G_{a}-AGTION OF THE AFFINE PLANE

MASAYOSHI MIYANISHI*)

0. Recently, R. Rentschler [4] proved that if k is a field of characteristic 0 , any action of the additive group G_{a} on the affine plane is equivalent to an action of the form ${ }^{t}(x, y)=\left(x, y+t f(x)\right.$, where $t \in G_{a}(k),(x, y) \in k^{2}$ and $f \in k[X]$.

It will be natural to form a conjecture that if k is a field of positive characteristic p, any G_{a}-action on the affine plane is equivalent to an action of the form ${ }^{t}(x, y)=\left(x, y+t f_{0}(x)+t^{p} f_{1}(x)+\cdots+t^{p^{n}} f_{n}(x)\right)$, where $t \in G_{a}(k)$, $(x, y) \in k^{2}$ and $f_{0}, \cdots, f_{n} \in k[X]$.

The purpose of this article is to prove this conjecture.

1. Let k be an algebraically closed field of positive characteristic $p, S=$ $\operatorname{Spec}(k[x, y])$ be the affine plane over k and $\sigma: G_{a} \otimes_{k} S^{2} \longrightarrow S^{2}$ be a nontrivial action of the additive group G_{a} on S^{2}. Let $A=k[x, y]$ and let t be an indeterminate. Then it is well known (cf. [2]) that to give an action σ of G_{a} on S^{2} is equivalent to giving a homomorphism of k-algebras $\Delta: A \longrightarrow A \otimes_{k} k[t]$ which satisfies the following commutative diagrams;
(1)

$A \xrightarrow{\Delta} A \otimes k[t]$
(2)

where $\mu: k[t] \longrightarrow k[t] \otimes_{k} k[t]$ and $\varepsilon: k[t] \longrightarrow k$ are homomorphisms of k algebras defined by $\mu(t)=t \otimes 1+1 \otimes t$ and $\varepsilon(t)=0$ respectively. Moreover, if we define k-linear endomorphisms of A by $\Delta(a)=\sum_{i \geqslant 0} D_{i}(a) \otimes t^{i}$ for $a \in A$, $D=\left\{D_{i}\right\}_{i \geqslant 0}$ is an iterative infinite higher derivation on A. To give an action σ of G_{a} on S^{2} is equivalent to give an iterative infinite higher deri-

* This work was partially supported by "the Sakkokai Foundation".
vation $D=\left\{D_{i}\right\}_{i \geqslant 0}$ on A such that for any $a \in A, D_{j}(a)=0$ for sufficiently large j (cf. [2]).

We shall begin with
Lemma 1. (Nagata, Theorem 4.1 of [3]). Let A_{0} be the ring of constants, i.e. $A_{0}=\left\{a \in A \mid D_{i}(a)=0\right.$ for $\left.i \geqslant 1\right\}$. If $a \in A_{0}$, then each prime factor of a in A belongs to A_{0}. In particular, A_{0} is a unique factorization domain.

Lemma 2. (cf. [4]. A_{0} satisfies the following properties.
(i) $A_{0}=k[f]$, for some irreducible element f in $A_{0}-k$. More precisely, $f-\alpha$ is irreducible for any $\alpha \in k$.
(ii) A_{0} is algebraically closed in A.

Proof. (i) Since σ is non-trivial, $A_{0} \neq A$. On the other hand, $A_{0} \neq k$ by virtue of a result in [2]. Let f be an element of $A_{0}-k$ such that the total degree with respect to x and y is minimal in $A_{0}-k$. Then by Lemma $1, f$ and $f-\alpha$ are irreducible in A, where $\alpha \in k$. If $A_{0} \neq k[f]$, let g be an element of minimal total degree in $A_{0}-k[f]$. Then g and $g-\beta$ are irreducible in A, where $\beta \in k$. Let P be a point of S^{2} which is not fixed by the action σ and let $\alpha=f(P)$ and $\beta=g(P)$. Then P belongs to the closed sets $V(f-\alpha)$ and $V(g-\beta)$ defined by $f-\alpha$ and $g-\beta$ in S^{2} respectively. Hence, $V(f-\alpha)=\overline{O(P)}=V(g-\beta)$, where $\overline{O(P)}$ is the k-closure of the orbit of P. Therefore $g \in k[f]$.
(ii) Let h be an element of A which satisfies an equation of the form, $a_{0} h^{n}+a_{1} h^{n-1}+\cdots+a_{n}=0$, where $a_{0}, a_{1}, \cdots, a_{n} \in A_{0}$. Then the equation $a_{0} X^{n}+a_{1} X^{n-1}+\cdots+a_{n}=0$ has only a finite number of solutions in A. If $t \in G_{a}(k)$, then $h \longrightarrow t_{h}$ is a permutation of these solutions. However, G_{a} is connected. Hence h is fixed by the action of G_{a}, i.e. $h \in A_{0}$. q.e.d.

We shall next define a function λ on A with values in the ring of integers \boldsymbol{Z} by $\lambda(a)=n$ if $\Delta(a)=a \otimes 1+a_{1} \otimes t+\cdots+a_{n} \otimes t^{n}$ and $a_{n} \neq 0$. Then A_{0} consists of elements such that $\lambda(a)=0$. Let n_{0} be the minimal value of $\lambda(a)$ for $a \in A-A_{0}$. Then $n_{0} \geqslant 1$. Let q be an element such that $\lambda(q)=n_{0}$ and that q is of minimal total degree in the set of elements a whose values of λ are n_{0}. Then we have the following result.

Lemma 3.

$$
\Delta(q)-q \otimes 1 \in A_{0} \underset{k}{\otimes} k[t] .
$$

Proof. Let $\Delta(q)=q \otimes 1+q_{1} \otimes t+\cdots+q_{n_{0}} \otimes t^{n_{0}}$, where $q_{1}, \cdots q_{n_{0}} \in A$. Since $\left(\Delta \otimes i d_{k[t]}\right) \cdot \Delta(q)=\left(i d_{A} \otimes \mu\right) \cdot \Delta(q)$ from the commutative diagram (1), it is easy to deduce an equality, $\Delta\left(q_{i}\right)=q_{i} \otimes 1+\left({ }_{1}^{i+1}\right) q_{i+1} \otimes t+\cdots+\left({ }_{j}^{i+j}\right) q_{i+j} \otimes$ $t^{j}+\cdots+\left(n_{n_{0}-i}^{n_{0}}\right) q_{n_{0}} \otimes t^{n} 0^{-i}$ for $1 \leqslant i \leqslant n_{0}$. Therefore by the choice of q, $\left({ }_{1}^{i+1}\right) q_{i+1}=\cdots=\left(\begin{array}{c}n_{0}-i\end{array}\right) q_{n_{0}}=0$ and $q_{i} \in A_{0}$.
q.e.d.

Since q is also of the minimal total degree in $A-A_{0}, q-\beta$ is irreducible for any $\beta \in k$. In particular, $q-\beta$ is not divisible by any linear factor $f-\alpha$, for $\alpha \in k$.

Let $B=k[f, q]$. Then the restriction Δ on B sends B to $B \underset{k}{\otimes} k[t]$ and commutes the diagrams (1) and (2) where A is replaced by B. Namely Δ induces an action σ^{\prime} of G_{a} on $X=\operatorname{Spec}(B)$ and the inclusion $B \subset A$ implies that there exists a $\operatorname{Spec}(k[f])$-morphism $\varphi: S^{2}=\operatorname{Spec}(A) \longrightarrow X=\operatorname{Spec}(B)$ which commutes with the actions σ and σ^{\prime} on S^{2} and X respectively.

We now see that φ is isomorphic on the fibres over the generic point of $\operatorname{Spec}(k[f])$. In fact, let K be the quotient field of $k[f]$ and $A_{K}=A_{A_{0}} K$. Then the higher derivation $D=\left\{D_{i}\right\}_{i \geqslant 0}$ in A can be canonically extended into A_{K} and it is easy to see that K is the ring of constant elements in A_{K}. Therefore $\operatorname{Spec}\left(A_{K}\right)$ is a G_{a}-homogeneous space defined over K. The argument as in [5] shows that A_{K} is isomorphic to $K[u]$, the polynomial ring of one variable over K. Since $\lambda(u)$ must be minimal in $K[u]$, we can take q for u. Therefore $B \underset{A_{0}}{\otimes} K \cong A \otimes_{A_{0}}^{\otimes} K$. In particular, φ is birational.

On the other hand, we now show that $B \underset{A_{0}}{\otimes} A_{0} /(f-\alpha) \longrightarrow A A_{A_{0}}^{\otimes} A_{0} /(f-\alpha)$ is injective for all $\alpha \in k$. In fact, suppose that an element $\alpha_{0} q^{A_{0}}+\alpha_{1} q^{n-1}+$ $\cdots+\alpha_{n}$ in $B \otimes_{A_{0}}^{\otimes} A_{0}(f-\alpha) \cong k[q]$ is sent to 0 in $A \otimes_{A_{0}}^{\otimes} A_{0} /(f-\alpha)=k[x, y] /(f-\alpha)$. Then $\alpha_{0} q^{n}+\alpha_{1} q^{n-1}+\cdots+\alpha_{n} \in(f-\alpha) A$. Since k is algebraically closed, $\alpha_{0} q^{n}+\alpha_{1} q^{n-1}+\cdots+\alpha_{n}=\alpha_{0}\left(q-\beta_{1}\right) \cdots\left(q-\beta_{n}\right)$ for $\beta_{1}, \cdots, \beta_{n} \in k$. However since $(f-\alpha) A$ is prime ideal of A, some factor, say $\left(q-\beta_{1}\right)$, belongs to $(f-\alpha) A$. Hence, there exists an element h in A such that $\left(q-\beta_{1}\right)=(f-\alpha) h$. But this is not possible by virtue of the choice of q.

Since q is not algebraic over $k[f]$ and since $k[x, y] /(f-\alpha)$ is the affine algebra of an irreducible curve $f=\alpha$ in S^{2}, φ restricted to the fibres over a closed point $f=\alpha$ of $\operatorname{Spec}(k[f])$ is quasi-finite. Moreover, note that X is normal.

Now applying Zariski's Main Theorem (cf. EGA (III, 4.4.9)), φ is an open immersion. Let $V=X-\varphi\left(S^{2}\right)$. Then it is easy to see that $\operatorname{codim}(V) \geqslant 2$,
noting that the structural morphism $S^{2} \longrightarrow \operatorname{Spec}(k[f])$ is surjective. Hence $\operatorname{Prof}_{V}\left(\mathcal{O}_{X}\right) \geqslant 2$ because X is normal. Therefore $\Gamma\left(X-V, \mathcal{O}_{X}\right) \cong \Gamma\left(X, \mathcal{O}_{X}\right)$ by virtue of $E G A$, (IV, 5, 10,5). Since $\varphi\left(S^{2}\right)$ is an affine open set, $\varphi\left(S^{2}\right)=$ $\operatorname{Spec}\left(\Gamma\left(X-V, \mathcal{O}_{x}\right)\right) \cong \operatorname{Spec}\left(\Gamma\left(X, \mathcal{O}_{x}\right)\right)=X$. Thus we have proven that $k[f, q]=$ $k[x, y]$.

Now we shall note that the action σ of G_{a} on S^{2} is determined by a homorphism of group schemes $\Psi: G_{a} \longrightarrow \operatorname{Aut}\left(S^{2} / S^{1}\right)$, where Aut $\left(S^{2} / S^{1}\right)$ is the $k[f]$-automorphism group of the affine line $S^{2}=\operatorname{Spec}(k[f, q])$ over $S^{1}=\operatorname{Spec}$ $(k[f])$ and is isomorphic to a sub-group scheme $G=\left\{\binom{a, b}{0,1} ; a \in k^{*}=k-0, b \in k[f]\right\}$ of $G L(2, k[f])$. The action of an element $\binom{a, b}{0,1}$ of G on S^{2} is given by sending $\binom{q}{1}$ to $\binom{a, b}{0,1}\binom{q}{1}=\binom{a q+b}{1}$. Then the correspondence $t \in G_{a} \approx \longrightarrow a(t)$ is a multiplicative character of G_{a} hence $a(t)=1$. Then $t \approx \longrightarrow\binom{1, b}{0,1}$ defines an endomorphism of G_{a}. Then b is a p-polynomial with respect to t with coefficients in $k[f], b=a_{0}(f) t+\cdots+a_{n}(f) t^{p^{n}}$. Then ${ }^{t} q=q+a_{0}(f) t+\cdots$ $+a_{n}(f) t^{p^{n}}$.

Thus we have proven
Theorem. Let k be an algebraically closed field of positive characteristic p. Then any action of the additive group G_{a} on the affine plane is equivalent to the action of the form,

$$
{ }^{t}(x, y) \backsim\left(x, y+t f_{0}(x)+t^{p} f_{1}(x)+\cdots+t^{p^{n}} f_{n}(x)\right)
$$

where $t \in G_{a}(k),(x, y) \in k^{2}$ and $f_{0}(x), \cdots, f_{n}(x) \in k[X]$.

Bibliography

[1] A. Grothendieck et J. Dieudonné, Eléments de Géométrie Algébrique (referred to as EGA), Chapitres III et IV, Publ. Math. Inst. Hautes Etudes Sci., No. 11 and 24.
[2] M. Miyanishi, A remark on an iterative infinite higher derivation, J. Math. Kyoto Univ., 8 (1968), 411-415.
[3] M. Nagata, Note on orbit spaces, Osaka Math. J., 14 (1962), 21-31.
[4] R. Rentschler, Opérations du groupe additif sur le plan affine, C.R. Acad. Soc. Paris, 267 (1968), 384-387.
[5] T.A. Springer, On a lemma of Rosenlicht, Indagationes Mathematicae, 30 (1968), 378-383.

