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CHARACTERISTIC CLASSES FOR PL
MICRO BUNDLES

AKIHIRO TSUCHIYA*

§0. Introduction.

Let BSPL be the classifying space of the stable oriented PL micro
bundles. The purpose of this paper is to determine H(BSPL:Z,) as a
Hopf algebra over Z,, where p is an odd prime number. In this chapter,

p is always an odd prime number.
The conclusions are as follows.

THEOREM 2-22. As a Hapf algebra over Z,, H(BSPL : Z,) = Zplb1y by + + + ]
®Zp[a(a=:1)]®/1(0(i.l))' A(E]) =£:_20 5i®b=j, bo =1, d‘(f[), O'(fi,]) are primitive.

THEOREM 3-1. As a Hopf algebra over Z[1/2],

i) H*BSPL : Z[1/2)] Tyrsion = ZIL/2IR:, Rey + + ]

i) 4R, = '__éoRi®Rj_i, Ro=1. deg R; = 4j.

ili) In H*BSPL:Q)=Q[p, Dy -+ 1, R; are expressed as follows.
R; = 2% (2297t — 1) Num (B,/47) + p; + dec, for some a;EZ.

Let MSPL denote the spectrum defined by the Thom complex of the
universal PL micro bundle over BSPL(n), and A = A, denote the mod p
Steenrod algebra. And ¢ : A— H*MSPL:Z,) is defined by ¢(a) = a(u),
where ueH(MSPL : Z,) is the Thom class.

TurorEM 4-1.  The kernel of ¢ is A(Q Q.), the left ideal generated by
Milnor elements Qo Q..

This is the conjecture of Peterson [12].
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The method is to compute the Serre spectral sequence associated to
the fibering F/PL — BSPL —BSF. The structure of H.(BSF:Z,) is deter-
mined in [9] and [16]. The homotopy type of F/PL is the consequence of
the deep results of Sullivan [15]. In §1 we study the H space structure of
F/PL and the inclusion map SF— F/PL. ‘The main tool is the result of
Sullivan and its extention that tells the existence of the KO3 theory Thom
classes for oriented PL disk bundle.

ProrosiTioN 1-4. For a oriented PL disk bundle = : E—~ X over a finite
CW complex of fiber dim m. Then there is a Thom class u(zx)e KO™(E,E)p
with the following properties.

i) functorial

)  ¢Fphulx) = Lix)™.

i) @z @ 1) = oulx).

iv)  Multiplicative mod Torsion t.e ulz, @ ;) = ulmy) - ules). mod forsions.

The proof of this is in §6.

§1. H space structure on F/PL.

1-1. Let F/PL(N) denote the classifying space of PL disk bundle of
fiber dim N with homotopy trivialization. And F/PL denote the limit space
li_r)n F[/PL(N). Denote by BO, the classifying space of stable real vector
bundle. F/PL and BO are homotopy commutative H-spaces defined by
Whitney products. BO, denotes the space obtained by localizing BO at
odd primes P i.e. the space which represents the functor [ ,BOI®R,Z[1/2].
Let C» denote the class of abelian groups consisting of 2-torsion group, i.e
abelian group G with G®,Z[1/2]1 = 0. Then the following proposition is due
to Sullivan [15].

ProrosiTioN 1-1.  There exists a continuous map o : F{PL— BOp, with the
following properties.

1) o s Cp homotopy equivalence.

i) o*(phy + pha+ - - +) =—§—(L, + L, + - --)€ H*™F|PL, Q), where

ph =14 phy + phy+ - - - €H**(BOp, Q) is the Pontrjagin character and
L=1+L +Ly+ -+ -€H*F|PL,Q) is L-polynomial of Hirzebruch.

iii) The map o ts uniquely determined by the property ii) up to homotopy.
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Since the C, homotopy equivalence ¢ is not a H space map. We
introduce another H space structure pg on BO. pg:BO x BO—BO is
defined by the following diagram.

Adx4 idx Txid
(1-1) ¢® : BOXBO —— > (BOXBO0O)x(BOx BO) ————>

toXpu
BOxBOxBOxBO =" oxBo-L% Bo.

where pga : BOXBO —BO denotes the map representing (&, — m) (&, — n) in
KO"(BO(m)x BO(n)), where &, — BO(m), and &, = BO(n) denote the universal
bundles. Then the H-space (BO, pg) is a homotopy commutative H-space.
We denote this H space by BOg simply. Denote by BOgp, the localizing
space of BOg at odd primes P. Then identity map i :BO—BOg can be
uniquely extended to the map ip:BO,—>BOgpr, and ip is a homotopy
equivalence.
Define a continuous map g : F/PL— BOg, by the following diagram.

o 8 i
(1-2) " §:F/PL—>BOp—> BOp—> BOgs.

ProrosiTioN 1-2.  The Cp homotopy equivalence & is a H space map, and
a*1+ phy + phy+ -+ ) =1+ L, + Ly+ - - -€H*™F|PL ; Q).

Proof. Since #*Q1 + phy + phy+ +++) =14+ L, + Ly + - - - follows easily
from proposition 1-1, ii) and (1-2), it is sufficient to prove that the follow-
ing diagram is homotopy commutative.

dXao
F|PLxF|PL——> BOgpxBOgp
F/PL

But by proposition 1-1, any map f:F/PLxF/PL— BOgp is uniquely de-
termined by f**(1 + ph, + phy+ ¢+« < )EH**(F|PLXF[PL ; Q). On the other
hand, p**-0™*(1+ ph) + phy+ « <)=L+ Ly + Lo+ - - )=+ L, + Lo+ - *)
QU+ Li+ Lo+ - ++). And (6x5)*(pep)*™*1 + phy + phe+ + + +) = (GX3)** X
(Ph@ph) =1+ L+ +++)QA+ L+ --+). This showes the proposition.

1-2. Let BO(8N> denote the space obtained by killing the homotopy
group =;(BO), i<8N. Let fy:S* —BO<8N> be the canonical generator of

i Q%
7y (BOBNY) = Z. Then by Bott periodicity, the map S*¥=D—p Q8S8N -3
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2°BO(NY = BOLS(N — 1)) coincide with fy_;. So we can take a limit and
obtain a map.
(1-3) 9=02"f.: ]i_x)n QSN = QS° —>1i_r)n QWBO{8N) = ZX BO.
The spaces BOBN) have product py,y.
(1-4) tun : BOSMY X BOSNY — BOS(M + N)>.

These products define product z on Q*¥BO<8N) = ZxBO, i.e. p:Q%¥x
BO{BM )y x Q8% BOSN)Y — Q¥*¥+MBO(M + N)>. By Bott periodicity, the follow-
ing diagram is homotopy commutative.

Q¥ BOBM ) X 2*N BOBN) ———> Q¥ #*NMBOLZ(M + N)>

Q¥DBOE(M + 1)> X Q53 +D BOCS(N + 1)) —> QUu+¥0BOB(M + N + 2))

And the reduced join product pga : QS X QSNSEN 5 QSMINISHUIN) js com-
patible with the product QB0 (8M)xQ2:#BO{BN) — Q¥¥*MBO(8(M + N)).
Passing to limit we obtain a product gz, on QS'=1lim2¥S*®, And we
have the following commutative diagram.

gxg
(1-5) QS'XQS' ——> (ZXx BO) X(Zx BO)
lﬂ/\ l#
QS ———F > ZXBO
9

Consider the 1 component @,5° of QS° then pga: @,S° X @,S°— Q,S°
cQS® is the H space SF, where SF=l_i_r>nSG(n), SGn) = {f:S"!' >S5,
degree 1}. And it is easy to show that 1 component 1XBO of ZxBO with
product g :(1xBO)x(1xB0O)—+1xBO is the H space (BOg,pg) defined in
(1-1).

So that we have a H map ¢, : SF= Q,S"+1XB0 = BOg.

k
ProrosiTioN 1-3. The map ¢, : SF—>BOg— BOgp, and -k ; SF— F|PL

o
— BOgp coincide.
Before proving this proposition, we prepare some results.

1-3. Let KO*( ) denote 8 graded cohomology theory defined by using
Grothendieck group of real vector bundle. Construct a 4 graded cohomology
theory KO*( )p by KO )p = KO ) ®,Z[1/2]. Consider the generator 7,
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KO(S") = Z, then 7} = 49, € KO¥(S"), 7,€KO~%(S")=Z, generator. 7, is by

definition 7, = -L-7,€KOS",. And define Bott map §: KOYX, 4)p —>
KO (X, A)p by the following.

Na A
(1-6) B8: KOYX, A)p —®v—> KO X, A) pQKO4S% p —> KO (X, A) p.

This Bott map makes KO*( )p, 4 graded cohomology theory.

Let = : E— X be a oriented PL disk bundle over finite complex X of
fiber dim m. Then we can define a fundamental Thom class #(z)eKO™(E, 6E) p
as the following proposition.

ProrosiTiON 1-4. There is a fundamental Thom class u(z)e KO™E,3E)p
with following properties.

i) functorial i.e. for f:Y > X, u(fla) = fl(u(x)).
il) ¢Fphu(z) = Lix)'€eHYX, Q), where oy is Thom isomorphism, and L(r)
is the L polynomial of Hirzebruch for = : E— X.

ag
iil) u(z ®1) = o(u(x)), where o: KO™(E,0E)p —> KO™! (E[6E)\SY)p =
KO™' (E®@1, a(E@1)p is suspension isomorphism.
iv)  Multiplicative mod torsion i.e u(r, @ ms) = ulm,) - u(z,) mod torsion ele-
ments, where =, : E, > X,, and m,: E; > X,.

We shall prove this proposition in the appendix.

1-4. Now we prove proposition 1-3. At first we analyse the map
¢ :Q,S°—>B0Og. Consider the following mapping ¢ : SG(N) X (D¥,3D¥) —
(D¥,9D") defined by ¢(f,z) = cf(z), where cf :(D¥,aD¥)— (D¥,3D¥) be a
map defined by cone of f:9D¥ = S¥1—3DN = S¥1,  Consider the case
N =8M. And consider the canonical generator 7y,& KO (D3, 3Ds¥) =7, then
t¥(1ey) E KOM(SG(BM) X (D3, 5D%M))= KO(SG(8M)) QKO (Ds* 5D8¥),  So that
there is unique element /3, €KO0%(SG@BM)) such that [5Q®nsy = t*(9en). It
is easy to show that for i :SG@BM)—SGEBM + 1)), i*(lswsv) = lsw. And
&(lsx) = 1, where ¢ : KOY(SG(@8M)) - KO'(p.t) = Z be the augmentation. So
passing to the limit, we obtain /€KO%SG) = KO%Q,S"). And since &(I)=1,
[ is represented by a map [:SG = @,5°—~1xBO = BOg G ZxBO.

LemMa 1-5.  The map 1 coincides with g, : @,S°— BOg defined in 1-2.

It is easy to prove this lemma so we omit its proof.
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Proof of proposition 1-3, Let z : E—~X be a PL disk bundle of fiber
dimension 8N over a finite complex X with homotopy trivialization ¢ : (E, 3E)
— (D, 3D%),  Consider the element ¢*(,y)=KO*(E,E)p. By proposition
1-4, there is a Thom isomorphism ¢, : KOYX)p - KO*(E,3E), defined by
¢xo, (@) = i*®) u(z), i:X—E. Then I(E) is by definition ¢%%.(t*(sn)) €
KO"X)p. It is easy to see I(E@8) =I[(E). Since KOYF/PL(8N))p =
LiEKO“(X,,)P, where X, runs through all finite subcomplexes of F/PL(8N),

tﬁe universal bundle =gy : Egy — F/PL(8N), with tsy : (Een, 0Esy) = (D, 9 D8¥)
defines the element [(Eqy)eKOF/PLBN))p. It is easy to see i*(I(Esy+n))=
[(Egy), where ¢ : F/[PL8N)— F/PL(8(N + 1)). Passing to limit, we obtain the
element /eKOYF/PL)p. The natural inclusion ksy : SG8N)— F[PL(8N) is
defined by the classifying map for the F/PL bundle over SG(8N) defined by
t : SG(BN)X(D%,pD8N) — (D8¥, gDy, Since the fundamental Thom class of
this bundle is 1Qn;y KO (SGBN )X (D¥,9D¥))p = KO"(SG(SN))PZD@/Z] Koy
(D*¥,0D%) p. So that kfy(I(Esy)) = lsaws KO(SG@BN))p. So that to prove the
proposition, it is sufficient to prove / =& as elements KO%(¥/PL),. By pro-
position 1-2, it is sufficient to prove phi(l) = ph(s). This follows from pro-
position 1-4, ii).

§2. Determination of H.(BSPL: Z,).

2-1. At first we determine the Hopf algebra over Z,, Hy(F/PL :Z,).
By proposition 1-2, H(F/PL : Z,) E H.BOgp : Z,) = HuBOg:Z,), it is
sufficient to determine H,(BOg : Z,).

ProrosiTioN 2-1.  As a Hopf algebra over Z,, H(BOg : Z,)=Z,[a, G, + * +],
for some a;eH,;(BOg : Z,). And da; = Z]ai®aj_i, a =1,
i=0

Proof. It is sufficient to prove that for any non zero element z€H,
(BOg : Z,), 2?+0. By the same method as (BOg, #3), c.f. (1-1), we obtain
a H space (BUg, pg) as the 1 component of ZxXBU, where ZxBU is the
representation space of complex K theory. Let j:BOg—BUg denote the
natural H map defined by complexifying vector bundle. Since j, : H.(BOg :
Z,) —~ HBUg : Z,) is monomorphism, it is sufficient to prove (j.())” =0 for
2eH,(BOg :Z,), ©+0. Let B=H/(BUg:Z, and B* denote dual Hopf
algebra Hom, (B,Z,), So that B*=H*(BUg : Z,) = Zllci,cs + + + 1}, ¢; is
i-th Chern class. Let a:B-—B denote the Hopf algebra homomorphism
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defined by ea(z) = ?, and «*:B*— B* denote dual of a. We compute
a*(l4+c,+c,+ ). Let eeK(BUg) = K(BU) denote the universal element
with augmentation. (&) =0. Then it is easy to show [a*(c)]? = ¢((1 + &)7)
= c@ - c(@®. . . cer- 1>(p31>c(5p) in H*(BUg : Z,). So that a*(c)=c(&) - c(e2) 7
oo c(EP" ‘)T(P 1) c(E") . Using Chern character it is easy to show that
‘c(s’) =1+ decomposable in ¢, in H*(BUg : Z), j=2. And the same argu-
ment show that the coefficient of ¢Z in ¢(¢?) is zero in H*(BUg : Z,), when
n=2. So that a*(c)=1+4+¢;+¢c;+ -+, mod{decomposable + ¢;,}. This
shows that a* : H**(BUg : Z,)/(c,) > H**(BUg : Z,)/(¢;) is onto mapping, where
(c,) denote the ideal generated by ¢, and as a*(c,) =0, @&* is well defined.
Since j**(c,) = 0 where j*:H*(BUg :Z,)—» H*BUg :Z,), this shows that
for any « =0, [j.(x)]? 0.

Remark 2-2. Indeed we can show that H(BUg : Z,) = I',[b,)® Z,[b}, b},
-1, where degb, =2, degbj = 2j.

2-2. Now we study the map k, : H(SF : Z,) > H(F[PL : Z,). By pro-
position 1-3 it is sufficient to study gy, : Ho(@,S' : Z,) > H(BOg : Z,). Since
g :QS"—>ZxBO is a infinite loop map, g is a H; map in the sense of
Dyer-Lashof [8]. So that the following diagram is commutative, where
W(z,) =W is a acyclic free z,, CW complex, and =, is the cyclic group of
order p.

id X(g)*
W>< (QSY? ——>W>< (ZxBO)?

@-1) la . lo
QS —— ZxBO

At first we analyes the map 6 : W><(Z X BO)? = Zx BO defined by infinite
loop structure ZxBO = lgnQ*’"BO<8n> "Let X be a finite CW complex, for
any element xeKO0O(X), we define a element P(z)eKO(W x(X)?) as follows.

Represent z as ¢ = &~ where £ and » are vector bungﬁes over X, and
define P(xz) = P(&) — P(3). Where P(¢) and P(y) are defined by P(¢): W><

—-)WXX” P(m) : W xE;>WxX?. Then P(x) is independent to the
expressmn x=&—1. Apnd the cgnstruction P has the following properties.

2-2) i) P:KO(X)—>KOW xX?) is abelian group homomorphism.

il) P is natural, i.e. for a map f:X—Y the following diagram is
commutative.
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P
KOY)———— KO(WxY”)

I p l(def")'
X) ——> KO(W x X?)

iii) Let L, = W/z, be the mod » lens space. And NeKO(L,) denote
the element defined by regular representation ;:;,—»SO(p). Then
4*P(x N®x in KO(L,xX) where 4:L,xX—WxX?,

Tp

Since KO(W x(ZxBO)?) = 1é_mKO(W><X£’), where X, runs all finite com-

o

plexes of ZxBO, the above construction P define a map P: W x(ZxBO)?
—+ ZXBO. '

CoNJECTURE 2-3. The two maps 6 and P: W xX(ZxBO)? — ZxBO coincide.

Since we can not prove this conjecture, we can prove more weak form
of the conjecture.

ProposiTION 2-4. 6(1) = P(1) as an element of KO(L,) = KO(W X(x)?),
where 1€ KO((*)). ’

Proof. The Dyer-Lashof map 6 : W““”X(Q"X)”——)Q"X is reconstructed
in [18] as follows. Let S} denote S = S"V:.:VS"®, the one point union of

p sheres. Define g : Q"Six(Q"X)? > Q"X by sy ly » ooy lp) = UV - =V ip)~
cee VI,
o S"—> S*V e yS” L %X The cyclic group =, operates on 2"Sj,

by induced action of z, on S;, defined by o((w, i))=(=, (i), cErp, (2,i)ESE.
And z, acts on (2"X)? by permutation. Then g is a =z, equivariant map
and define p:Q"S;x(Q"X)? >Q"X. On the other hand, there is a =z,
equivariant map 4, :ﬂi/VU"“)(:"")]—)Q"S;, such that the image is in the con-
nected component represented by 1+ « -+« +1€n(Q"S))=Z+ -2, n=2.
The Dyer-Lashof map ¢ : Wi~ 1><”'1>1><( "X)? -+ Q"X is defined by g-(0,%xid):
WiemDe-1x (Q"X)?  0"S) X X(2"X)? - @ X.

Now cons1der the element 0(1)eKO(L,). Let 9sy€KO0®(S*¥), and sy
KO"(S*¥) be the canonical generators. Then 6(1)®nsy KO (L,IXS) is, by
Bott periodicity, defined by the adjoint map of #(1) : L, - ZxBO=2" BO8N>,
where XXY = XxY/Xx(*). By the definition of 6(1), on (8N — 1)(p — 1) skel-
ton of L,, 6(1)@7sy is defined by the following z, equivariant map.
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NenV ¢+ Vsu
———> BO<8N).

W[(BN—I)(P—I)]KSBNM SEV\/ o o 0\ SV

On the other hand the mapping P: WX (0x BO)? — (0xBO) can be

diftable on P : WX(BO{8N))? - BO8N). And denfie a T, equivariant map

P : WIX(BOBN>)? Z» BO(8N>. Then the following diagram is z, equivariantly
homotopy commutative.

NewV + + + Vsy

SENN/ o o o\ SOV > BON>
Vi o P
WX(SEv)? —— > WIX(BO{8NY? ———— > BOL8N>
\ . —
\ld\x(ﬂazv)p id X (z)? lﬂ

N WX X BO)? ————— 50X BO

‘where 7 : S?¥V .« . VSN 5 WX(S™)? is defined by i((x, /)= (c"(@e); *X + + + XxXx
X+ ++ Xx), where o=r, : generator s,t o(i) = o(i +1) mod p, and w,sW :
fixed element.

On the other hand, by equivariant cohomology theory due to Bredon
[4], the following diagram is =z, equivariantly homotopy commutative, c.f.

the argument in [18].

WIsNT Sev

N li
1dX(d,)™
WM(SXN)P

On
__)SSNV, . ,VSSN

So that z-(B(1)®nsy) : LEYIXSN - BOBN)Y -0xBO is by Bott periodicity
I1)R7sy in KOULEYNKSY) on the other hand the above two commutative
diagrams show that z - (6(1)®nsy) is represented by 4*(P(5sy)) in KO(L VX S),
‘On the other hand by (2-2) iii) shows that 4*(P(7syx)) = N®7sy. This shows
(1) =N in KO'(L$"V), so limiting to N—oco we obtain 6(1) = N in KO%(L,).
‘On the other hand P(1) = N in KO%L,). This shows the progosition.

ProrpositioN 2-5.  The Dyer Lashof operations on H(ZxBO : Z,) defined by
8 and P coincide.

Proof. Let p: (ZXBO)X(ZXB0O)— Zx BO denote the product defined by
tensor product. Then the two diagrams are homotopy commutative.
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P
W x(ZxBO)? — > ZXBO

liaxa, noia o
Wz, X(ZXxBO) ——> (p x BO) X (Zx BO)

7
—> ZXBO

W x(Zx BO)?
lidx"P Nxid T"
W |z p X (Z % BO) ——> (p X BO) X (Zx BO)

On the other hand any element of H (W X(ZxBO0)? : Z,) of the form e,&(x)?
is in the image of (idXd,): H*(W/n,,x(Z;BO) 2 Z,) > H(W X(ZxBO)? : Z,),
c.f. Lemma 2-1 of [17]. This proves the proposition. ’

2.3. Now we determine the map gy : Hy(Q,S": Z,) > H(BOg : Z,).
We remember the result of [17] about the Pontrjagin ring H.(Q,S": Z,) =
H(SF:Z,). Let H={] = (6, j1,€s Jo * * *1€1 7,)} be the set of sequences [
satisfying,

(2-3) 1) r=1
i) j;=0mod(p—1), i=1-+-,7
iii) j, =0mod 2(p — 1).
v) p-D=jih=<---=/j,.
v) & =0o0r 1
vi) if g4, =0, then j,/(p —1) and j.../(p —1) are even parity.
if €;41 =1, then j;/(p —1) and j;../(p — 1) are odd parity.

And R:L,—>@Q,S is defined by k:W/z, > Wx(id)®» > W x(Q,S"? —0—> Q,S"
And %, : L,—> Q,S" is by definition %, = hV(-—;pz‘d). Theﬁ Z; = how(€sjp-n))
EH;j(p-(@:S" : Zp). And for J = (e 6,7, )EH, =, is by definition
By=B3Q,c * Bs1Q;, Byx; pp-0EH(QS : Z,). And &,=iu(w,)EH(SF : Z,),
i:Q0oS"—>SF. Then Theorem I of [17] is as follows,

(2-4) H.(SF: Z,) is free commutative algebra generated by %,, J=H.
LemMa 2-6. For J=(y,j1y * * *1&ry j-)EH with e,=1 for some i, ¢4(%,)=0.

Proof. Since the following diagram is commutative.
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g
Q,S° SN OxBO
\L : '] l ¢
Q,S° ——— > 1xBO
G(Es) = gl*i*(.B?Qj, A .81‘}'501‘,/2(17—1)) = i*(ﬂZlejl tet ﬂ;’go*(xj,/z(p—l)))- On
the other hand in Hy(BO : Z,), the Bockstein map g, is zero map, so the
lemma {ollows.

ProvosiTioN 2-7.  The elements 94(%,;) are indecomposable in H(BOg : Z,).
And the image of Hu(SF:Z,) by gi. coincides with the subalgebra generated by
01X 5).

Proof. Since j, : H(BOg : Z,) > H{(BUg : Z,) is monomorphism of Hopf
algebra, it is sufficient to prove analog proposition for g,= (5« g1)s : Hx(Q:5°: Z)p)
- H.BUg : Z). By lemma 2-6, the kernel of §} contains ideal generated
by ¢j, 750 (p—1). Let A= Z[&,&, - ]C H.(Q,S": Z,) denote the sub-
algebra generated by %, then this is a subHopf algebra. A* denotes the
dual Hopf algebra of 4, and i:H*®Q,S: Z,)—~> A* denotes the dual of in-
clusion. Then to prove the proposition, it is sufficient to prove 7ogf:H*
(BUg : Z,) — A* is onto. We construct A* and ¢og* concretely as follows.
Let h, = hoVid : L, > @5, and consider & :L, > @S — BUg — BUsg.
Then, by Proposition 2-4, h, determines the element 1+ NeK(L,), where
N 15 the element determined by regular representation, and_;N:: N—p. For

. ﬁX . Xﬁl 222
large [ consider H; : L, = L,X + + » XL,—————BUgX* - X BUg~—> BUg.

And consider Hy : H¥(BUg : Z,) = H*L} : Z,) = Z,[B;, + + +, 81® Alay, + + +, a1).
Then the image of HY is contained in SZ,f™, - - -,pr"'], where SZ,87",
.« -, g1 means invariant subHopf algebra of Z,[p77!, - - -, p77'] by the action
of permutation group Y. SZJBT, + -+ B = Zoloy ¢ ¢ -5 0i) where ¢, 18
the i-th elementary symmetric function of g~', - -, ™" And up to dim
2l(p — 1), A* and i-g7} is represented by SZ, 817, «--,f7']= Zlo1, +  +,01]
and H* Consider the element Hi(l4c¢, + + ), and we shall show, for
1=s=<1, the coeficient of g, in H¥1+ ¢, + -+ +) is (=1)" Then this shows
the proposition, since HF is algebra homomorphism, and {c;} and {o,} are
algebra generator of H*(BUg :Z)) and SZI87Y -« B By definition
HQ+ci+ - )=c@+N) -+ 1+ AN), where N,eK(L) is the element
defined by 1®- - -@LONRL®- - -Q@1K(LY) = K(L,) ®- + - ®K(L,), where
N is in the i-th factor. N
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c((1 + _1Y1) cee( +:L))
C(N) B c(NNj)+ + «Te(ly+ « « N).
— i<j —= = =
And
Te() = TI(1 — g7~")
=l—o + ¢+ + (1o

Then the following lemma show the proposition,

LeEMMA 2-8.

11 C(Nil .
IKig<eee<i <L =

in - N;) is zero.

Proof. We prove in the case ¢ =2, since proof is

t >2, since it is tediously long.

In the above situation, for 2t <1, the cogfficient of o,y 1 <s=<1,

analog for the case

I cNN)= I e(N,— p)N;— )
IKi<jg<l == 1<i<j<l =
=[ I cWNN)[ T (c(Ny)e (N N)I?
1€i<jgl == 1<i<i<I =
= I ¢(N;N;) mod decomposable
Ii<igl ===
=[ 1l (_JSIE)]‘” [ H (_1)7_15/)]"
i T ==
=[ II I 1+ af; +asp)l2-[ 11 I (1+4(a+b)8;)1
i=1leeel g;=00eep—1 i=leee]l @=0e¢eep—~1
j=1leeel al,.—=0-..p_1 b=0eeep~1
=[0I (+ef)” -8 A+af L I T (14+a8)T?
a;_=0- p-—l
=[ =1 H, ((l+az.3i)pl — oy(14a,B)? "4 +("1)l¢h <1+ aitsi)l]llz
Grueep—1
mod dec.
=[ O ((1+aB)"—a+ « + (—1)!¢;)]* mod dec.
i oti
=0 IL (0 +aB)™) + pli—a+ - - - +(=1'a)]”% mod dec.
la;_-_—ll;::.p—l
=1 mod dec.
where mod decomposable means in SZ,[8}7}, B = Zle, +++ya). This

proves the lemma.
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2.4, Let y;€H,;,-1-1(SO : Z,) denote the unique element defined by
the following conditions, j = 1,2, - - «, i) <a(g;), y,> =1, ii) y, is a primitive
element. Denote i,(y;) by §; for i.: H (SO : Z,) > H(SF: Z,).

CONJECTURE 2-9. §; 15 contained in the subalgebra of H.(SF :Z,) generated
by Fip BpFe k=1,2, ¢ .

Since we can not prove this conjecture, we prepare the following two
lemmas, which are proved in §5.

Lemma 2-10.  There are continuous maps, f:L,—SF and g:CP>— F|O
with the following properties.

1) The following diagram is commutative.

L,————>SF

Lo

cpr ——— FJO

b
i)  The map L, — SF— F|PL— BOgy, represents in KO(Ly)y the element

p-|2-1 N, where BOgy denote the localized space of BOg at prime p and

KO(L,)py = KOL)QZI1/2,1/3, + + -, 1/p, » + + 1.

1+

Lemma 2-11.  The following formula are valid, for some ¢ + 0.

{2-5) Silesspo-0) = ¢+ a;, a; €6, j=1,2,¢ -,
Felesspmnmr) = €Bp®; + by b;€Ge J=1,2, ¢+,
Now we define the subsets of A as follows.
{2-6) i) Hi={/J=0p—112j(p—1)€H j=12— -}
i) Hy={/=0p—-1 L2i(p—~1)€H, j=12+--}
i) Hi,=1{J =10, j5 0y 75+ + -,0,j,)EH, 1 =2}
) Hiy=1{/=(@Q ji, 0, jo ++ -0, j,)EH, r=2}
V) Hi,={] = (& ji € j»r ***, &r j)EH, 1=2,
f1=p—1, dega, =even, JEHT, )
vi) Hi,=1{J = (e j1s* &y jr)EH, r=2,
h#=p—1, dege, =odd, J&HT, }.
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Now we define the element xj€ H,jp-1-1(Q0S°: Z,), j=1,2,+++, by
25 = Sfoxlesjp-p) for fo:L,—Q,S°, where L,:L,—Q,S" is defined by
fo= fV(—id) for f:L,— SF defined in lemma 2-10.

For J = (1515 * *y&n JT)EH; we define T, EH(SF . Zp) bY i*(ﬂ;}Qh' M
Bu2 jaipery), Where 7ot Ha(QoS" : Z,) = Ho(SF : Z,).

LemmMa 2-12.  As the algebraic generators for H(SF : Z,), we can choose the
Jollowing elements.

) F e F=1,2 .
ii) &, IeH!, UHY, UH}.

i) Q- - -Qp(&,), IEHT, UHT,, UH;.

V) Qpo@p-1* * *Qp-i(Zs), I€HT, UHT, UH;.

Where Q,_,, and Q,., are the Dyer-Lashof operations on H(SF : Z,) defined in
[17].

Proof of this lemma is analog of that of proposition 6-8 of [17], so we
omit the proof.

ProposiTioN 2-13.  The elements §; are in the subalgebra of H.(SF :Z,)
generated by Ty, By k=1,2,+++. And §;=c;Bx; mod dec, c; 0.

Proof. Since §; is non decomposable element, §7; = c,;8,%;+ ¢ 1 Q% (%,),
in QH,(SF : Z,)» the vector space of indecomposable elements. Now consider
§; in QH(F|O : Z,). By lemma 2-10, B8,%; is zero in H(F/O : Z,). Since
kernel of QH,;(p-1-1(SF : Zp) = QHyjp-n-1 (F|O : Z,) is 1 dimensional, other
elements Q%_,(%;) are linear independent. On the other hand, §; =0 in
H(F|O : Z,), this shows that §; = ¢;8,%;, ¢; 0, In QHy;p-n-1(SF : Z,). On
the other hand since §; is a primitive element, and 0— PH; ;- (SF : Z,)
— QH;,(p--1(SF : Z,) >0, and the subalgebra of H.(SF:Z,) generated by
T Bpiy k=1,2, -+, is subHopf algebra, so that %; belongs to the subal-
gebra generated by Z, B,%:.

Remark 2-14. By lemma 2-10, ¢,.(Z;) = cqis(2;), j=1,2,+++, for g, :
H(SF : Z,)—~ H(BOg : Z,), for ¢+ 0.

For JeHS,,, consider g.(z,), by proposition 2-7 and remark 2-14, there
is a unique element #,EZ,[%,, &, * + +1 Hy(SF : Z,) such that g,(&,) = gi«(i,).

D Q( ) denotes the space of indecomposable elements.
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Define &, =%, —a@,. And for J=(1,,0,7s *+ +,0,7,)EHT,, define z;=8,%/,
where ]l = (09j1’09j29 v .QO’jT)EHY;I .

ProrosiTiON 2-15. As algebraic gemerators for H(SF:Z,), we can choose
Sfollowing elements.

i Ej’:i/‘j’jzlyzy""

) %, IeHt, UH, and =z}, I€H,.

)
)

i) Quy+ - Qp(&;), IEHT, UH; and Q- - - Q,,(%}), I€HT,.
)

iv Qp—ZQp—l' ‘ 'Q—p—l(il)9 IE‘HT.z UH;
and Qp—ZQ—p—I M ‘Q_p—l(i;% IEHT,I .

Proof. For a basis of QH.(SF:Z,), we can choose elements in lemma
2-12. By proposition 2-13, §; = ¢;8,%; ¢; #0, in QH.(SF:Z,). For
IsH:,, &} =&+ c¥ir, In QH(SF:Z,), where |I| = (deg#,) + 1/2(p — 1),
by‘ definition of #; and by proposition 2-13. Since the construction of §4
of [17], defining the H73 structure on SF can be extended on SO, and define
the Hj structure on SO with the following commutative diagram.

W x(SO)? ————> W X (SF)?

7y 7,

So that we can define the operations @; on H,(SO : Z,) compatible with the
operations @; on H.(SF:Z,). So by proposition 2-13 and by the fact that
the image of H.(SO : Z,)—» H,(SF : Z,) is the subalgebra generated by 4,
j=1,2++--, we can easily show that Qi ,(,) are in Z,J&, & +--1®
ABy Ty Bpsy + ++) and Q, Q%L (y;,) =0. So that for Ie H7,, QL. (&) =
Qk_\(&1) + co.0¥p,» in QHLSF : Z,), where yu.n =1y, for 2j/(p—1)—1=deg
(Qk_, (%)), and Q,_.Q% (F)) =Q,_.Q% (&;) in QH,SF:Z,). This shows the
proposition.

2-5. At first we consider the homology spectral sequence associated to
SPL — SF— F|PL, and determine the Pontrjagin ring H.(SPL : Z,).

ProrosiTioN 2-16.  As a Hopf algebra over Z,, H,(Q(F|PL): Z,)=A(d\d,,
coe), degd;=4j—1, j=1,2,+-+. d; are primitive elements.
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ProvpositioN 2-17.  There are elements %, H(SPL : Z,) for JeH%, UH,
UH;, suck that j(%,) = Z;+ dec, for JeH%, UH}%, and j(%;) = &} + dec, for
JeHt . Where j, : H(SPL : Z,) = HSF : Z,).

Proof. Since i.(%;) =0, for JeH%, UH%, and i (%)) =0 for JeH:,,
where i, : H(SF : Z,) - HF|PL : Z,). Proposition follows from the homology
spectral sequences associated to the following two fibering.

2F|PL)—> SPL — *—— Q(F|PL)

|

SF— F|PL

Remark 2-18. For %, I€Hf%, UHi, UHj; we can choose the pair %,
and B,%,.

As in the proof of proposition 2-15, the Hj structure on SO and SF
can be extended on SPL with the following commutative diagram

(2-7) W X (S0)? ———> W X (SPL)? ————> W X (SF)?
s o o
S0

> SPL > SF

Next define elements d,eH,; ,(SPL : Z,) by j«(d;) for j.: H Q(F|PL):Z,)
— H(SPL : Z,), for j=0 (p—1)/2. And define §;€H;;p-n-1(SPL : Z,) by
Jx¥;)y Js P H(SO : Z,) > H(SPL : Z,).

ProposiTioN 2-19. Hy(SPL : Z,) is a free commutative algebra generated by
the following elements.
i) §5 i=142-++. d, j%0(p—1)2
i) &, I€H}, UHI,UH}.
i) Qk_(%;). IeH7, UHT, UH;.
iv) Q,-.Q}-.(%,), I€HT, UHT, UH;.

Proof of this proposition is by using homology spectral sequence associated
to SPL— SF— F|PL.

2-6. Next we define the elements of H,(BSPL : Z,).
Let N:L,— BSO denote the map defined by the regular representation

of z,. Define z; =L\—l*(ezj(,,_l))EHZ,(,,_I)(BSO :Zp). Then z; are non decom-



PL MICRO BUNDLES 185

posable elements, j=1,2, - - -. Define the element Z;€H,;,-1n(BSPL:Z,) by
2; = ju2,), ja: H(BSO : Z,)— H(BSPL : Z,,).

And define @; € H,;(BSPL : Z,), j=0 (p =12, by @; = i.a;), is:H,
(FIPL : Z,) - H(BSPL : Z,).

Our main proposition is as follows.

ProrosiTiON 2-20. H(BSPL : Z,) is a free commutative algebra generated by
the jfollowing elements.

i) Z;, j=1,2,+--
i) a; j=0 (p—1)2
iii) O’(EJ), ]EHT,] UHT,Q UH;.

Proof. In the spectral sequence E%,=H.(F/PL:Z,QH.(QF|PL:Z,),
E3«=Z,, the following relations hold.

dUPk(a.li’k) = depk.f’ Cj #+ 0, (], p) =1, r=0.
dsjptp-0(@jp%) = Cjp4@)? ' Rd 1, (,0) =1, k=1, cj,+ #0.

And in the spectral sequence E%,=H.(BSO :Z,)QH.SO :Z,), Ez.=Z,, the
following relations hold.

dzj(p—l)p"(zzi’k) = CjYp*js Cj # 0, (.7 p) =1, k=0.
dzj(p-l)p"'l(p—l)(sz") = cjp”(zj)pk—l(p—l)®yjp"_19 (.7 p)=19 k= 1, ij"#o-

And since Hj structure on SPL can be extended on the fibering SPL—
ESPL — BSPL as that of SF— ESF— BSF, c.f. (4-15) of [17]. So that Kudo’s
transgresion theorem holds on the spectral sequence E}, = H.BSPL :Z,)®
H(SPL : Z,), c.f. proposition 6-1 of [17]. These date determine the differen-
tial of the spectral sequence for E,=H.BSPL : Z,)®H.SPL :Z,. And we
obtain the proposition by the same method of the proof of Theorem 2 in
[17].

Cororrary 2-21. Kernel of the i, : H(F|PL : Z,) - H(BSPL : Z,) is ideal
generated by j.(&;), j=1,2, ¢+, for j,: H(SF:Z,)—~ HJ(F|PL : Z,).

By corollary 2-21, the subalgebra Z,[a;], j =0 (p —1)/2 of H(BSPL : Z,)
is the image of i, : Hy(F/PL : Z,)—~ H(BSPL : Z,), so that this subalgebra
is subHopf algebra. And dual algebra of this subHopf algebra is a poly-
nomial algebra, since this subalgebra is realized as a subalgebra of
H*F|PL : Z,).
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By definition of z; 4(%;) =é%§i®é,-_i, z,=1. These two remarks
show that subalgebra generated by F ;» and a@; of H(BSPL : Z,) is a subHopf
algebra and there are elements b, Z,[2, Z;, + « - 1®0Z,[a;], j=0 (p—1)/2, deg
b, = 4k, such that

ZolZ1y Bay + +  IQZ,[G ;1= Zlbsy bzy + « +]
and 4B = D6®b,y bo=1.

TuroreMm 2-22, As a Hopf algebra

1)  HBSPL : Z,)=Z,[b,1QZ,[0(Z )10 a(E,)), where
IeH7, UHY,, UH3;, JeH], UHT,, UH}.

M

i) dA(by) =] 011@51-_“ o(Z;), olZ;) are primitive elements.

1

§3. H*BSPL : Z[12)/Torsion.

3-1. The purpose of this section is to prove the following theorem.
THEOREM 3-1. As a Hopf algebra over Z[1/2],
i) H*BSPL : ZIV2) Torsion = ZLU21[ Ry, Ry + + +]
i) 4R, = ijgé R:®R,-;, Ro=1, deg R, = 4j.
ii) In H¥BSPL,Q) = Q[py, s, +  +1, R, are expressed as follows.
R; = 2% (2471 — 1) Num (B,/4j) - p; + decomposable for some a,< Z.
At first we study the Bockstein spectral sequence.

Prorosirion 3-2.  In the Bockstein homology spectral sequence, E'=H,(BSPL:
Zy)y E” = (HJ(BSPL : Z)| Torsion) ®Zp, the following formula holds.

If x€E35,, y€E5,_, are such that d"(x) =y, then d™'(x?) = xP"ly.

Proof. For r>1, this is theorem 5-3 of [5], and using HZ structure
6 : Wx(BSPL)? - BSPL, it is easy to show that this holds for » = 1.

Remark 3-3. The above spectral sequence is a Hopf algebra spectral
sequence over Z,.

ProrosiTiON 3-4.  As a Hopf algebra over Z,, E~ = (H{(BSPL : Z)| Tyrsion)

=Z,[(by)s (By), = - -1, (b)) = SNb)Rb;;), where (b)) is the class which is repre-
sented by b, in Theorem 2~22.
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Proof. By Theorem 2-22, as a Hopf algebra over Z,, H(BSPL: Z,) =
Z 16,1027 ,(0(%1))®A(a(%,;)). By remark 2-18, in «(Z;) and o(Z,), if o(Z,) ap-
pears then «(8,%,) = B,0(Z,;) also appears. So that Z,[o(Z;)1® Ale(Z,)] is de-
composed following two types of Hopf algebras. Z,[o(Z;)1®4(8,0(Z;)) and
Z,[Byo(%,)I®A(0(Z,)). So that the proposition follows from proposition 3-2,
remark 3-3, and the fact that 4! = 8,.

Proof of Theorem 3-1. Since p is any odd prime, proposition 3-4 shows
that H*(BSPL : Z[1/2])/ Torsion = Z[1/21[R, Ry, + + +1, 4(R;) = zj(})Ri@R,-_l, for
some R;. Since P(H,;(BSPL : Z)| Torsion ®Z,)" is l-dimensi:)nal, over Z,,
and spanned by the image of PH,;(BSO : Z,) and PH,,(F|PL :Z,), so that
P(H,;(BSPL : Z[1/2)/ Torsion)=Z[1/2] and spanned over Z[1/2] by the image
of PH,;(BSO : Z)=Z, and PH,;(F|PL: Z[1/2])=Z[1/2]. On the other hand
there is a generator m;sPH,;(BSO :Z)=Z, such that <p,,m;> =1, and
#, € PH,;(F|PL, Z[1/2]) = Z[1/2] such that <L,, 7> = (2]—11)—, But since L,=

28+1(28-1—1) Num (B;/47) — denom (B;/47)
(27—1)! denom (B ;/47) 28412871 —1)Num (B, /45)
So that in PH,;(BSPL : Q), P(H,;(BSPL,Z[1/2)/Torsion)=Z[1/2] is generated
over Z[1/2] by m; and 221“(2(211‘?1‘]3?1)1{1131 Jﬁ ]()BJ 1) " But odd prime factor
of denom (B,/45) and (227! — 1) Num (B,/4j) are relatively prime, so that

) . ‘ i i m;
P(H,;(BSPL : Z[1/2])/Torsion) is spanned over Z[1/2] by @ =1 Num (B/j)"
So that we can take R; by R, =2%(227'—1) Num (B,/4j)p; + dec in H*

(BSPL : @), for some a;=Z.

p,+dec, so that <p;, m;>

§4. Determination of ¢ : A~ HYMSPL : Z,).

4-1. Let A= A, denote the mod p Steenrod algebra over Z,, and
¢ : A~ H¥MSPL : Z,) is defined by the following, where usH*(MSPL : Z,)
is the Thom class.

(4-1) #(a) = a(u).
The object of this section is to prove the following theorem.

TuEOREM 4-1.  The kernel of ¢ is the left ideal generated by Qo, Qi Where
Q, is the element defined by Mulnor.

The following lemma is proved in 4-2.

D P ( ) denote the space of primitive elements.
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Lemma 4-2. ¢(Q,)#0 for j=2.

Proof of the Theorem. Since ¢(Qo) = ¢(Q:) =0, ker$2A(Q, Q1), where
A(Qo, Q) = the left ideal generated b—}_l Q. and @,. MSPL has the product
p: MSPLAMSPL — MSPL, defined by Whitney sum. So that H*MSPL :
Z,) has the coalgebra structure over Z,. And it is well known that ¢ is a
coalgebra homomorphism. Let X : A— A denote the canonical anti-automorph-
ism of A. And define §: A—H*(MSPL :Z,) by ¢(a) = xa)-u. To prove
the theorem, it is sufficient to prove that, kernel of ¢ is the right ideal
generated by %(Qo) = —Q,, %(Q) = —Q,. Let A, denote the dual algebra of
A, then by Milnor Ay = Zp[é: &y o ~-—]®A(ro, Ty » + +). 1t is easy to show the
following.

(X(A/A(Qm Ql))* = Zp[&u Egy o+ ']®/1(‘l'2, Tgy 0 ) C Ay

Consider the algebra homomorphism, &, : HJ(MSPL : Z,) - A,. Since dual
basis of £[1852. « «ziery is QpQf- - - PR, where R = (r,7; ). So it is
sufficient to prove ¢(P?)0, and $(Q;)+0 for j=2. But since in H*

(MSO : Z,), $(P?) = g(x(P®)) = 2(P®)w)#0. And by lemma 4-2, #(Q,) =
o(UQ;) = —¢(Q;) = —g;(u)sﬁo for j=2. This proves the theorem.

4.2.  Proof of lemma 4-2. Let K is a CW complex of the form.

K = SP""1yef " Ue@thry el p = 2(p — 1),

P L3 »

And let f:K— BSPL be the map which represents g in jofoi : $P™!' K
— BSPL - BSF. Then s is represented by a PL disk bundle E; over K of
fiber dim N, N3>0. And X = Xy denotes the Thom complex of E,. Then
Xy is the following form,

XN = SNgeN+pr—1 U eN+prU eN+(p+1)rUeN+(p+1)r+1.
1 r (3% ?

Then the action of A on H*Xy:Z, is the following, for se H¥(Xy),
eproy € HYP'7UXY), ep, € HY* P (Xy), epenr € HY*P7(Xy) and eqpinrss €
HN+(I7+1)7‘+1(XN)'

1) P?(s) = ey,

il) P'P?(s) = PP*\(s) = epsnr, P?PY(s) =0



PL MICRO BUNDLES 189

i) 6P?*I(s) = 6PIPP(s) = ecprprare
PPr*4(s) = PPP'§(s) = 6PPPY(s) = P?P3P(s) = 0.
P15P?(s) = 0.

iv)  d(epr-1) = €prs

V)  PYepr) = €pinry 0P epr) = €penrt

Vi) d(eqrnr) = eprnreie

So that the Milnor homomorphism 2 : H¥(Xy : Z,) > HYXy : Z,)QA; is given
by the following.
1) A(s) = e®L + €,,RE} + e, R(E — &)
+ epenrn@EF 7o — Eato — T + 72).

i) 2(epr-1) = €pr-1®L + €5, Q70 + eprn- Q71 + eprnr+1&7170

i)  (epr) = €, @1 + €penr X1 + €panr+1&®170

V) Aepenr) = epinrQL + epinr+1®to

(

V) A e(p+l)r+1) = e(p+l)r+l®1-

Now consider the following construction. Let z : W — B be a oriented PL
disk bundle over B of fiber dim N. Then W X(E)? >W xB? is a PL disk
bundle of fiber dim pN. Then the Thom coml;lex of this bundle is of the
form,

WIKIMEA « + « AME) = W x(MEA « - - AME)W X ,

where ME is the Thom complex of z:E—~X. If ueHY(ME :Z,) is the
Thom class of z : E— X, then P(u)sH*(WX(ME)® : Z,) is the Thom class

of Wx(E)f’—p>W><X”, where P(u) is the Steenrod construction of u, c.f.

Steenrod cohomoplogy operations, ¢k VII.
Now consider the case z,:E=E,—K. And consider the twisted
diagonal map,

4y = AXd, 2 Wz XXy —> WX (Xy)?.

Then by the definition of the Steenrod reduced powers,

V=2/)(p—1)
A¥(P(s)) = ]go(—1)N+j+mN(NH)/2(m!>N‘9 2 ®P(s),
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=2~ 4
+ SV (—1)NHIHMNE D2 ()W« B 2 Q8P (s).

7

where m=-2"L1 acH(W/z,: Z,), BEH Wz, : Z,).

2
By Milnor i(a) = a®1 + BRco++ » + +B2 @7, + + + +. 2B =BROL+ 2RE,
L NGp-D L N@-1-p(s-1)
4+ oo And 4HP(s) = ((—1)FrmI@En2 (W8 2 ®s + B*°
5N (=D —(p+D (p-1) N (p=1)=(p+D(p-1) —1
®epr + B ®e(p+1)r + af ®(e(1’+l)r'”)]' Apply-

ing 2 and using the fact that 21 is a ring homomorphism we obtain,

1 —
ALHP(s)) = (=L mv@sn s () 287 ®epanrr®rs

L N(p-1)—p?

+ _E.BPI‘IB 2 ®e(p+1)r+1®1‘j]
=3
+ other term with respect to the last term..-Q®g1. &5 ciizste- -

So that @;(4%(P(s)) #0, so that Q;P(s)+0, for j=2. Using naturality of
Thom class, Q,(#)# 0 for ue H(MSPL : Z,). This proves the lemma.

§5. Proof of Lemma 2-10 and 2-11.

5-1. The main idea of this section is come from the work of Adames
[1], and we use his results freely in this section.

Let z: E—~ X be a spin (82) bundle over a finite complex, then it is
well known the existence of the fundamental Thom class in KO theory in
the following form, [3].

(5-1) There exists a Thom class a(z)eKO*(E, E — X) with the following property.

1) functorial
ii)  multiplicative.

i) ¢Fpha(z) = A(x)™, where A(z) is the A polynomial of =.

Now consider z : E— X, a oriented real vector bundle with homotopy
trivialization, ¢ : (E, E — X)— Xx (R, R®» — O0). Consider the following ele-
ment #(z)eK0(X), defined by #(z) Q7s, = (¢7))*(a(z)) € KO**(X X (R%*, R®* — O))
= KO"(X)QKO*(R®*", R*» — 0). Then it is easy to show that 1) e&(@(n)) =
1eK'(p,t) 1) #(z®8) =7z(x) 1) 7 is functorial iv) Ph(z(z)) = A@). And
passing to the limit we obtain a universal element z=KO(F/0), &z) = L.



PL MICRO BUNDLES 191

Now for any integer k, we define the H-map é*: BOg—>BOg by the
formula, &1 +¢&) =¥*1 +¢)/1+¢, where 14+ €14+ KO(BOg) denotes the
universal element.

Next for any integer k with (k,») =1, we define a H-map ¢*: BSOs —>
BOg» by the following way. The isomorphism,

P* : KO*(ESO(8n), ESO(8n) — BSO(8n))p —> KO**(ESpin(8n),
ESpin(8n) — BSpin(8n))p.

define the Thom class (p~)*(a(ESO(8%r)) = KO (ESO(8n), ESO(8n) — BSO(8%))p,
and we also write this Thom class by a(ESO(8#r)). Then this element defines
the Thom isomorphism ¢, : KO (BSO (8n)), - KO** (ESO (8n), ESO (8n) —
BSO(8n))p defined by o¢go(x) = z*(2)-a(ESO(8n)). Then define ¢%, : BSO(8n)
— BO®p by ¢f, = —%Q}‘o?lf"(a(ESO(Sn)), then it is easy to show that i*@k,.p
= ¢%, for i : BSO(8n)—> BSOB(n +1)). So passing to the limit we obtain
¢* : BSO - BOg(». Then it is easy to show the following, cf Adames [1].

ProposiTioN 5-2, The following two diagrams are homotopy commutative.

T

i) ' F|O0 ————> BOg

l " l5~

BSO —————5 BOgn

o*
i) BSO ———— > BOgp
r__ ~J
qu 1 0" lo
BSO ——— BO®(p)

Let 7— L, and r— CP~ denote the canonical complex line bundle and
7r—>L,, Tr—>CP~ denote the corresponding real vector bundle of dim 2,
and £,€KO(L,) or KO(CP") is the element &z =7r— 2.

ProrosiTioN 5-2. In KO(L,)p, P+ (Er) represent the element 1+—ﬂ2_Tl_v_ ,
where N €KO(L,) i the class corresponding the regular representation.
Proof of this is due to the Theorem 5-9 of [1].

5-2.  Proof of lemma 2-10. For &,KO(CP=), consider the element
@?*(ep)el + KO(CP*),). And consider (¥?*! — 1)(&z), then by Adames con-
jecture, there is a map g : CP”— F/O with the following commutative dia-

gram.
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o LN 7 > BSOg
l‘sR w‘P+1__1 §0p+1 1/51”-1
BSO — BSO — BSOg(p»
5p+1

Since [CP~, BOgpm]—>[CP~, BOg;»]is monomorphism, the above commutative
diagram and the following commutative diagram
SR p+1
CcP~ > BSO > BSO®(p)
lw’,ﬂ"—l_l SDP‘H l(;pﬂ
BSO ——— BSO@(p)

show that the two maps ¢?*, &; and 7og: CP°°—->BO®(,,) is homotopic. So
that Togomw L, — CP~ F/O — BOg, represents 1+ N —~2_N by proposition 5-2.

E w‘p'l'l
And since L, 5 CcP- ——> F|O — BSO is homotopic to L, 5 CP~— BSO ————->

+

.. s
BSO, so that this map is trivial. So that gozx : L,— F/O factors L,— SF
— F/O. And it is easy to show the following commutative diagram.

i l {
'SF————>F/O

lf SRR

F|PL —— BOgp

So that gojof : L,— BOgy» is equal to 7oiof, and 7oiof is cqual to Togor :
L, CP~— F|O - BOg, and this element represent 1+ _ﬁg This shows

the lemma.

5-3. Proof of lemma 2-11. We prove this lemma by induction on j.
For j=1. Since gojof : L, SF— F/PL— BOg, represents 1 +_i_\7, so that
(Gojof)(P,_y) #0. So that fy(exp-n) =cz, for some non zero c€Z,. So

L2
that filexp-n-1) = FelBpap-n) = cBp%;. Suppose we can prove the lemma for

j< o fo=2, we prove the case of jo. Put files; m-0) = €%, + @y, and
Silezjyp-v-1) = €5 Bp% ;o + b, for some ¢; €Z, and a;, b;,€G.. We prove

Cjp=C=C = *** =Cjo. But the following lemma 5-4 shows that for some

1=<1< j, Piezjo(p-x) = deyjo-1)p-1 OF Plesjyp-1-1 = de€s(jo-1)p-1-1 for some

. B ‘
0#deZ, Then for example PLf(e; p-n) = €;,Pix;, + Pila;) = ¢;d%;,x
+ Pia;) PLf(erjy-n) = f(Pierjo-0) = fldes-ip-n) = d B + dBjore
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But Pi(a, )G, by definition of G, in [17] and by Nishida [11], so that
¢;,d =dc and c; =c. This prove the lemma.

Lemma 5-3. Ir HJ(L,,Z,) and for any jo>1, there is a infeger 1=k < j,
such that Pl(es;p-n) # 0 or Piles; p-n-1) 7 0.
Proof is easy.

§ 6. Appendix.

6-1. The object of this section is to prove propostion 1-4, the exis-
tence theorem for KO theory fundamental Thom class for oriented PL disk
bundles. The essential idea of this section depends on the work of Sullivan
[15].

At first we remember the result of Sullivan [15]. Let z:E—X be a
oriented real vector bundle over a finite complex of fiber dim m. Then
there is a fundamental Thom class u(x) € KO™(X#%+), with the following
properties, where X% is Thom complex of = : E— X.

(6-1) i) functorial.
i) multiplicative.
i) ¢3phulz) = Lix) e H (X, 0).

Let KO.( )p denote the homology KO 'theory localized at odd primes
P, and make 4-graded by the same method (1-6). And Q% ), and Q. )’
denote the oriented real cobordism and bordism theory. Then above Thom

class induces following multiplicative cohomology and homology operations. .

(6-2) w7 )>KO¥ )p
2 )=>KO{ )p.

By (6-1) iii) and Index theorem of Hirzebruch. The map « :Q.(p, )=
Q*(p, t) = KO (p, t)p = KO*(p, t) = Z[1/2] is the map defined by associating to
each represented manifold its index. And we consider Z[1/2] as a 2, = Q*
module by this map. Then the natural transformations in (6-2) define the

following natural transformations.
(6-3) u QY )Q.ZI2] = KOX( )p.
2 Q. )C?Z[I/Z]*KO*( )pe

Then the following proposition is due to Sullivan [15].
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Prorosition 6-1.  The natural transformations in (6-3) give equivalence of
functors.

Now let = : E-—+ X be a oriented real vector bundle of fiber dim m.
Then we define the following map # by taking Kronecher index < ,u(z)>.

u < uln)y
(6-4) it Q,(E,dE)—> KO (E,0E) p ————> KO py_n(S") 5
Z[1/21 if p—m=004)
where KO, ,(S")p = { .
0 if  p — m=004).

Another map # is defined by the following
Z[12] p—~m=0(4)

(6-5) i:Q2,(EoE)— {
0 p — m x 0(4),

If 2 = (M?,aM? : f)EQ,(E,3E), we can take s satisfying the condition
that f is ¢-regular to the zero section X of E. Then d(z) is by definition
index of (f7/(X)). Then # is well defined. And it is easy to prove the
following proposition.

Prorosition 6-2.  The above two homomorphism @ and & coincide

6-2. For any odd integer g >0 introduce the mod ¢ homology theories
Q. :Z,) and KOy :Z,) as follows. Let M, = S'Ue¢® bc the mod ¢ Moore
q

space, for a finite CW-pair (X, A), we define,
(6-6) (X, A Z) = 11:3[M,/\5“’*'"“% (X]A) AMSO(N)],.
N

KO, (X, A:Z) = lim[ M, AS}¥*m=2, (X]A)N(Z X BO)),.

N

As in the case of KO, )p, the homology theory KO, :Z,) is con-
sidered 4-graded by 7,=K0,(S%)s.

Since g is odd integer, by Araki-Toda [2], these modules Q.X, A: Z,)
and KOX, A : Z,) are Z, modules.

And by the method of [2], the Bochstein homomorphism 8,, the reduc-
tion mod ¢ homomorphism ¢, and for «:Z,—~+Z,, an abelian group
homomorphism, the reduction homomorphism ¢, can be defined.

(6-7) Byt Qu(X, At Zp)=> Qur(X, A)y KOW(X, A : Z,) > KOp_ (X, A).
05 (X, A) > Qu(X, A : Z,), KOW(X, A) > KO, (X, A : Z,)
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Cu t 2n(X,A:Z,) > QXA Z,), KOW(X,A: Z,) +>KO,(X,A: Z,).

The homology operation # defined in 6-2 can be naturaly extendable
to the following homology operation u,.

(6-8) w,: 2 1 Z)—>KO( :2Z,).

And this homology operation #, induces the following natural transfor-
mation.
(6-9) Uyt 24l :Zq)(;;)Z[l/z]—)KO*( 2 Z,).

Then proposition 6-1 induces,

ProrosiTioN 6-3.  The natural transformation u, in (6-9) is an equivalence of
Sunctors.

6-3. Now we show the geometric interpretation of the homotopically
defined homology theory Q2.( :Z).

For finite CW-pair (X, A), a singular Z, manifold of dimension m for
(X, A) means the following system (@, f) = (Q, f, ¢, M,) satisfying the following
condition.

(6-10) 1) (@,8Q) is a compact oriented differentiable manifold of dim .

ii) 6Q = Q,UQ,, where M, and M, are regular (m — 1) submanifolds,
and Q,NQ, = 9Q, = Q..

iii) (M, M), compact oriented (m—1) differentiable manifold,
¢ : (UM, UaM,)~(Q,, 6Q,) is an orientation preserving diffeo-
mor};lhism.q Where U means disjoint union of ¢ elements.

iv)  f:(Q, Q) (X, A), cf)ntinuous map

v) For any inclusion i:M,——H{_}JM., the composite map fopoi is

independent of this inclusion.

Then as in the usual case, the equivalence relation ‘“bordant” can be
defined. And we denote the set of equivalence classes of singular Z, mani-
folds of dim m for (X, A) by Q4(X,A:Z). Then this becomes an abelian
group, and Q4(X,A:Z,) becomes a right 2.(p,¢) module by defining the
product of manifold.

ProrosiTioN 6-4.  The functor Q4( :Z,) constitutes a generalized homology
theory, and Q4(p,t : Z,)=Q.(p, t)(;)Zq.
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Then by the same method in the case of 2,( ), constructed in Conner-
Floyd [7], we have the following.

ProrosiTiON 6-5.  There ts a natural equivalence, = : QU :Z)—> Q. :Z).

The reduction mod ¢ homomorphism, ¢} :Q2.(X, A)—>2(X,A:Z,) can
be defined by considering the ordinary singular manifolds as Z, singular
manifolds. And for the homomorphism «:Z,— Z, defined by a(l)= (s),
the reduction homomorphism ¢;:Q4(X, A:Z)—> (X, A:Z,) is defined
by ¢l(Q, f)) = (U, Uf)). And the Bockstein homomorphism 8] :Q2.,(X, A:Z,)
= Qn1(X, A) is djsﬁnesd by B(Q, f5 ¢, My) = (M,, fopoi). Then ¢; and ¢! is
compatible with ¢, and ¢, in (6-7), and 8/ and B, are compatible up to
sign.

6-4, Now we define the mod ¢ index homomorphism I, : 24, : Z)
—Z, by the following way. Let (M™,aM) is a Z, manifold, then we define
IL(M™) by

if m=004)

(6-11) I(M™) = .

Py — P, mod g if m=0(4).
Where p, and p_ are the following numbers. Consider the following sym-
metric pairing,

u < ’uM>
H>»(M,oM : RYQH*(M,oM : R)—> H**(M,oM : R) ——— R.

where 4n = dim M. Then p, = the number of the positive eigen values of
the above pairing, and p. is the number of the negative eigen values.

ProposITION 6-6. I, is not depend on the representative, and define a map
1, :Q4p,t : Z)—> Z, and has the following property.

i) Iz +y) = Iz + L)

i) I, y) = I(2)- 1(y) for 2€Qu(p,1 1 Z,), YE2u(p,1).

i) I 2)=al(zx), for x€Qup,t : Z,) and a : Z,— Z,, defined by a(1)=(s).
Let 7 : E— X be an oriented PL disk bundle over a finite complex of fiber
dim m. We define the following homomorphism &, #, for odd integer
q>1.

‘n—m=004)

' z
(6-12) i Q,.(E,0E)—~ j )
Lo n—m = 0(4)
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Z, n—m=0(4)
@yt Q.E,OF : Z)) —~
0 n — m = 0(4).
Let (@, /)eQ.(E,dE : Z,), we can suppose f is t-regular to the zero-section
X of E. Then f7YX) define a element of Q,_,(p,t : Z,). Define #,((Q, )=
I(f%(X)). The same for #. Then it is easy to show that i(z,y)=u(x)- [y)
for 2 € Qu(E,0E), yEQ.p,t), and @, x,y) = @ (2)I(y), x € QE,F : Z),
yE2«(p,t). So that %, and 7, define the following homomorphism.
Z[1/2] * — m = 0(4)
{6-13) i Q(E,0E)RZ[1/2] = KO E,0E)p — {
2, * —m = 0(4)
Z, *—m=0(4)

iy, Q(E,0E : Z)RZ[1/2] = KO(E,oE : Z,) > {
2, 0 *x—mx004).

Then these # and #, satisfy the following relations.

0P = g il a,: 22, =2ZlqZ

]

(6-14)

~

3P = * ﬁq a Zq _)qu; a(l) = (S).

Rl

6-5. Now remember the following duality law for KO¥( ), and KO.( )p.

ProrosiTiON 6-7. For any finite CW-pair, There ts a correspondence between
the following set i) and ii)
i) ueKO™X, A)p
ll) ﬁEHomZ!:l/z](KOm(Xy Ap, Z[1/2]),
#,sHom, (KO, X, A: Z,), Z,), q: odd integers satisfying the following
relations.
A00, = a,oil, a,  Z—>2,=2|qZ
B geo, = @ i, o Z,—~Zy, a(l) =(s),
And the correspondence is given by
< w1 KOR(X, A)p = KOo(S") p = Z[1/2]
u—>
< uy  KOw(X, A: Z) KOS : Z,) = Z,.

And these correspondence s jfunctorial.

Proof of proposition 1-4. For PL disk bundle z : E—~ X of fiber dim m,
consider #, and #, defined in (6-13). Then by (6-14) and proposition 6-7,
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there is an unique element «(z)eKO™(E,3E)p. This element is what we
want.
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