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A CONSTRUCTION OF MEROMORPHIC FUNCTIONS

WITH PRESCRIBED ASYMPTOTIC BEHAVIOR

J.L. STEBBINS*

Introduction

Although there are several constructions of meromorphic functions

with prescribed asymptotic sets [e.g., 5,6], it is usually difficult to determine

or prescribe the nature of the asymptotic paths used in these constructions.

On the other hand, there are several other constructions of meromorphic

functions with prescribed asymptotic paths [e.g., 1, 10, 12], but the extent of

the asymptotic values for these functions cannot always be restricted to the

values approached along the given paths. Gross [3] has accomplished both

results by prescribing paths for every value in the extended complex plane.

This paper presents another technique for constructing meromorphic

functions where both the asymptotic paths and the asymptotic values can be

prescribed in a fairly general way. In particular, if A is any Fσ set in the

extended complex plane, a function f(z) meromorphic in \z\<R {0<R^ 4- °°)

is constructed where A is the set of asymptotic values for f(z) and every

value of A is obtained along a spiral asymptotic path. Other examples are

constructed where A is the set of all asymptotic values and all the values

of A are obtained along radial paths, all are obtained along arc paths, and

all are obtained along boundary paths terminating at the same point on

UI = Λ.

Definitions and the Main Theorem

Let 0 < i?:< + oo. For 0<r<R, we shall denote by Cr the circle

I z I = r, and by Dr the disk \z\ ̂ r. By a mono tonic boundary path (mb-

path) we shall mean a simple continuous curve, z = z{s) ( 0 ^ s < l ) , in

\z\ < R, such that, as s->l, \z{s)\-*R strictly monotonically.
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76 J.L. STEBBINS

DEFINITION 1. In a complex τ-plane, let E be a non-empty set of

points on the circle \τ\ = 1. To every Γ G £ , let there correspond an mb-

path tτ in \z\ < R, such that the intersection of every pair of these mδ-paths

is the origin, and, for every r such that 0 < r < R, the one-to-one corres-

pondence τ<->ί r ΠC r (TG£) preserves cyclic order. The set T = {/JreE1}

will be called a modified tress in \z\ < R relative to E, provided that the fol-

lowing conditions are satisfied:

(i) E is an Fσ of first category relative to | τ | = 1.

(ii) There exists a decomposition of E,

N*
E= U En, iV*<^oo,

«=i

where each En is closed and nowhere dense relative to | r | = 1 such that:

a.)* for θo=τnin{θ\ei9eE1}9 θo^θ<θo + 2π for all eieeE.

b.)* mzx{θ\ei9eEn}<mm{θ\eiβςΞEn+1], w = 1,2, ,ΛΓ*-1.

c.) if Tn = U tτ, then Tnf]Dr is closed and nowhere dense (n = 1, 2,
re£n

• ,7V*; 0 < r < # ) .

Remark 1. Every modified tress is a tress in the sense of Bagemihl and

Seidel [1, p. 186, Definition 1], Examples of modified tresses can be found

on p. 187 of the abovementioned paper with the set E in examples 1-4

restricted as indicated in the definition above.

We shall use the notation Γ(f) to denote the set of asymptotic values

of a function f{z) defined in \z\ < R. αGΓ(/) if and only if there exists a

boundary path ΐ such that a = lim /(z). Any boundary path along which

f(z) tends to a limit is called an asymptotic path for f(z). If the end of T

(i.e., the set of limit points of T on \z\ = R) is a point (arc), a is said to

be a point (arc) asymptotic value. The set of all point (arc) asymptotic

values is denoted by ΓP(f) {ΓΛ{f)) If f(z) tends to a limit along every mb-

path in a modified tress T= {tτ\τ^E}9 f will be called a T-function, and

we shall use ΓT(E){f) to denote the set of all such limits. If f(z) is a T-

function, and if for every asymptotic path for f(z) which is disjoint from T

the limit attained by f{z) on this path is also in ΓT{E){f)> f is said to be

restricted on asymptotic paths disjoint from T.

* The direction here is arbitrary. Corresponding conditions in the clockwise direction
can be substituted.



MEROMORPHIC FUNCTIONS 77

THEOREM 1. Let T= {tτ\τ^E} be a modified tress in \z\<R. Let gn(z)

be a continuous complex-valued function defined on Tn such that for every r e £ β , as

\z\-+R with z^tτ, we have &gn{z)-*a{τ) and Jrgn{z)-^β{τ) where a(τ) and β{τ)

are real-valued functions of τ^En which may assume the value +00 (n = l92, ,iV*).

Then there exists a T-function f(z) meromorphic in \z\<R such that max \f(z)—gn{z)\->0

uniformly as \z\-+R for each n= 1,2, ,JV*. Furthermore, ΓT(E)(f)={G(τ) =

a{τ) + iβ(τ)\τ^E} and f is restricted on asymptotic paths disjoint from T.

Outline of Proof of Theorem

To accomplish this construction, we first define a point set S in | z | < R,

called the skeleton, such that for each n {l^n^N*) S contains all the

points of Tn whose modulus is greater than a fixed real number (< R) which

depends on n. In addition, S contains barriers which every boundary path

disjoint from T must cut in every annulus An— {z\R — R\n< \z\ < R}. A

continuous function h(z) is defined on S which agrees with gn{z) for every

z^TnΓ\S ( n = 1,2, ,iV*). f{z) is then constructed as an approximation

to h(z) on S and meromorphic in \z\<R such that max 1/(2) — h(z)\ ->0

uniformly as | z \ -> R. The purpose of the enlargement of T to the skeleton

S is to control the convergence on any boundary path in ^T (i.e., the

complement of T in \z\ < R).

The Skeleton S and the Continuous Function h{z) on S

Let 0 < ro< rλ< < rn < < R where limr n = R. Let r o = eie<> where

. For each n= 1,2, , i V * - l , let ^ s ( m a x {θ\eiΘ(=En},

If iV*<oo, define ^ e ( m a x {θ\eίθ^EN*}, θo + 2π). Now

let τn - eiθ* {n = 1,2, , N*). Define tTu to be an mί>-path with 0 as

initial point and disjoint from T. For each n satisfying 1 ̂  n ̂  iV*, define
N*

E* = En\J{τn-»τn}. Then T* is defined as U tt and T* = U T * .

Let Rn be the region bounded by \z\ = R, tTn_19 t7n and containing Tn

in its interior. Let Wn = Rnΐ\^Tn. Wn is an open set in \z\<R and so

can be expressed as the union of a countable number of components
M

Wn = U WZ (M = M(w)^oo). Each component is bounded in \z\ < R by
m—l

the union of two mδ-paths in T*, call them tm

n(ϊ) and tm

n(2).

Let φm

n(k,i)= Crk(λtm

n(i) ( n = l , ,ΛΓ*;ft = l > 2 i , m = 1, -,M(n);

i = 1,2). Let /m

n(&) be a Jordan curve which is contained in T7w

ΛΠ(Z>rjfc—Drk_^
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and which is the union of two Jordan arcs joining pTO

n(fc,l) and pm

n(k92)

(w= 1,2, ,JV*; m= 1,2, ,M(»); ft = 1,2, •)• Let αΛ be the subarc
n

of C r n joining CrnΓ\tTn to C r n n* r o which does not meet U T4 ( l ^ n ^ i V * ) .

For iV* finite and n^N*, an is the subarc of C r n joining CrnnfΓΛ to CrnΓ)tT0

which does not meet T*.

Let Si= aiU(T!*nC r i). For K n < F , let Sn= an\J[{Drn-DrnJn

(V1 T<*)]U{Tn*nCr)uΐUln(jJ JΛn]]. lΐ N* is finite and n^N*9 define SΛ=
i = l n j=l i = l

anU[Drn-Drn_ι)ΠT*']U[U VJi j(n)l The skeleton S = U Sn.

The function gx{z) is defined and continuous for all z&tΐQ. For

l^n^N*9 define λ(z) on tΐn by A(ίΓnΠCΓj|) = flf(ironCrn) ( 0 ^ r < 7 ? ) . With
oo

this definition of h(z) on U tτ , we can easily extend A(z) to the arcs an.
n=0 n

h{tTnf]Crn) = h{tTQΓ\Crn) and so we define h on αΛ to be this constant value
for all w=l,2, . For iV* finite and n>N*,

for all 2Gαft.

Set h(z)=gn{z) for z^Tnf)S. Define'h(z) on Jm

n(k) to be the homeomorphic

image of a circle joining A(pTO

n(fc, 1)) and h{pm

n(k,2)) with diameter

— A(pTO

rt(fc,2))[. Thus, A(z) is now defined and continuous for all

Relation between f(z) and h{z)

Suppose f(z) has been constructed meromorphic in \z\ <R such that

max \f(z) — h{z)\->0 uniformly as \z\-+R. Since z^Tn implies that zeS for

all z^Tn, with modulus ^:rn, and since h{z) = gn(z) for 2 E T W Π S , it

follows that max | f(z) — gn(z)\->0 uniformly as \z\->R(l^n^N*). Thus
ZεTn

N*

f{z) is a T-function and Γτ{E){f) = U {G(r)Ire£J = {G(τ)|re£}.

Consider now the asymptotic paths for / disjoint from T. It is clear

that any asymptotic path that meets T* — T in every annulus Λn must have

asymptotic value equal to lim gx{z). Thus, it is sufficient to consider only
I*I->Λ

asymptotic paths which are disjoint from T*. Let λ = λ{s) (0 ̂  s < 1) be

such a path. Without loss of generality we may assume \λ(s)\ >U(0)| for

all 0 < s< 1. For some ft, r A ^ U(0)| < rt+1. The only route to the bound-

ary open to λ that does not meet T* is the interior of Wm

n if λ{0)&Wm

n for

some pair (n9wι), or else ^ must cut every arc an for n>k. This latter

alternative again restricts the asymptotic value attained by f(z) along λ to
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lim 9ί{z) since h(z) is constant on an and h(z) tends to this limit on an as

\z\->R

n —> o o .

Thus we are left with the possibility that λ(s)eWm

n for all s where the

pair (n9m) is fixed, λ must cut Jm

n{q) for all integers q>k. There exists

a q0 such that for all q > qQ, Jm

n{q) is a part (i.e., a subset) of the skeleton

S. In particular λ must cut /m

w(g) for all #>max(&, #0).

Let «i = lim 0J2) (f = l,2). f(Jmn(q)) is a sequence of ''circles'5 (i.e.,
|2τ|—>JR

approximations to circles) and can be written as C^UC2

2 where C1^ and C2

q

are two "semicircles" joining f(pm

n(q,l)) and f{pm

n{q,2)). f(λ(s)) must cut

every arc in the sequence {Cy and every arc in the sequence {C2

q} for

q>max{k,qQ). Thus, if /U(s)) converges to a limit as s->l, it must con-

verge to a common limit point for both the sequences {Cq1} and {Cq

2}.

Therefore lim/U(s))c {aua2} aΓT(En) ( f tJcΓW/).
s->l

It is appropriate to consider at this point the subset S1 of S formed by
oo oo

{U «n}U(SΠU tTn}. Since the values of h on S1 Π-̂ 4̂  are restricted to the
«=1 n=0

values assumed by h{z) = g1{z) on tT(.ΠΛn and since lim 9i{z) = G(τ0), it follows

that any asymptotic path that meets S1 in each annulus An must have

G(τo) as asymptotic value. This leads to the following characterization of

the maverick asymptotic paths λ= λ{s) (0^s<l) along which the behavior

of f{z) cannot be guaranteed.

1.) λaWm for some m

2.) λΓ)TmΠAn^<ί for all n

3.) λ(s)Πt = 0 for all s > s{t) and for each te^Tm.

Later we will consider what might be done to control the behavior of f(z)

on these paths.

The Construction of f(z)

The following construction is a variation on an approximation technique

used by Bagemihl and Seidel [1, pp. 188-189]. Another method that could

be used is due to Barth [2, pp. 326-327].

Let Fn = Drn\JSn+1 n = 0,1,2, . Notice that ^Fn has l + 2_|f

components. We proceed by induction on n.
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Put φo(z) = ψo{z) = 0 for zeΞDro. φo{z) = &h{z); φo{z) = J^h{z) for

The function <pQ(z) + iWo(z) is continuous on Fo and analytic at all interior

points. By Mergelyan's theorem [13, p. 109, Theorem 13.3] there exists a

rational function (a polynomial in fact) ro(z) such that

\ro(z) - ίψo(z) + iφo(z)1\ ^ 1, Z(ΞFQ

Suppose n > 0 and we have defined <pn-\(z) and ψn-i(z) on F n -i and

rational functions ro(z), ,rn-i(2) so that these rational functions have no

poles on S,

and \ro(z) + rλ{z) + + rn-x{z) — h{z)\ <ll2n-\

Using this last inequality and Tietze's theorem [7, pp. 127-128], there

exist real-valued functions ξn(z) and ηn(z), continuous in | z | < 7 ? such that

y=o

(1) ξn(z) = &h(z), ηn{z) =

(2) \ξn{z)—&h{z)\ r^l/271""1, \ηn(z)—^h{z)\ < 1/271"1, z e S , r n < | s | < r n + i .

Set (0,(2;) = ^ ]

(3) ?>,(«) = £„(«), 0.(«) = i?»(«), ^ f » n ( ΰ r , ( 1 - ! > , . ) .

«-l

The function A(z) = ^Λ(«) + /0n(») — Σ ^(«) is continuous on Fn and

analytic at all interior points of Fn. Again by Mergelyan's theorem there

exists a rational function rn{z) which has no poles on S and

(4) \A(z)-rn(z)\<Lll2»9 z^Fn.

This completes the induction.

Let f(z) = Έφ) for \z\<R. If z^Dr ,
y=o

(5) Ir Λ + J . ( s) |^ l/2* + i ( = 0,1,2,. . ) .

Since rn+j(z) {j- 0,1,2, ) is holomorphic in the interior of DTn, this implies

oo

Σ3 rn+Az) 1S holomorphic in the interior of Drn, and therefore f(z) is mero-

morphic in the interior of DTn, Every point of \z\ <R is in the interior

of Drn for some n. Hence f(z) is meromorphic in \z\ < R.
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To show that max \f{z) — h{z)\ ->0 uniformly as \z\->R, consider any
ZEίS

oo

= U Sn. z^Sn+1 for some n = 0,1, which implies that z^Fn for

this value of n. Then, by the definition of f{z), we have

\&f{z) - &h(z)\ < v Λ + δΛ + Pn

where

vn= I ίl &r,{z) - φΛ(z)\

= Σ
j=n+l

It follows from (4) that ^ ^ 1 / 2 " . Applying (1), (2), and (3), we see that

dn^lj2n-\ Finally, (5) yields

Σ
i=n+l

Thus we have \&f(z) - &h{z)\ ^ Σ 1/2J" for zεS f t +i. As \z\-*R, zt=S,
j=n-l

this implies n-+oo and so 1^/(2) — &h{z)\ ->0 as U|->i?, zeS. An
analagous argument for \^f(z) — ̂ Jrh{z)\ yields the desired conclusion that

max \f(z) — h(z)\ ->0 uniformly as \z\-+R.
z(ΞS

The set {G{τ)\τ^E}

It is well known that the set of asymptotic values of a meromorphic

function is characterized as an analytic set [5,6,9]. The set {G(τ)|τe£} can

be characterized in the same way.

m

LEMMA 1. Let T= {tτ\τ<=E} be a modified tress. If 2G U T r {0}, then
m

the unique τ— τU)e U E3 such that zetτ, is a continuous function of z on the set

U Tj-10] (m=l,2,. •).
m

Proof Assume, to the contrary, that τ{z) is discontinuous at z0^ U T3—{0}

for some m ( l ^ m < o o ) . Then for some ε >0, there exists a sequence of
m

points {zn}a u Ts — {0} such that limzn = z0 and \τ{zn) — τ(zo)\ >ε for all
yi
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n = 1,2, . Without loss of generality we may assume argr(zj is mono-

tonically increasing with respect to n and argτ(zj < argτ(zo) Since τ(z je U E5

m

and since each E5 is closed for each (1 < ^ JV*), this implies limr 0 O e U £,.

Let τ0 = limrUJ. Our assumption implies |τ0 — τ{zo)\ ̂ ε . ίr0UίΓ(zi) divides

U| < i? into two components. Since the correspondence τ<~>ί r nC r (rG^)

preserves cyclic order for every r (0< r < R), one of these components con-
oo

tains ίT(zo), while U tτ{Zn) — {0} is contained in the other components. In

particular, all of the points zn are excluded from the component that con-

tains zo, contrary to the assumption that lim zn = z0. Hence τ{z) must be
fi—> oo

m
continuous on U Tj — {0} for all m {l^m< oo).

i 1

Remark 2. Bagemihl and Seidel [1, p. 195, Definition 2] call any tress

with the continuity property mentioned in the above lemma a restricted

tress. The above proof also proves that every tress [1, p. 186, Definition 1]

is a restricted tress. Hence the term restricted can be removed from the

statements of their theorems 7 [1, p. 196] and 9 [1, p. 198],

THEOREM 2. Let T = {tτ\t<=E} be a modified tress in \z\<R. Suppose

that a{τ) and β{τ) are real-valued functions (which may assume the value ± oo) of

τ^E. Then a necessary and sufficient condition that there exist a T-function f{z),

meromorphic in \z\<R, such thatΓT(E)(f)={a{τ)+iβ(τ)\τ^E)9 lim f(z) = a(τ)+iβ(τ)9
\9\->R
Z(=tτ

and f is restricted on asymptotic paths disjoint from T is that a(τ). and β{τ) be of

Baire class ^ 1 on E.

Proof First note that if such a function exists, there exists a sequence

0 < Pi < p2 < < pn < < R with lim ρn= R such that f(z) has no

poles on CPn. The proof is then the same as the one used by Bagemihl

and Seidel [1, p. 196, proof of Theorem 7] using Theorem 1 above instead

of their Corollary 1.

THEOREM 3. Let T= {tτ\τ^E} be a modified tress in \z\<R, where E is

of power 2^». A necessary and sufficient condition that a non-empty set A in the ex-

tended complex plane be equal to ΓT(E)(f) for some T-function f{z) meromorphic in

\z\<R and restricted on asymptotic paths disjoint from T is that A be an analytic

set.
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Proof. This proof is essentially the same as [1, p. 198, proof of Theo-

rem 9]. Given / and A = ΓT(E)(f)> Theorem 2 states that A is egual to

{α(τ) + iβ{τ)\τ^E] where a and β are of Baire class ^ 1 . Since E is a Borel

set, A is analytic [4, p. 301].

On the other hand, any non-empty analytic set A is the image of E

under a mapping of Baire class :< 1 [7, p. 480, Theorem 1]. The real and

imaginary parts of this function are then real-valued functions (which may

assume the values + oo) of Baire class ^ 1 on E [7, p. 376, Theorem 2. If

we let a(τ) and β(τ) represent the real and imaginary parts respectively of

this function, Theorem 2 then produces the desired T-function.

Some Applications

MacLane has provided an example of a meromorphic function in |^|<oo

without asymptotic values [8, pp. 180-181, Theorem 3] and an example of

a function meromorphic in \z\ < 1 without asymptotic values [8, p. 183,

Theorem 5]. Thus, in the corollaries that follow, the statements will be

made in terms of an arbitrary analytic set A with the case for A=Q already

resolved.

COROLLARY 1. Given any analytic set A in the extended complex plane and

any closed nowhere dense subset E of \z\ = 1 such that E has power 2**°, there exists

a function f(z) meromorphic in \z\< R such that A is the set of radial (ray if

jR = oo) limits (abbreviated ΓR{f)) for f(z) and the set of radial limits generated by

f on radii terminating at points of E is A. (For a characterization, see [1], p .

198, Theorem 10).

Proof For z = eίθ^E, define f, = re" (0<r<R). Then T= {tg\ze=E}

is a modified tress with N* = 1 and E = £\. Theorem 3 now gives the

desired conclusion.

DEFINITION 2. For any non-negative, monotonically increasing, real-

valued function σ(r) (0^r< R< + oo) such that limσ(r) = + oo, define

St= {z= reίθ\θ= τ + σ(r), 0^r<R} for each τ(0^τ<2π). Let

is then a class of spirals which are mutually disjoint except for

the origin which is common to all of them. Furthermore, every point of

\z\<R afferent from 0 is on one and only one spiral in £f{σ). Let
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{f) be the set of asymptotic values attained by f(z) along paths in

C O R O L L A R Y 2. Given any analytic set A in the extended complex plane, any

closed nowhere dense subset E of \τ\ = 1 such that E has power 2&° and any class

of spirals J^{σ), there exists a function f{z) meromorpkic in \z\ < R such that

{)f) and A= {lim f(z)
\z\->R
z(=Sτ

Proof For τ ε £ , define tτ = Sτ. Then T = {tτ\τ(=E} is a modified

tress with TV* = 1 and E = Ei. The conclusion follows as an application of

Theorem 3.

The Further Restriction of the Asymptotic Behavior of /

As previously mentioned the only asymptotic paths that might escape

the restriction of their asymptotic values are those paths Λ = λ(s) ( 0 ^ s < l )

satisfying:

1.) λaWm for some m

2.) λf]TmΠAn^0 for all n

3.) λ(s)f)t = 0 for all 5 > s{t) and for each t<=Tm.

It is natural to ask whether additional conditions can be imposed that

allow the construction of a meromorphic function in D whose asymptotic

behavior is prescribed along any modified tress T(E) and restricted to ΓT(E)(f)

along all other asymptotic paths. The answer to this question depends on

how much control can be imposed on boundary paths of the type described

above.

Given a modified tress T= {tτ\τ(=E} in \z\ < R and a boundary path

λ in \z\<R satisfying 1.), 2.), and 3.) above, there exist boundary paths

tί9t2, in Tro such that t^ψ fj for i ψ j and tnΓ\λf)Ani=U for each n.

Let zn^tnr\λ0An and let τn = τ(zJ (i.e., tn= tτ

n). Without loss of gene-

rality, we may assume the sequence {τn} has a single limit point and let

r° = limτft. Since Em is closed and τn^Em for all n, τ°e£TO.
«->oo

Now suppose that λ is an asymptotic path for some f(z). The asym-

ptotic value assumed by / along λ must be lim/(zΛ). Thus, control of the
n—»oo

values which can be assumed along sequences of this kind yields control of

all possible asymptotic values which can be assumed along λ. Since the zn

are elements of tn9 and since we have some control of / on ίΛ with the
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construction used in the proof of Theorem 1, our problem can be resolved

by increasing the degree of this control along Tm. More precisely, if

lim f(zj = G(τ°) we would have the control we need.

In general we need this additional control on all such possible sequences.

To this end, for any sequence 0 < rί < r2

f < < rj < < R, define

/ r;(τ) = /UrΓίCr;) for each τG£ m . If fr,n tends to G uniformly on Em, then

G is continuous on Em since all the fr,n are continuous. This guarantees

that lim/CO = G(τ°) as we desire. Conversely, if G(τ) is any continuous

function on Em assuming values in the extended complex plane Ω, gm{z) can

be defined on Tm so that for gm

n(τ) = gm(tτf)Cr,n), &glM and J^gl{τ) are

continuous, monotonically nondecreasing, real-valued functions for every

sequence {rn

r} and lim gm{z) = G(τ) for r ε £ r It follows from Dini's Theo-
\z\-+R
zetv

rem that gm

n(τ) -> G(τ) uniformly on Em. Since f(z) is constructed in Theo-

rem 1 to approximate gm{z) uniformly on Tm9 fr,n must also tend to G

uniformly on Em and again lim f(zn) = G(τ°).
n—>oo

We have thus proven
N*

THEOREM 4. LetT = {tτ\τ^E} be a modified tress in \z\ < R where E= U En

as required by Definition 1. Let Gn(τ) be any continuous function defined on En

{l^n^L N*) taking values in Ω. Then there exists a function f(z) meromorphic in

\z\<R with Γ(f) = Γτw{f) = U Gn(En).
n=l

THEOREM 5. Let A be any Fa subset of Ω. Let T= {tτ\τ<=E} be any
CO

modified tress where E = U En and En is homeomorphic to the Cantor ternary set.

Then there exists a meromorphic function f(z) in \z\< R such thatΓ{f)=ΓT(E)(f) = A .

Proof Any closed subset Fn of Ω is the continuous image of En [11,
oo

p. 146, Theorem 78]. Hence any Fσ in Ω can be represented as U Gn (EJ
n—l

for Gn continuous on En. The conclusion follows from Theorem 4 setting

A= ΐ)Gn(En).n=l

Further Applications

Let En be a homeomorphic image of the Cantor ternary set in the

open arc on | τ | = 1 which is in the upper half plane and is bounded by

e n and en+ι (w= 1,2, •). Let E = U En. Using Theorem 5 and the
n l
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modified tresses defined in the proofs of Corollaries 1 and 2 with respect to
oo

this E = U En, we can now add:

COROLLARY 3. Given any Fσ subset A of Ω, there exists a function f(z)

meromorpkic in \z\ < R suck that Γ(f) = ΓR(f) — ΓT{E){f) — A.

COROLLARY 4. Given any Fσ subset A of Ω and any class of spirals

(cf Definition 2), there exists a function f{z) meromorphic in \z\<R such that

Γ{f) = Γ&w(f) = {lim f(z)\τ€=E} = A.
z<=Sτ

COROLLARY 5. Given any Fσ subset A of Ω, there exists a function f{z)

meromorphic in \z\ < R {R< + oo) such that Γ(f) — A and each value of A is an

arc asymptotic value for an arc which is a proper subset of the whole boundary

\z\ = R.

Proof Let E* = E — U Ek where Ek contains a value τ with arg

τ>llR. For every τ = eiφ&E*, define tτ to be the set z=reiθ where

0= s i n — ^ — + φ{R-r){0*£r<R). The set T = {tτ\τ€ΞE*} is a modified
K — r

tress in | ;z |< J?, and all mό-paths of T have the arc {z = Reίa\ —l^a^l]

as end. The desired result follows from Theorem 5.

COROLLARY 6. Given any Fσ subset A of Ω9 there exists a function f{z)

meromorphic in \z\ < R (R< + °°) such that Γ{f) — A and each value of A is a

point asymptotic value at the point z = R.

oo

Proof Let E* — U En. For τ — eiφ^E, define tτ to be the union of

the line segments from 0 to - ~ e** and from -i- e** to R. The set T =

{tτ\τ&E*} is a modified tress and tτ is an rnb-p&th tending to R as \z\->R.

Theorem 5 again produces the desired result.

Finally, an Fσ subset of Ω is the most general kind of set we can

expect from the construction presented in this paper if we desire / to be

restricted on all asymptotic paths. This follows because the set Γ(f) must

be the union of continuous images of the sets En. Since each one of these

En is compact, its continuous image will be closed in Ω and so the union

of these images must be an Fσ.
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