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0. In this note we consider a finite group G which satisfies the fol-

lowing conditions:

(0. 1) G is a doubly transitive permutation group on a set Ω of m + 1

letters, where m is an odd integer ^ 3 ,

(0. 2) if ϋΓ is a subgroup of G and contains all the elements of G which

fix two different letters α, β, then H contains unique permutation h0 ψ 1

which fixes at least three letters,

(0. 3) every involution of G fixes at least three letters,

(0. 4) G is not isomorphic to one of the groups of Ree type.

Here we mean by groups of Ree type the groups which satisfy the

conditions of H. Ward [13] and the minimal Ree group of order (3 — 1)33

(33 + 1).

We shall prove the following theorem.

THEOREM. The simple group £/3(5) is the only group with the properties

(0,1) ~ (0,4).

(Remark: A theorem of R. Ree [8] seems to be incomplete).

The theorem is proved in a usual argument. Final identification of

ί/3(5) is completed by a theorem of rank 3-groups due to D.G. Higman.

Our notation is standard and will be explained when first introduced.

1. Before proving our theorem, we quote here various results proved

by R. Ree [8].
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Let G be a finite group with the properties (0,1), (0,2) and (0,3), and

B the subgroup of G which contains all the elements that leave a fixed

letter a invariant. Choose an involution w oϊ G — B and set H= B Π Bw

and aw = β. Then (0,2) and (0,3) imply that h0 is a unique involution of

H. Set HQ = (hQy. Then the following results hold.

(1. A) Hw = w~1Hw = H, who=how, \G\ = m(m + 1)\H\.

(1. B) All the involutions of G are contained in a single conjugate

class (Prop. 1. 9 [8]).

(1. C) B contains normal subgroup U of order m which acts regularly

on Ω- {a} (1. 13 [8]).

(1. D) G admits a decomposition

G = UH\J UHwU, UH Π UHwU = φ.

Every element of UH is written uniquely in the form uh where u&U, h^H.

Every element of UHwU is written uniquely in the form uxhwu^ where

ul9 u2<=U, h(ΞH (Prop. 1. 15 [8]).

(1. E) For every prime p, the Sylow p-subgroups of H are cyclic

(Prop. 1. 25 [8]).

(1. F) C{ho)IHQ is a Zassenhaus group of order q(q + 1) ' ^ ' , where q

is the order of Cπ(h0) (Prop. 1. 26 [8]).

(1. G) Denote by n the number of involutions in the subset Hw. Then

the following equality holds (Prop. 1. 27 [8])

m = {qn + n + ί)q.

2. Let G be a group satisfying the conditions (0. 1) — (0. 4). In this

section we shall determine the structure of C(h0).

If the index [H: Ho] is odd, then G is isomorphic to one of the groups

of Ree type as R. Ree has proved. Therefore in the rest of this note we

assume that [H: HQ] is even. First we quote two theorems due to Schur [9].

THEOREM (2. A). Let q be a power of an odd prime, and Y a subgroup of

order 2 contained in the center of a group X. If XjY is isomorphic to PSL(2, q),

then X is isomorphic to SL{2, q) or a direct product of Y with a group isomorphic

to PSL{2,q).
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THEOREM (2,2?). Let q be a power of an odd prime and Y a subgroup of

order 2 contained in the center of X. If XjY is isomorphic to PGL{2, q) and if X

contains, at least two involutions, then X is the direct product of Y with PGL{2,q)

or isomorphic to the subgroup ®q = (SL(29q), U> of GL(2,q2), where U =

u is an element of order 2 r + 1 in the multiplicative group of GF(q2) and g — l = 2 r s,

s an odd integer. [Remark: ®q is ®'q in the notation of ([9], p. 122).

Since we have assumed that the index [H: Ho] is even, C(ho)/Ho is iso -

morphic to PSL(2,q), PGL(2,q) or Mq by a theorem of H. Zassenhaus [14].

Since C{h0) contains at least two involutions h0, w and the Schur multiplier

of Mq is trivial, we have C(ho)=Z2xPSL(2,q) or Z2xMq, if C{ho)IHQ=PSL(2,q)

or Mq. Here Z* is a cyclic group of order i. Therefore H= Z2xZq~^ or
2

Z 2 xF 9 -! where Yq^1 is a group of order q — 1. This contradicts with the

fact that a Sylow 2-subgroup H is cyclic (note that q == 1 (mod 4) for the

former case). The case C(h0)IH0=PGL(2,q) with #==—1 (mod 4) is eliminated

by R. Ree ([8] p. 803). Therefore we must have C{ho)jHo = PGL(2,q) and

# = i (mod 4). We easily see that C(h0) is not isomorphic to Z2xPGL{2,q).

Therefore C(h0) is isomorphic to the group $ g which is described in Theo-

rem (2. B). Clearly we have |C(AO)I = 2(q—l)q(q + 1).
We shall study the structure of ®q nd describe below. Since these

(0 - 1 \ Iv 0'
facts are proved easily we state without proof. Put W = , V =

\1 0/\1 0/ \0 v
where v is an element of order q — 1 in the multiplicative group of GF(q2).

(2. A) A Sylow 2-subgroup @ of ®q is a semi-dihedral group of order

@ = (jj9 w I W~ιUW = U"1 U* >.

(2. B) ®q contains a cyclic subgroup § of order 2(q — 1).

(2. C) § is a normal subgroup of index 2 of N^ (ξ>) = <ξ>, W>.

(2. D) The subset $W contains q — 1 involutions (note that (U V)w =

(ί/ K)-9}.

(2. E) If / is a non central involution of ®q and X is an element of

order x9 where x\q + l, then
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3. Now we back to our group G. On account of (2. D), we easily

see that Hw contains q — 1 involutions. Using (1. G), we can conclude that

m = q3 and \G\ = 2(q — I)q3(q3 + 1). Next we shall apply the theory of mo-

dular characters developed by R. Brauer [1] where he has given a detailed

discussion on groups with semi-dihedral Sylow 2-subgroups and on groups

with a special type of abelian Sylow p-subgroups. We summarize here his

results.

(3. A) Let Gi be a finite group with a semi-dihedral Sylow 2-subgroup

Sx of order 2n; S, = <τ, σ\τ2 = a2"1'1 = 1, στ = (Γ1 /, / = α2*'2). Furthermore

let us assume that there does not exists a normal subgroup of index 2.

Then the principal 2-block JS0(2) of G! consists of 4 + 2n~2 characters Xμ, Xω

with Q^μ^A, and / = ± 1, 2, ± 3, 4, ± (2n~2 - 1). Xμ ( 0 ^ ^ ^ 3 ) are

all characters of odd degrees in B0{2). lΐ ξ = J > p has the 2-factor /, then

(3. 1) Xtf) = -δt + διφί(p)f X2(ξ) =δz- δzφϋp), Xt(ξ) = - δ3.

Here δl9 δ2, δz are signs and ± φ{ is a suitable irreducible character of the

principal 2-block of CGl(/)/</>; #(1) = 2 + 271"3 (mod 271-1). If P is 2-regular,

all Xω(p) are equal. In particular, all have the same degree. Furthermore,

(3. 2) 1 + δM) = a ^ d ) = -^2X2(1) - διXι(X)9 1 + ^2X2(1) =

If we set / =^((1) - 1, then

(3. 3) / s l + 2W-2 (mod 271-1)

and by (3. 1) we have

(3.4) *i(/) = V , X*(J) = ~δ%l9 Xz(J) = -δz.

Furthermore we have

(3. 5) X 2 ( 1 ) Ξ = - / (mod 2W),

(3. 6) δβzδz = 1 05^2 = l2x3.

(3. B) Let Gi be a group with a Sylow p-subgroup P such that the

following conditions are satisfied;

(3. a) P is abelian: Pψl9



SIMPLE GROUP U3(5) 31

(3. b) N{P)IC{P) is cyclic of order m,

(3. c) If ξ e N(P) — C(P), then ζ does not commute with any element

πψl of P.

Then the principal block B0{φ) consists of r = ' ' """— 'Exceptional"

characters Yω and s^m "non exceptional" characters Yo = 19Y19 , Yg-.x

such that for p-singular elements ξ with the p-factor π e P, we have

Here aQ, , as^1 are non-zero rational integers. Moreover there exist in-

tegers d, δ = ± 1 such that

{d - δ)2 + {r- l)d2 + ' Σ a\ = m + 1.
i = 0

For p-regular p, all Yυ'\p) take the same value and

{rd - ^)7(iV) + *Σ «i^(/°) = 0.

(3. B') If m = 2 in (3. B) we may assume d - 0. Then 5 = 2, α< = δ,

Yω(l) = ^(1) = δ.

4. To apply (3 A) to our group G, we must show that G has no

normal subgroup of index 2. By way of contradiction, let us assume that

N is a normal subgroup of index 2 of G. Then NdC(h0) is a normal

subgroup of C(h0) of index 2. Therefore N Π C(A0) is isomorphic to SL{2,q).

This implies that a Sylow 2-subgroup of N is a generalized quaternion

group. By the double transitivity of G and the assumption \Ω\ = even, we

see that N has no normal subgroup of odd order. Therefore a theorem of

R. Brauer and M. Suzuki [2] shows that Ho is the center of N, hence the

center of G. This is clearly impossible.

We shall prove some lemmas. Let us assume Gx = G in (3. A).

LEMMA (4. 1). ^(1) = q\ X2(l) = q2 - q + 1, X,(l) = q(q2 - q + 1), Z4(l) =

q*-q9 Xa\l) = q* + l, ^ = 1, £2 = a, = - 1.

Proof. Since G is doubly transitive on Ω, there exists an irreducible

character Y of degree qz. As 7(1) is odd, Y belongs to a 2-block of

maximal defect. On the other hand we easily see that G contains no 2-

regular element ^ 1 of maximal 2-defect. Therefore Y e B0{G). As
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Y{J) = Q, we have Y=X1 or X2 and / = ± q by (3. 4). Since q=l (mod 2π"2)

and / Ξ l + 2n"2 (mod 271"1), we have / = q. On account of (3. 5), we can

conclude Y ^ X2. Therefore Y = X1 and δt = 1. On account of (3. 2), (3. 6)

we easily have our lemma.

LEMMA (4. 2). Let p be an odd prime dividing q + 1 and P a Sylow p-subgroup

of C(h0), then P is cyclic and \N(P)IC(P)\ = 2.

Proof. Comparing the structure of C{h0) we see that P is cyclic. Let

K be a Sylow 2-subgroup of C(P)f]C(hQ), then K=Z2xZ2 and C(K) c C(P)

by (2. E). Furthermore K is a Sylow 2-subgroup of C{P). By Frattini

argument, we have N(P) = (N(P) Π N(K)) C{P). Hence

^ JL_ w h L = N(P)ΠN(K)
- M W Π e Γ e ^ C(/C)J

c(P)ΠN(K) - M
Λ f _ C(P)ΠN(K)

C(K)

This implies N{P)IC{P) is isomorphic to a factor group of a subgroup of

the symmetric group of degree 3. Since N{P)/C(P) must be cyclic, we can

conclude \N{P)IC{P)\ =2 (note that \N{P)/C{P)\ is divisible by 2).

LEMMA (4.3). q + 1 = 2 3δ, b^l. If P is a Sylow 3-group of G, then

[N(P) : C(P)] > 2.

Proof By way of contradiction, let p be a prime =̂  2, 3 dividing q + 1.

Then, since {q + 1, q2 — q + 1) = 1 or 3, Sylow ^-subgroup of G is cyclic and

\N{P)/C{P)\ = 2 by Lemma (4. 2). We can apply the previously described

theorem (3. B7) of R. Brauer. We get a generalized character

φ = l - 3Yω + δY

which vanishes on every p-regular element. Since ]P\>3 and G does not

have two characters of same odd degree, we conclude Y{1) is odd. Since

4 2 - # + l==3, q{q2-q+l) = -3 (mod IP]). We .have Y = Xx. Since

<73ΞΞΞ — l (mod I P I ) , we have δ=—l and Yω{ΐ) = q* — 1. O n the other

hand we easily see q% — 1\\G\ = 2{q — l)qz{q* + 1). This is a contradiction.

As <7>1, the former part of the lemma follows. Since 3\q+l, we have

{q + 1, q2 — q + 1) = 3. Therefore a Sylow 3-subgroup P of G is of order

3 δ + 1 and P is abelian by (4. 2). Suppose {N{P) : C{P)] = 2. Then, if

Z{N{P))f]P= 1, the condition (3. c) of (3. B) is satisfied. We can apply same
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argument as above and easily get a contradiction. If Z(N(P))ΠP>1, then

G contains a normal subgroup N of index 3. By Frattini argument we

easily get a contradiction, for a Sylow 2-subgroup of G is self-normalizing.

LEMMA (4. 4). q + 1 = 2 3 = 6, i.e. 6 = 1.

Proof. By way of contradiction let us assume b > 1. Then a Sylow

3-subgroup P of G is of order 3δ + 1. By Lemma (4. 2), P is abelian. If P

is cyclic, then we easily conclude that [N{P) : C{P)~\ = 2. This is impossible

by the previous lemma. Therefore P = Z 3 6 x Z 3 . As b > 1, P has a charact-

eristic series

P>P1>P2 > P & + 1 = {1},

such that [P< : P<+1] = 3. This forces N{P)IC{P) to be a 2-group. Let T be

a Sylow 2-subgroup of N{P). Then T operates on ΩX{P) = ϋb~1{P)xQ9

where Ωλ{P) is the group generated by all elements of order p in P and

^ δ - 1 (P) is the group generated by all xvb~\ x e P. Since T operates com-

plete reducibly on ΩX{P) we may assume Q is invariant by T. By a well

known theorem of Burnside two elements of P are conjugate in G if and

only if they are conjugate in N{P). So any element of Q - {1} is not

conjugate to an element of ^ δ" 1(P). This implies that an element of Q—{1}

is not conjugate to any element of C(h0). In particular T operates on Q

as a fixed point free automorphism of Q, for C(h0) contains one conjugate

class of elements of order 3. This forces \T\ = 2 . This is impossible. We

have thus proved that q = 5 and G = 24 32 53 7.

5. In sections 1 ~ 4, we have proved that G satisfies the following

properties

(5. a) G is a doubly transitive permutation group of degree 126 = 5 3 +l.

(5. b) B has a regular normal subgroup U.

(5. c) B/U is a cyclic subgroup of order 8.

In his paper [11], M. Suzuki has characterized the projective (full)

unitary group of dimension 3 over a field of q2 elements. In particular

he has characterized PG£/(3,52) but not PS77(3,52) = U3{5). It is hoped to

characterize PSU(3,q2) by the property of the centralizer of its involution

or by the property of its doubly transitive permutation representation. In

this note, however, it is sufficient to characterize £/3(5) only. So we shall
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apply a theorem of rank 3-groups due to D.G. Higman [5]. Our procedure

is as follows. First we shall construct a subgroup H of G which is isomor-

phic to A7: the alternating group of degree seven. Let np be a number

of Sylow p-subgroup of G where p = 3, 5, 7. We compute np. Clearly

n5 = 126. Since a Sylow 5-subgroup of G satisfies the TZ-property, a 5-

element does not commute with any p-element, p = 3,7. Since a 2-element

does not commute with any 7-element, n7 is divisible by 23 53 which is

equal to —1 modulo 7. By Sylow's theorem we conclude n7 = 24 3 53. This

implies that the normalizer N{S7) of a Sylow 7-subgroup S7 of G is of order

3 7. Since, as we easily see, G does not contains a normal subgroup of

index 7, N{S7) is a Frobenius group. Since a Sylow 3-group S3 of G is

not cyclic, S3 is an elementary abelian group of order 9. Comparing the

structure of GL{2,3), we conclude that n3 is divisible by 53 7 which is equal

to —1 modulo 3. Hence n3 = 2 53 7 or 23 53 7. Suppose n3 = 23 53 7.

Then N{S3) is a Frobenius group of order 2 32. This contradicts Lemma

(4. 2). Hence [iV(S3) : S8] = 8. We next show that the elements of order 3

of G form a single conjugate class. To show this it is sufficient to see that

every element of order 3 is conjugate to an element of C(hQ). Indeed, if

π e Ss is not commutative with any 2-element ^ 1 of N{SS), then π has 8

conjugate element in iV(S3). This implies that all elements of order 3 of G

are contained in a single conjugate class. Thus we have done. We con-

sider the group C(πχ) where πx is an element of order 3. Clearly C{πx) is

a 2,3-group. Comparing the structure of C(h0), we get ICfo)! = 2 2 32 and

a Sylow 2-subgroup of Cfo) is a four-group. An easy argument shows that

C(πx) is 3-closed or 2-closed. If the former case occurs, then a Sylow 2-

subgroup S of N{S3) is a dihedral group and the center a of S is commuta-

tive with at least one element ψ 1 of S3. By complete reducibility σ is

commutative with every element of S8. This is impossible, since \C{ho)\

can not be divisible by 9. Therefore C(πχ) is 2-closed. And we get C(πι) =

(π^xA where A is isomorphic to the alternating group of degree 4. Since

π1 is a real element, we have \N{<jcd) : Cfo)] = 2. Let τ be a 2-element in

-̂ V«π1» — C{πχ) then by complete reducibity of C{π^j{A9 A] we may assume

A is invariant by τ. Since G does not contains a non cyclic abelian sub-

group of order 8, τ induces an outer automorphism of A. This implies

<τ> A = SA. Therefore we can choose three elements π3, π4, π5 e <r> A — A,

such that
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*rf = πl = πl = 1, (π3π4)
3 = (π4τr5)

3 = 1, (π3π5)
2 = 1.

These elements are the canonical generators of <τ> A = S4 in the sense of

Dickson [3]. Next consider iV«7r47r5» = «τr47r5>xZ?) <π4> where C(τr4π5) = <τr4π5>

xi? and 5 <7Γ4> = S4. And choose an involution π2 of B commutative with

π4 π2 is uniquely determined. Furthermore (πl9π2y = AA. We shall show

that πl9 , π5 satisfy the relation of canonical generators of A7:

— π2 ~~ π3 ~~ ^4 "~~ TΓδ —

= ( τ r 2 π 3 ) 3 = ( τ τ 3 π 4 ) 3 = (7Γ47Γ5)
3 = 1 ,

= ( π 2 π 4 ) 2 = ( π 2 π 5 ) 2 = ( π 3 π 5 ) 2 = 1.

We must prove only one relation (π2π3)
3 = 1, for the other relations are

automatically satisfied from our choice of these elements. Since <π2,π3> c

C(π5) = $ 5 , then <ττ2,π3> is a dihedral group of order 12, 8, 4, or 6. Suppose

[^2^3] = h then since G contains no elementary abelian subgroup of order

8, we have ττ2π3 = π5. Hence π2 = π5π3 e C(^). This is impossible as (πl9π2y

= A4. Suppose |<π2,π3>I = 12 or 8. Take an involution π of the center of

<7r2,π3>. If πψπl9 then <τr2,π3> is contained in C(π5,π). This is impossible

by (2, E). Hence π = π5. This implies (7Γ27Γ3)
2 = π5 or (π2jr3)

3 = π5. Suppose

(π2τr3)
2 = JΓ5 then π2π3π2 = π5π3 e Cfe). Since C'^) is 2-closed and is invariant

by τr4 we get [2r8

W|, πj****] = 1. This implies [π3,πs

πi] = 1. Since π4π3π4 = π3π4π3,

we get π4 e C(π3) which is impossible. Suppose (ττ2π 3) 3 = π5 then π2

7Γs7r2GC(π1).

Therefore fe"8"2, π2

π37Γ27Γ4] = 1. Since [π2,π4] = 1, we get [π2

πs, πz****] = 1. Since

τr37r4 = π4π3π47r3 w e g e t [π2

π*9 πz"**1**] = \β29 π2

π^]πiπ^ = 1. T h i s i m p l i e s π2π3π2π3 =

πzπ2%iiί2. Hence (π2ττ3)
4 = 1. This case has already been ruled out. Thus

we have proved H = <π1? π2, , τr5> = A7.

H is a subgroup of index 50, as \G\ = 126000, \H\ = 2520. Therefore

G has a permutation representation R of degree 50. We next show that R

is a rank 3-representation and its subdegrees are 1, 7, 42. There are 14

conjugate classes in G. As this is easy to see, we just list the order of

their representatives;

1, 2, 4, 8, 8, 3, 6, 5, 5, 5, 5, 10, 7, 7.

We compute the degrees of irreducible characters of G. By Lemma (4. 1)

we have already known that there exist irreducible characters of degrees

1, 125, 21, 105, 20, 126, 126, 126. Since the normalizer of a Sylow 7-group

is a Frobenius group,,we can apply (3. B) and we get a following euqality
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l±d — (125) - (20) = 0

where d is the degree of an exceptional character. Hence d = 144. Thus

we have two irreducible characters of degree 144. Let Zi {i = 1, 2, 3, 4) be

an irreducible character except those previously stated. Then Zi(ί) must

be divisible by 2 7, for Zi is not contained in a block of #-defect 0, where

φ = 2 or 7. Put Z<(1) = Uzt. Then

126000 = 1 + 1252 + 212 + 1052 + 202 + 3 1262 + 2 1442 + 142 Σ z\.

Hence Σ z2 =48. Hence {z^l^i^A} = {2, 2, 2, 6}. Thus we have deter-

mined all the degrees of irreducible characters of G. And we can conclude

that the permutation representation R is of rank 3. Considering the sub-

group structure of Λ7 we easily see that the subdegrees are 1, 7, 42. There-

fore G is isomorphic to Z78(5) by a theorem of D.G. Higman [5].

6. In this section we consider the following problem: Is the condition

(0. 3) essential? Our answer is more or less negative. Indeed we can show

the following theorem.

THEOREM. Let G be a group satisfying the conditions

(0. 1) G is a doubly transitive permutation group on a set of m + 1 letters,

where m is an odd integer ; > 3 .

(0. 2') if H is a subgroup of G and contains all the elements of G which

fix two different letters a, β then H contains exactly one involution h0 and h0 is a

unique permutation of H which fixes at least three letters.

(0. 3') G does not contain a regular normal subgroup.

Then G is isomorphic to £/8(5) or one of the groups of Ree type.

Remark. (0. 2') is stronger than (0. 2), §0. However (0. 2) and (0. 3)

imply (0. 2').

Proof By way of contradiction we assume that there exists a group G

which satisfies the conditions (0. 1), (0. 2') and (0. 30 but is isomorphic to

neither £/3(5) nor one of the group of Ree type. In particular we assume

that G has at least two conjugate classes of involutions. We shall use the

same notation as in § 0 ~ § 5. Our proof proceeds in the following steps.

(6. A). The index [H: HQ] is an odd integer > 1.
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Suppose H = Ho. Then G is a doubly transitive permutation group of

order 2m{m + 1) and of degree m + 1. N. Ito [6] has studied the groups

with this property and has proved that PSL{2,5) and the minimal Ree group

are only such groups. Since PSL(2,5) does not satisfy (0. 2')> we get a

contradiction. Next suppose [H: Ho] is even. Then C(h0) is isomorphic to

the group ®q (see §2). Since the Sylow 2-subgroups of C(h0) are semidihed-

ral, a Sylow 2-subgroup of C{h0) is isomorphic to that of G. Since G does

not have a normal subgroup of index 2 (see §4), all the involutions of G

are contained in a single conjugate class. This is again a contradiction.

(6. B). Let n be the number of involutions of Hw which are conjugate

to h0 in G, then the following equality holds

m = q(qn + n + 1).

This is a slight modification of (1. G). The proof of this statement is

trivial if we refer the proof of (1. G) ([8], p. 801).

(6. C). The involutions of Hw are divided into two classes under con-

jugation by N(H) = (H, w}. Each class contains the same number of invo-

lutions. These two classes are also G-conjugate classes.

Since \_H: Ho] is odd, we may set

H ==
 HQ X Hi

where Hλ is a group of odd order. If hw is an involution, then whw=h~K

Therefore Hw contains nx involutions, where

nx = \M\9 M= {h e H\whw = h"1}.

Since Hi is odd, each coset hxCHi{
w) °f ft by CHl{w) contains exactly one

element which is inverted by w. Therefore

n1 = 2.\H1\l\CHι{w)\.

On the other hand w has \N{H)\j\CN{H){w)\ = 4 li^l/4- \CHi{w)\ = nj2 conju-

gate elements in a subset Hw. This implies (6. C).

By (6. C), we can conclude that G contains exactly two conjugate

classes of involutions, since a suitable conjugate element of every involution

of G is contained in N(H) — H— Hw.

(6. D). C(ho)IH does not contain a regular normal subgroup.
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R. Ree has proved ([8], p. 807) that if C{ho)IHo contains a regular nor-

mal subgroup, then

(6. 1) q + 1 = 2r, [H : Ho] = r. \C{ho)\ = r 2?+1(2r - 1), where r is an odd

prime. Furthermore he has proved that a set Hw contains exactly two

involutions how, w and if Hλ is a subgroup of order r of H then

(6. 2) iV(^) = Ctf/i) = HU Hw.

By the above results and (6. C), we conclude n = 1. Therefore

(6.3) m=(q + 2)q, \G\ = r 22r+1(22r - 1).

(6. 2) implies that iifj is Sylow r-subgroup and G has a normal r-comple-

ment N. For every prime p\22r — 1 there exists at least one Sylow ^/-sub-

group P oΐ N which is invariant by Hx. By (6. 2) again, we see that Hi

induces a fixed point free automorphism on P. Therefore 22r — 1 = 1 (mod

r). This forces r = 2. This is impossible. We have proved (6. D).

(6. E). C{ho) = Z2xPSL{2,q) with # + 1 = 0 (mod 4).

This is a direct consequence from a classification theorem of the Zas-

senhaus group due to H. Zassenhaus [14], W. Feit [4], N. Ito [6] and from

the fact that [H: Ho] is odd.

(6. F). U is an abelian group.

By (6. E), (H,w) = N(H) is a generalized dihedral group of order 2(#—1).

Therefore Hw contains q — l involutions. By (6. C) we have n = q — 1/2.

Therefore m — q{q2 + l)/2. Let p be an odd prime dividing q — l (note

that q~~ — = [iJ: £Γ0] > 1). Then a Sylow p-subgroup of # induces a fixed

point free automorphism on f/. Hence U is nilpotent [12]. Let R be a

subgroup of order q ]Γ— of t/. Then, since ffi? is a Frobenius group

and |ϋΓ| = g —1 we see that R contains no characteristic subgroups. This

implies that R is an elementary abelian r-group for some prime r. Since

a subgroup Q of order q of U is abelian, the statement (6. F) is proved.

Now we shall show the final contradiction. The following argument

is due to M. Suzuki ([11], pp. 6~7). If η is a linear character of U

satisfying τj(R) % 1, then η has exactly q—l conjugate characters* in B.

Hence the character ψ of B induced from η is irreducible. We have s

such characters, ψx φs where s = (q ^ "^ — q)jq —l=q* g + 1^ g
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has s exceptional characters Ex E9 associated with ψx <ps. The

characters Et satisfy the following properties: E^x) = Ej{x) for any element

which is not conjugate to an element of E/—{1}. And Ex Es are

the only characters of G which contains ψi and φs with different multipli-

cities for some i and j (Suzuki [10]).

B has a linear character ζ^l satisfying the property that the restric-

tion of ζ of H is invariant under w. Then the character induced from ζ

is not irreducible, but a sum of two irreducible characters X and Y. Sup-

pose that either X or Y is exceptional. Then 1* — ζ* is the sum of at most

four irreducible characters and contains all the exceptional characters (note

that the inner product <1* — ζ*9 Et — Ej}G = 0 and a character of degree m

can not be exceptional). Since s^6, this is impossible. If both restrictions

X\B and Y\B contain φi9 then the degrees of these two characters are not

smaller than (q — ί)q -^ T" . On the other hand, the sum of these deg-
Li

rees is equal to m + 1 = q ^ *"*" + 1. This is impossible as q^:3. Hence
Li

at least one of them, say X\B, does not contain ψi% This implies that the

kernel K of the representation with character X contains R.

By the double transitivity of G, \K\ is divisible by 1 + m. Therefore

G = H-U' K. Hence there exists a normal subgroup N^ψG, such that

JViD U. Let No be the minimal normal subgroup of G containing U. Then

\N0\ = md(m + l) where d is a divisor of q — 1. If d = 1, No contains a

regular normal subgroup of order m +1. This is not the case. Hence

d > 1. Then we apply the same argument as before to iV0 in place of G.

We conclude that No contains a normal subgroup Nλ =¥ Λ̂  satisfying

Since G = H-N0, No contains a normal subgroup Nz of G satisfying

This is against the minimal nature of iV0. Thus we have got a final con-

tradiction.
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