\mathfrak{B} \text { finite }} U_{\mathfrak{F}} .
$$

But $L^{*}=$ the maximal abelian extension of K contained in L. Thus, the Lemma follows from Lemma 2.2.

Let us now prove Theorem 2.1. Let U denote the group of unit ideles of K. Then

$$
\begin{aligned}
& \operatorname{deg}\left(L^{*} / L\right)=\frac{\operatorname{deg}\left(L^{*} / K\right)}{\operatorname{deg}(L / K)} \\
&=\frac{\left(J_{K}: H^{*}\right)}{\operatorname{deg}(L / K)} \\
&=\frac{\left(J_{K}: K^{\times} U\right)\left(K^{\times} U: H^{*}\right)}{\operatorname{deg}(L / K)} \\
&=\frac{h_{K}\left(K^{\times} U: H^{*}\right)}{\operatorname{deg}(L / K)} \quad \text { since } J_{K} / K^{\times} U \approx \text { the ideal class } \\
&\quad \text { group of } K) \\
&\left.=\frac{h_{K}\left(H^{*} U: H^{*}\right)}{\operatorname{deg}(L / K)} \text { (since } H^{*} \supseteq K^{\times}\right) \\
&=\frac{h_{K}\left(U: H^{*} \cap U\right)}{\operatorname{deg}(L / K)}=\frac{h_{K}}{\operatorname{deg}(L / K)} \frac{(U: C)}{\left(H^{*} \cap U: C\right)},
\end{aligned}
$$

where $C=\prod_{p \in S_{\infty, 1}} \boldsymbol{R}_{+} \times \prod_{p \in S_{\infty}, 2} \boldsymbol{C}^{\times} \times \prod_{p \notin S_{\infty}} N U_{\mathfrak{B}} \subseteq H^{*} \cap U$ (Lemma 2.3). But

$$
(U: C)=2^{r_{1}} \cdot \prod_{p \notin S_{\infty}} e_{p}
$$

Further, it is easy to see that $H^{*} \cap U=\left(K^{\times} \cap U\right) \cdot C$. Therefore,

$$
\begin{aligned}
\left(H^{*} \cap U: C\right) & =\left(\left(K^{\times} \cap U\right) \cdot C: C\right) \\
& =\left(K^{\times} \cap U: K^{\times} \cap U \cap C\right) \\
& =\left(U_{K}: U_{L / K}\right) .
\end{aligned}
$$

Corollary 2.4. Let L / K be a quadratic extension with relative discriminant $d_{L / K}$. Further, assume that K is totally real and that $d_{L / K}$ is divisible by t distinct K primes. Then

$$
\operatorname{deg}\left(L^{*} / L\right) \geq h_{K} \cdot 2^{t-1}
$$

Proof. Let $U_{K}^{2}=\left\{u^{2} \mid u \in U_{K}\right\}$. Then $U_{L / K} \supseteq U_{K}^{2}$. Moreover, since K is totally real, Dirichlet's unit theorem implies that

$$
U_{K} \approx\{ \pm 1\} \times \boldsymbol{Z}^{r_{1}-1} .
$$

Therefore,

$$
\begin{aligned}
{\left[U_{K}: U_{L / K}\right] } & \leq\left[U_{K}: U_{K}^{2}\right] \\
& \leq 2^{r_{1}}
\end{aligned}
$$

Thus, by Theorem 2.1,

$$
\operatorname{deg}\left(L^{*} / L\right) \geq h_{K} \cdot 2^{t-1}
$$

3. Some Lemmas.

Throughout the remainder of this paper, let K be a totally real number field of narrow class number 1. Let $d \in \mathscr{S}(K)$ and let us fix a quadratic extension L of K and a relative integral basis $\left\{\alpha_{1}, \alpha_{2}\right\}$ of L over K such that $d=\Delta_{L / K}\left(\alpha_{1}, \alpha_{2}\right)$. Further, let L^{*} denote the genus field of $L / K, H^{*}=$ the admissible subgroup of J_{K} which corresponds to L^{*}.

Lemma 3.1. Gal $\left(L^{*} / K\right)$ is an abelian group of exponent 2 and therefore

$$
\operatorname{Gal}\left(L^{*} / K\right) \approx \boldsymbol{Z} /(2) \oplus \cdots \oplus \boldsymbol{Z} /(2),
$$

where $\boldsymbol{Z} /(2)$ denotes the additive group of integers modulo 2.
Proof. By class field theory,

$$
\begin{align*}
\operatorname{Gal}\left(L^{*} / K\right) & \approx J_{K} / H^{*} \\
& \approx J_{K} / K^{\times} \cdot C, \tag{2}
\end{align*}
$$

where $C=\prod_{p \in S_{\infty}, 1} \boldsymbol{R}_{+} \times \prod_{p \in S_{\infty, 2}} \boldsymbol{C}^{\times} \times \prod_{p \in S_{\infty}} N U_{\mathfrak{B}}$, and where we have applied Lemma 2.3. Let U denote the subgroup of all unit ideles of J_{K}. Then $J_{K} / K^{\times} \cdot U$ is isomorphic to the ideal class group of K. But since K has class number $1, J_{K}=K^{\times} \cdot U$. Therefore, in order to prove the Lemma, it suffices to show that if $\alpha \in U$, then $\alpha^{2} \in K^{\times} \cdot C$. But this is obvious.

Lemma 3.2. $\quad L=K(\sqrt{d})$.
Proof. Since L / K is a quadratic extension and K has class number 1, $L=K(\sqrt{\mu})$, where $\mu \in \mathcal{O}_{K}$ is square-free. Let us show that

$$
\begin{equation*}
d=\mu \eta^{2} \quad\left(\eta \in \mathcal{O}_{K}\right) \tag{3}
\end{equation*}
$$

This will suffice to prove the Lemma. In order to prove (3), let us explicitly construct a relative integral basis of L / K whose discriminant is of the form $\mu \cdot \tau^{2}\left(\tau \in \mathcal{O}_{K}\right)$. By (1), this suffices to prove (3). Let

$$
2 \mathcal{O}_{K}=\mathfrak{p}_{1}^{a_{1}} \cdots \mathfrak{p}_{t}^{a_{t}},
$$

where $\mathfrak{p}_{i}(1 \leq i \leq t)$ denotes a K-prime. Suppose that

$$
\mathfrak{p}_{i} \not ⿻ \mu(1 \leq i \leq s), \quad \mathfrak{p}_{i} \mid \mu \mathcal{O}_{K} \quad(s+1 \leq i \leq t) .
$$

Let $r_{i}(1 \leq i \leq s)$ be the largest non-negative integer $\leq a_{i}$ such that

$$
\mu \equiv u_{i}^{2}\left(\bmod \mathfrak{p}_{i}^{2 r_{i}}\right),
$$

for some K integer u_{i}. Then a classical result asserts that the relative discriminant $d_{L / K}$ of L over K is given by

$$
\begin{equation*}
d_{L / K}=\prod_{i=1}^{s} \mathfrak{p}_{i}^{2\left(a_{i}-r_{i}\right)} \cdot \prod_{i=s+1}^{t} \mathfrak{p}_{i}^{2 \alpha_{i}} \cdot \mu \mathcal{O}_{K} . \tag{4}
\end{equation*}
$$

Further, if we choose $b \in \mathcal{O}_{K}$ so that

$$
b \equiv u_{i}\left(\bmod \mathfrak{p}_{i}{ }^{r_{i}}\right) \quad(1 \leq i \leq s)
$$

then $b^{2} \equiv \mu\left(\bmod \mathfrak{p}_{i}{ }^{2 r_{i}}\right)(1 \leq i \leq s) . \quad$ Choose π_{i} so that $\mathfrak{p}_{i}=\pi_{i} \mathcal{O}_{K}(1 \leq i \leq s)$, and set $\lambda=\prod_{i=1}^{s} \pi_{i}^{r_{i}}$. Then, by (4),

$$
\alpha_{1}=1, \quad \alpha_{2}=\frac{b-\sqrt{\mu}}{\lambda}
$$

is an integral basis of L over K. And the relative discriminant of this basis is $\mu \cdot\left(4 / \lambda^{2}\right)$.

4. Proof of Theorems A and B.

Let all notations be as in Section 3. By Lemma 3.1, we have

$$
L^{*}=K\left(\sqrt{\alpha_{1}}, \cdots, \sqrt{\alpha_{r}}\right)
$$

for some $\alpha_{1}, \cdots, \alpha_{r} \in K^{\times}$, where $2^{r}=\operatorname{deg}\left(L^{*} / K\right)$. By Corollary 2.4, $r \geq t$. Further, by Lemma 3.2, we may choose $\alpha_{1}, \cdots, \alpha_{r}$ to be K-discriminants. For if β_{i} is the relative discriminant of some relative integral basis of $K\left(\sqrt{\alpha_{1}}\right)$, then Lemma 3.2 implies that $K\left(\sqrt{\alpha_{i}}\right)=K\left(\sqrt{\beta_{i}}\right)$. Thus, throughout, let us assume that $\alpha_{1}, \cdots, \alpha_{r}$ are chosen to be K-dicsriminants. Note that none of $\alpha_{1}, \cdots, \alpha_{r}$ are K-units since K has narrow class number 1. If $t=1$, then d is a prime discriminant and thus we can trivially write d as a product of prime discriminants. Thus, let us assume $t>1$, and let us proceed by induction on t. Since $t>1$, we have $r>1$. Let p_{1}, \cdots, p_{r} be the distinct finite K primes dividing d.

Reduction 1. We may assume that no α_{i} is divisible by all of $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{\ell}$.

For assume that $\mathfrak{p}_{1} \mathfrak{p}_{2} \cdots \mathfrak{p}_{t} \mid \alpha_{1}$. Then $\mathfrak{p}_{1}, \mathfrak{p}_{2}, \cdots, \mathfrak{p}_{t}$ all ramify in $K\left(\sqrt{\alpha_{1}}\right)$. Since $\operatorname{deg}(L / K)=2$ and L^{*} / L is unramified at all finite L-primes, we see that $K\left(\sqrt{\alpha_{1}}, \sqrt{\alpha_{2}}\right) / K\left(\sqrt{\alpha_{1}}\right)$ is unramified. Therefore, the relative discriminant of $K\left(\sqrt{\alpha_{1}}, \sqrt{\alpha_{2}}\right) / K$ is given by $\alpha_{1}^{2} \mathscr{O}_{K}$. However, since the relative
discriminant of $K\left(\sqrt{\alpha_{2}}\right) / K$ is given by $\alpha_{2} \mathscr{O}_{K}$, we see that the relative discriminant of $K\left(\sqrt{\alpha_{1}}, \sqrt{\alpha_{2}}\right) / K$ is divisible by $\alpha_{2}^{2} \mathcal{O}_{K}$. Thus, $\alpha_{2} \mid \alpha_{1}$. Let $\alpha_{1}^{\prime}=$ $\alpha_{1} \alpha_{2}^{-1} \in \mathcal{O}_{K}$. Then $L^{*}=K\left(\sqrt{\alpha_{1}^{\prime}}, \sqrt{\alpha_{2}}, \cdots, \sqrt{\alpha_{r}}\right)$. Moreover, since α_{2} is not a unit, and since every K-prime has ramification index at most 2 in L^{*} / K, we see that not all of $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{r}$ ramify in $K\left(\sqrt{\alpha_{1}^{\prime}}\right) / K$. Let $\alpha_{1}^{\prime \prime}$ be relative discriminant of a relative integral basis of $K\left(\sqrt{\alpha_{1}^{\prime}}\right) / K$. Then $K\left(\sqrt{\alpha_{1}^{\prime}}\right)=K\left(\sqrt{\alpha_{1}^{\prime \prime}}\right)$ and not all of $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{t}$ divide $\alpha^{\prime \prime}$. Thus, $L^{*}=K\left(\sqrt{\alpha_{1}^{\prime \prime}}, \sqrt{\alpha_{2}}, \cdots, \sqrt{\alpha_{r}}\right)$ and $\alpha_{1}^{\prime \prime}$ is not divisible by all of $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{\iota}$. Repeating this construction, we may guarantee that a similar condition holds for $\alpha_{2}, \cdots, \alpha_{r}$, thus validating the reduction.

Henceforth, let us assume that the reduction has been carried out. By the induction hypothesis, α_{i} can be written as a product of prime K discriminants

$$
\alpha_{1}=\pi_{1}^{(i)} \cdots \pi_{j(i)}^{(i)} \quad(1 \leq i \leq r) .
$$

Then

$$
K\left(\sqrt{\pi_{1}^{(1)}}, \sqrt{\pi_{2}^{(1)}}, \cdots, \sqrt{\left.\pi_{j(r)}^{(r)}\right)}=L^{* *}\right.
$$

is an abelian extension of K which is unramified over L. Therefore, since we clearly have $L^{* *} \supseteq L^{*}=K\left(\sqrt{\alpha_{1}}, \cdots, \sqrt{\alpha_{r}}\right)$, the definition of L^{*} implies that $L^{* *}=L^{*}$. Therefore, we have

Reduction 2. We may assume that $\alpha_{1}, \cdots, \alpha_{r}$ are prime discriminants.
By Reduction 2, each α_{i} is divisible by exactly one K-prime and this K-prime must be one of $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{t}$. Let us renumber the α_{\imath} so that

$$
\mathfrak{p}_{i} \mid \alpha_{i} \quad(1 \leq i \leq t) .
$$

Let us show that

$$
\begin{equation*}
d=\varepsilon^{2} \cdot \alpha_{1} \cdot \alpha_{2} \cdots \alpha_{t} \tag{*}
\end{equation*}
$$

where $\varepsilon \in U_{K}$. This will immediately imply that d is a product of prime discriminants.

Since $L^{*} / K(\sqrt{d})$ is unramified at all finite K-primes, we see that $K(\sqrt{d})$ is the largest subfield of L^{*} which contains K and in which all of $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{t}$ are totally ramified. On the other hand, since $L^{*}=K\left(\sqrt{\alpha_{1}}, \cdots, \sqrt{\alpha_{r}}\right)$, we see that $K\left(\sqrt{\alpha_{1} \cdots \alpha_{t}}\right)$ is a quadratic extension of K, contained in L^{*}, in
L^{*}, which all of $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{t}$ are totally ramified. Therefore,

$$
\begin{align*}
& K(\sqrt{d})=K\left(\sqrt{\alpha_{1} \cdots \alpha_{t}}\right) \\
\Longrightarrow & d=\eta^{2} \cdot \alpha_{1} \cdots \alpha_{t}, \quad \eta \in K^{\times} . \tag{5}
\end{align*}
$$

Since $\operatorname{deg}\left(L^{*} / K(\sqrt{d})\right)=2^{r-1}$ and since L^{*} / L is unramified at all finite primes, we see that the relative discriminant $d_{L^{*} / K}$ of L^{*} over K is given by

$$
\begin{equation*}
d_{L^{*} / K}=d^{2 r-1} \mathscr{O}_{K} . \tag{6}
\end{equation*}
$$

Set $L_{0}=K\left(\sqrt{\alpha_{1}}, \cdots, \sqrt{\alpha_{t}}\right)$. Then, since each K-prime has ramification index at most 2 in L^{*} / K, we see that L^{*} / L_{0} is unramified at all finite primes. But since the relative discriminant of $K\left(\sqrt{\alpha_{i}}\right) / K$ is just $\alpha_{i} \mathcal{O}_{K}$, and since

$$
\left(\alpha_{i} \mathcal{O}_{K}, \alpha_{j} \mathscr{O}_{K}\right)=1 \quad(1 \leq i<j \leq t)
$$

we see that the relative discriminant of L_{0} / K is given by

$$
\left(\alpha_{1} \cdots \alpha_{t}\right)^{2 t-1} \mathscr{O}_{K} .
$$

Therefore, since L^{*} / L_{0} is unramified at all finite primes,

$$
\begin{align*}
d_{L^{*} / K} & =\left[\left(\alpha_{1} \cdots \alpha_{t}\right)^{2 t-1} \mathcal{O}_{K}\right]^{2 r-t} \\
& =\left(\alpha_{1} \cdots \alpha_{t}\right)^{2 r-1} \mathcal{O}_{K} . \tag{7}
\end{align*}
$$

Comparing (6) and (7) with (5), we see that η of (5) is a unit of \mathcal{O}_{K}, which proves the assertion (*). This completes the proof of Theorem A.

Note also that if $r>t$, then the above procedure can be applied to produce several inequivalent factorizations of d as a product of prime discriminants. Thus, if $r>t$, the expression of d as a product of prime discriminants is not unique. If $r=t$, and if $d=\alpha_{1} \cdots \alpha_{m}$ is an expression of d as a product of prime discriminants, then $K\left(\sqrt{\alpha_{1}}, \cdots, \sqrt{\alpha_{m}}\right) / K(\sqrt{d})$ is unramified at all finite primes. Therefore, $K\left(\sqrt{\alpha_{1}}, \cdots, \sqrt{\alpha_{m}}\right) \subseteq L^{*}$ and $m \leq r$. But since $\alpha_{1}, \cdots, \alpha_{m}$ are prime discriminants, we see that $m \geq t$, which implies that $m=r$ and

$$
L^{*}=K\left(\sqrt{\alpha_{1}}, \cdots, \sqrt{\alpha_{m}}\right) .
$$

Therefore, $\alpha_{1}, \cdots, \alpha_{m}$ are uniquely determined by the extension L / K, up to multiplication by units of \mathscr{O}_{K}. Thus, all factorizations of d as a product of prime discriminants are equivalent in case $r=t$. This completes the proof of Theorem B.

5. An Example.

Let K be a real quadratic field with fundamental unit ε. Then

$$
U_{K}=\left\{ \pm \varepsilon^{n} \mid n \in Z\right\} .
$$

Further, we have

$$
\left.\left\{\varepsilon^{n} \mid n \in \boldsymbol{Z}\right\} \supseteq U_{L / K} \supseteq\left\{\varepsilon^{2 n}\right\} n \in \boldsymbol{Z}\right\} .
$$

Moreover, a unit $\eta \in U_{K}$ is a local norm at all K-primes $\Leftrightarrow \eta$ is a (global) norm from, L, by Hasse's theorem and the fact that L / K is cyclic. Therefore, we conclude:

$$
U_{L / K}=\left\{\varepsilon^{n} \mid n \in \boldsymbol{Z}\right\} \Longleftrightarrow N_{L / K}(\varepsilon)=+1 \text { and } \varepsilon \text { is a norm from } L .
$$

In all other cases,

$$
U_{L / K}=\left\{\varepsilon^{2 n} \mid n \in \boldsymbol{Z}\right\} .
$$

In the first case, $\left[U_{K}: U_{L / K}\right]=2$, while in the second case $\left[U_{K}: U_{L / K}\right]=4$. Therefore, by Theorem 2.1, we have $\operatorname{deg}\left(L^{*} / L\right)=2^{t}$ in the first case and $\operatorname{deg}\left(L^{*} / L\right)=2^{t-1}$ in the second case. Thus, we have

Theorem 5.1. Let K be a real quadratic field of narrow class number 1, d the relative discriminant of a quadratic extension L of $K, \varepsilon=$ the fundamental unit of K. Then d can be written as a product of prime K-discriminants. If ε is not a norm from L, then all representations of d as a product of prime discriminants are equivalent. In all other cases, there exist at least two equivalent representations of d.

Bibliography

[1] Furuta, Y. "The Genus Field and Genus Number in Algebraic Number Fields," Nagoya Math. J. 29 (1967), pp. 281-285.
[2] Siegel, C.L. Lectures on Advanced Analytic Number Theory, Tata Institute of Fundamental Research, Bombay, 1961.

Department of Mathematics
University of Maryland
College Park, Maryland 20742

[^0]: Received April 28, 1971.
 ${ }^{1)}$ Research was supported by National Science Research Grant GP-20538.
 ${ }^{2)}$ Let I_{K} denote the group of all K-ideals, $P_{K}^{0}=$ the group of all principal K-ideals (α), with α totally positive. The narrow class number of K is the order of I_{K} / P_{K}^{0}. Class field theory implies that the narrow class number 1 is if and only if K has no non-trivial abelian extension which is unramified at all finite K-primes. If the narrow class number of K is 1 , then the ordinary class number of K is 1 .

