A CHARACTERIZATION OF THE SIMPLE GROUP $\boldsymbol{U}_{3}(5)$

KOICHIRO HARADA*

Dedicated to Professor Katuzi Ono

0. In this note we consider a finite group G which satisfies the following conditions:
(0.1) G is a doubly transitive permutation group on a set Ω of $m+1$ letters, where m is an odd integer ≥ 3,
(0.2) if H is a subgroup of G and contains all the elements of G which fix two different letters α, β, then H contains unique permutation $h_{0} \neq 1$ which fixes at least three letters,
(0.3) every involution of G fixes at least three letters,
(0.4) G is not isomorphic to one of the groups of Ree type.

Here we mean by groups of Ree type the groups which satisfy the conditions of H . Ward [13] and the minimal Ree group of order (3-1)3 ${ }^{3}$ $\left(3^{3}+1\right)$.

We shall prove the following theorem.
Theorem. The simple group $U_{3}(5)$ is the only group with the properties $(0,1) \sim(0,4)$.
(Remark: A theorem of R. Ree [8] seems to be incomplete).
The theorem is proved in a usual argument. Final identification of $U_{3}(5)$ is completed by a theorem of rank 3-groups due to D.G. Higman.

Our notation is standard and will be explained when first introduced.

1. Before proving our theorem, we quote here various results proved by R. Ree [8].
[^0]Let G be a finite group with the properties $(0,1),(0,2)$ and $(0,3)$, and B the subgroup of G which contains all the elements that leave a fixed letter α invariant. Choose an involution w of $G-B$ and set $H=B \cap B^{w}$ and $\alpha^{w}=\beta$. Then $(0,2)$ and $(0,3)$ imply that h_{0} is a unique involution of H. Set $H_{0}=\left\langle h_{0}\right\rangle$. Then the following results hold.
(1. A) $H^{w}=w^{-1} H w=H, \quad w h_{0}=h_{0} w,|G|=m(m+1)|H|$.
(1. B) All the involutions of G are contained in a single conjugate class (Prop. 1. 9 [8]).
(1. C) $\quad B$ contains normal subgroup U of order m which acts regularly on $\Omega-\{\alpha\}$ (1. 13 [8]).
(1. D) G admits a decomposition

$$
G=U H \cup U H w U, \quad U H \cap U H w U=\phi
$$

Every element of $U H$ is written uniquely in the form $u h$ where $u \in U, h \in H$. Every element of $U H w U$ is written uniquely in the form $u_{1} h w u_{2}$, where $u_{1}, u_{2} \in U, h \in H$ (Prop. 1. 15 [8]).
(1. E) For every prime p, the Sylow p-subgroups of H are cyclic (Prop. 1. 25 [8]).
(1. F) $C\left(h_{0}\right) / H_{0}$ is a Zassenhaus group of order $q(q+1) \frac{|H|}{2}$, where q is the order of $C_{U}\left(h_{0}\right)$ (Prop. 1. 26 [8]).
(1. G) Denote by n the number of involutions in the subset $H w$. Then the following equality holds (Prop. 1. 27 [8]);

$$
m=(q n+n+1) q .
$$

2. Let G be a group satisfying the conditions $(0.1) \sim(0.4)$. In this section we shall determine the structure of $C\left(h_{0}\right)$.

If the index $\left[H: H_{0}\right]$ is odd, then G is isomorphic to one of the groups of Ree type as R. Ree has proved. Therefore in the rest of this note we assume that $\left[H: H_{0}\right]$ is even. First we quote two theorems due to Schur [9].

Theorem (2. A). Let q be a power of an odd prime, and Y a subgroup of order 2 contained in the center of a group X. If X / Y is isomorphic to $\operatorname{PSL}(2, q)$, then X is isomorphic to $S L(2, q)$ or a direct product of Y with a group isomorphic to $\operatorname{PSL}(2, q)$.

Theorem (2, B). Let q be a power of an odd prime and Y a subgroup of order 2 contained in the center of X. If X / Y is isomorphic to $P G L(2, q)$ and if X contains.at least two involutions, then X is the direct product of Y with $\operatorname{PGL}(2, q)$ or isomorphic to the subgroup $\Re_{q}=\langle S L(2, q), U\rangle$ of $G L\left(2, q^{2}\right)$, where $U=\binom{u^{r^{2-1}+1} 0}{0 u^{2^{2-1}-1}}$, u is an element of order 2^{r+1} in the multiplicative group of $G F\left(q^{2}\right)$ and $q-1=2^{r} \cdot s$, s an odd integer. (Remark: \Re_{q} is Ω_{q}^{\prime} in the notation of ([9], p. 122).

Since we have assumed that the index $\left[H: H_{0}\right]$ is even, $C\left(h_{0}\right) / H_{0}$ is isomorphic to $\operatorname{PSL}(2, q), P G L(2, q)$ or M_{q} by a theorem of H. Zassenhaus [14]. Since $C\left(h_{0}\right)$ contains at least two involutions h_{0}, w and the Schur multiplier of M_{q} is trivial, we have $C\left(h_{0}\right) \cong Z_{2} \times P S L(2, q)$ or $Z_{2} \times M_{q}$, if $C\left(h_{0}\right) / H_{0} \cong P S L(2, q)$ or M_{q}. Here Z_{i} is a cyclic group of order i. Therefore $H \cong Z_{2} \times Z_{\frac{q-1}{2}}$ or $Z_{2} \times Y_{q-1}$ where Y_{q-1} is a group of order $q-1$. This contradicts with the fact that a Sylow 2 -subgroup H is cyclic (note that $q \equiv 1(\bmod 4)$ for the former case). The case $C\left(h_{0}\right) / H_{0} \cong P G L(2, q)$ with $q \equiv-1(\bmod 4)$ is eliminated by R. Ree ([8] p. 803). Therefore we must have $C\left(h_{0}\right) / H_{0} \cong P G L(2, q)$ and $q \equiv 1(\bmod 4)$. We easily see that $C\left(h_{0}\right)$ is not isomorphic to $Z_{2} \times P G L(2, q)$. Therefore $C\left(h_{0}\right)$ is isomorphic to the group \mathscr{R}_{q} which is described in Theorem (2. B). Clearly we have $\left|C\left(h_{0}\right)\right|=2(q-1) q(q+1)$.

We shall study the structure of \Re_{q} nd describe below. Since these facts are proved easily we state without proof. Put $W=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right), V=\left(\begin{array}{rr}v & 0 \\ 0 & v^{-1}\end{array}\right)$ where v is an element of order $q-1$ in the multiplicative group of $G F\left(q^{2}\right)$.
(2. A) A Sylow 2-subgroup \mathfrak{S} of \mathfrak{R}_{q} is a semi-dihedral group of order 2^{r+2}.

$$
\mathfrak{S}=\left\langle U, W \mid W^{-1} U W=U^{-1} \cdot U^{2^{\tau}}\right\rangle
$$

(2. B) $\mathfrak{\Omega}_{q}$ contains a cyclic subgroup \mathfrak{S} of order $2(q-1)$.

$$
\mathfrak{y}=\langle U \cdot V\rangle .
$$

(2. C) \mathfrak{F} is a normal subgroup of index 2 of $N_{\mathfrak{R}_{q}}(\mathfrak{F})=\langle\mathfrak{K}, W\rangle$.
(2. D) The subset $\mathfrak{W} W$ contains $q-1$ involutions (note that $(U \cdot V)^{W}=$ $\left.(U \cdot V)^{-q}\right)$.
(2. E) If I is a non central involution of \mathscr{R}_{q} and X is an element of order x, where $x \mid q+1$, then

$$
C_{\Re_{q}}(I) \cong C_{\Re_{q}}(X) \cong Z_{2} \times Z_{q+1}
$$

3. Now we back to our group G. On account of (2. D), we easily see that $H w$ contains $q-1$ involutions. Using (1.G), we can conclude that $m=q^{3}$ and $|G|=2(q-1) q^{3}\left(q^{3}+1\right)$. Next we shall apply the theory of modular characters developed by R. Brauer [1] where he has given a detailed discussion on groups with semi-dihedral Sylow 2 -subgroups and on groups with a special type of abelian Sylow p-subgroups. We summarize here his results.
(3. A) Let G_{1} be a finite group with a semi-dihedral Sylow 2-subgroup S_{1} of order $2^{n} ; S_{1}=\left\langle\tau, \sigma \mid \tau^{2}=\sigma^{2^{n-1}}=1, \sigma^{\tau}=\sigma^{-1} \cdot J, J=\sigma^{2^{n-2}}\right\rangle$. Furthermore let us assume that there does not exists a normal subgroup of index 2 . Then the principal 2-block $B_{0}(2)$ of G_{1} consists of $4+2^{n-2}$ characters $X_{\mu}, X^{(j)}$ with $0 \leq \mu \leq 4$, and $j= \pm 1,2, \pm 3,4, \cdots \pm\left(2^{n-2}-1\right) . \quad X_{\mu}(0 \leq \mu \leq 3)$ are all characters of odd degrees in $B_{0}(2)$. If $\xi=J \cdot \rho$ has the 2 -factor J, then

$$
\begin{equation*}
X_{1}(\xi)=-\delta_{1}+\delta_{1} \phi_{1}^{J}(\rho), \quad X_{2}(\xi)=\delta_{2}-\delta_{2} \phi_{1}^{J}(\rho), \quad X_{3}(\xi)=-\delta_{3} . \tag{3.1}
\end{equation*}
$$

Here $\delta_{1}, \delta_{2}, \delta_{3}$ are signs and $\pm \phi_{1}^{J}$ is a suitable irreducible character of the principal 2-block of $C_{G_{1}}(J) /\langle J\rangle ; \phi_{1}^{J}(1) \equiv 2+2^{n-2}\left(\bmod 2^{n-1}\right)$. If ρ is 2-regular, all $X^{(j)}(\rho)$ are equal. In particular, all have the same degree. Furthermore,

$$
\begin{equation*}
1+\delta_{1} X_{1}(1)=\delta_{1} X^{(j)}(1)=-\delta_{2} X_{2}(1)-\delta_{3} X_{3}(1), 1+\delta_{2} X_{2}(1)=\delta_{2} X_{4}(1) \tag{3.2}
\end{equation*}
$$

If we set $l=\phi_{1}^{J}(1)-1$, then

$$
\begin{equation*}
l \equiv 1+2^{n-2}\left(\bmod 2^{n-1}\right) \tag{3.3}
\end{equation*}
$$

and by (3.1) we have

$$
\begin{equation*}
X_{1}(J)=\delta_{1} l, \quad X_{2}(J)=-\delta_{2} l, \quad X_{3}(J)=-\delta_{3} \tag{3.4}
\end{equation*}
$$

Furthermore we have

$$
\begin{gather*}
X_{2}(1) \equiv-l\left(\bmod 2^{n}\right), \tag{3.5}\\
\delta_{1} \delta_{2} \delta_{3}=1 \quad x_{1} x_{2}=l^{2} x_{3}
\end{gather*}
$$

(3. B) Let G_{1} be a group with a Sylow p-subgroup P such that the following conditions are satisfied;
(3. a) P is abelian: $P \neq 1$,
(3. b) $\quad N(P) / C(P)$ is cyclic of order m,
(3. c) If $\xi \in N(P)-C(P)$, then ξ does not commute with any element $\pi \neq 1$ of P.

Then the principal block $B_{0}(p)$ consists of $r=\frac{|P|-1}{m}$ "exceptional" characters $Y^{(j)}$ and $s \leq m$ "non exceptional" characters $Y_{0}=1, Y_{1}, \cdots, Y_{s-1}$ such that for p-singular elements ξ with the p-factor $\pi \in P$, we have

$$
Y_{i}(\xi)=a_{i}:
$$

Here a_{0}, \cdots, a_{s-1} are non-zero rational integers. Moreover there exist integers $d, \delta= \pm 1$ such that

$$
(d-\delta)^{2}+(r-1) d^{2}+\sum_{i=0}^{s-1} a_{i}^{2}=m+1
$$

For p-regular ρ, all $Y^{(j)}(\rho)$ take the same value and

$$
(r d-\delta) Y^{(j)}(\rho)+\sum_{i=0}^{s-1} a_{i} Y_{i}(\rho)=0 .
$$

(3. $\left.\mathrm{B}^{\prime}\right)$ If $m=2$ in (3. B) we may assume $d=0$. Then $s=2, a_{i}=\delta$, $Y^{(j)}(1)=Y_{1}(1)=\delta$.
4. To apply $(3 \cdot \mathrm{~A})$ to our group G, we must show that G has no normal subgroup of index 2. By way of contradiction, let us assume that N is a normal subgroup of index 2 of G. Then $N \cap C\left(h_{0}\right)$ is a normal subgroup of $C\left(h_{0}\right)$ of index 2 . Therefore $N \cap C\left(h_{0}\right)$ is isomorphic to $S L(2, q)$. This implies that a Sylow 2 -subgroup of N is a generalized quaternion group. By the double transitivity of G and the assumption $|\Omega|=$ even, we see that N has no normal subgroup of odd order. Therefore a theorem of R. Brauer and M. Suzuki [2] shows that H_{0} is the center of N, hence the center of G. This is clearly impossible.

We shall prove some lemmas. Let us assume $G_{1}=G$ in (3. A).
Lemma (4.1). $\quad X_{1}(1)=q^{3}, \quad X_{2}(1)=q^{2}-q+1, \quad X_{3}(1)=q\left(q^{2}-q+1\right), X_{4}(1)=$ $q^{2}-q, \quad X^{(j)}(1)=q^{3}+1, \quad \delta_{1}=1, \quad \delta_{2}=\delta_{3}=-1$.

Proof. Since G is doubly transitive on Ω, there exists an irreducible character Y of degree q^{3}. As $Y(1)$ is odd, Y belongs to a 2 -block of maximal defect. On the other hand we easily see that G contains no 2regular element $\neq 1$ of maximal 2-defect. Therefore $Y \in B_{0}(G)$. As
$Y(J)=q$, we have $Y=X_{1}$ or X_{2} and $l= \pm q$ by (3.4). Since $q \equiv 1\left(\bmod 2^{n-2}\right)$ and $l \equiv 1+2^{n-2}\left(\bmod 2^{n-1}\right)$, we have $l=q$. On account of (3.5), we can conclude $Y \neq X_{2}$. Therefore $Y=X_{1}$ and $\delta_{1}=1$. On account of (3.2), (3. 6) we easily have our lemma.

Lemma (4.2). Let p be an odd prime dividing $q+1$ and P a Sylow p-subgroup of $C\left(h_{0}\right)$, then P is cyclic and $|N(P) / C(P)|=2$.

Proof. Comparing the structure of $C\left(h_{0}\right)$ we see that P is cyclic. Let K be a Sylow 2-subgroup of $C(P) \cap C\left(h_{0}\right)$, then $K \cong Z_{2} \times Z_{2}$ and $C(K) \subset C(P)$ by (2. E). Furthermore K is a Sylow 2-subgroup of $C(P)$. By Frattini argument, we have $N(P)=(N(P) \cap N(K)) \cdot C(P)$. Hence

$$
\begin{gathered}
N(P) / C(P) \cong \frac{N(P) \cap N(K)}{C(P) \cap N(K)} \cong \frac{L}{M} \text { where } L=\frac{N(P) \cap N(K)}{C(K)}, \\
M=\frac{C(P) \cap N(K)}{C(K)} .
\end{gathered}
$$

This implies $N(P) / C(P)$ is isomorphic to a factor group of a subgroup of the symmetric group of degree 3. Since $N(P) / C(P)$ must be cyclic, we can conclude $|N(P) / C(P)|=2$ (note that $|N(P) / C(P)|$ is divisible by 2).

Lemma (4.3). $q+1=2 \cdot 3^{b}, b \geq 1$. If P is a Sylow 3-group of G, then $[N(P): C(P)]>2$.

Proof. By way of contradiction, let p be a prime $\neq 2,3$ dividing $q+1$. Then, since $\left(q+1, q^{2}-q+1\right)=1$ or 3 , Sylow p-subgroup of G is cyclic and $|N(P) / C(P)|=2$ by Lemma (4.2). We can apply the previously described theorem (3. B^{\prime}) of R. Brauer. We get a generalized character

$$
\varphi=1-\delta Y^{(j)}+\delta Y
$$

which vanishes on every p-regular element. Since $|P|>3$ and G does not have two characters of same odd degree, we conclude $Y(1)$ is odd. Since $q^{2}-q+1 \equiv 3, \quad q\left(q^{2}-q+1\right) \equiv-3(\bmod |P|)$. We have $Y=X_{1}$. Since $q^{3} \equiv-1(\bmod |P|)$, we have $\delta=-1$ and $Y^{(j)}(1)=q^{3}-1$. On the other hand we easily see $q^{3}-1+|G|=2(q-1) q^{3}\left(q^{3}+1\right)$. This is a contradiction. As $q>1$, the former part of the lemma follows. Since $3 \mid q+1$, we have $\left(q+1, q^{2}-q+1\right)=3$. Therefore a Sylow 3-subgroup P of G is of order 3^{b+1} and P is abelian by (4.2). Suppose $[N(P): C(P)]=2$. Then, if $Z(N(P)) \cap P=1$, the condition (3. c) of (3. B) is satisfied. We can apply same
argument as above and easily get a contradiction. If $Z(N(P)) \cap P>1$, then G contains a normal subgroup N of index 3. By Frattini argument we easily get a contradiction, for a Sylow 2 -subgroup of G is self-normalizing.

Lemma (4. 4). $\quad q+1=2 \cdot 3=6$, i.e. $b=1$.
Proof. By way of contradiction let us assume $b>1$. Then a Sylow 3 -subgroup P of G is of order 3^{b+1}. By Lemma (4.2), P is abelian. If P is cyclic, then we easily conclude that $[N(P): C(P)]=2$. This is impossible by the previous lemma. Therefore $P \cong Z_{3} \times Z_{3}$. As $b>1$, P has a characteristic series

$$
P>P_{1}>P_{2} \cdots>P_{b+1}=\{1\},
$$

such that $\left[P_{i}: P_{i+1}\right]=3$. This forces $N(P) / C(P)$ to be a 2 -group. Let T be a Sylow 2-subgroup of $N(P)$. Then T operates on $\Omega_{1}(P)=\sigma^{b-1}(P) \times Q$, where $\Omega_{1}(P)$ is the group generated by all elements of order p in P and $\sigma^{b-1}(P)$ is the group generated by all $x^{p^{b-1}}, x \in P$. Since T operates complete reducibly on $\Omega_{1}(P)$ we may assume Q is invariant by T. By a well known theorem of Burnside two elements of P are conjugate in G if and only if they are conjugate in $N(P)$. So any element of $Q-\{1\}$ is not conjugate to an element of $J^{b-1}(P)$. This implies that an element of $Q-\{1\}$ is not conjugate to any element of $C\left(h_{0}\right)$. In particular T operates on Q as a fixed point free automorphism of Q, for $C\left(h_{0}\right)$ contains one conjugate class of elements of order 3. This forces $|T|=2$. This is impossible. We have thus proved that $q=5$ and $G=2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7$.
5. In sections $1 \sim 4$, we have proved that G satisfies the following properties;
(5. a) G is a doubly transitive permutation group of degree $126=5^{3}+1$.
(5. b) B has a regular normal subgroup U.
(5. c) B / U is a cyclic subgroup of order 8 .

In his paper [11], M. Suzuki has characterized the projective (full) unitary group of dimension 3 over a field of q^{2} elements. In particular he has characterized $\operatorname{PGU}\left(3,5^{2}\right)$ but not $\operatorname{PSU}\left(3,5^{2}\right)=U_{3}(5)$. It is hoped to characterize $\operatorname{PSU}\left(3, q^{2}\right)$ by the property of the centralizer of its involution or by the property of its doubly transitive permutation representation. In this note, however, it is sufficient to characterize $U_{3}(5)$ only. So we shall
apply a theorem of rank 3 -groups due to D.G. Higman [5]. Our procedure is as follows. First we shall construct a subgroup H of G which is isomorphic to A_{7} : the alternating group of degree seven. Let n_{p} be a number of Sylow p-subgroup of G where $p=3,5,7$. We compute n_{p}. Clearly $n_{5}=126$. Since a Sylow 5 -subgroup of G satisfies the $T I$-property, a 5element does not commute with any p-element, $p=3,7$. Since a 2 -element does not commute with any 7 -element, n_{7} is divisible by $2^{3} \cdot 5^{3}$ which is equal to -1 modulo 7. By Sylow's theorem we conclude $n_{7}=2^{4} \cdot 3 \cdot 5^{3}$. This implies that the normalizer $N\left(S_{7}\right)$ of a Sylow 7 -subgroup S_{7} of G is of order 3.7. Since, as we easily see, G does not contains a normal subgroup of index 7, $N\left(S_{7}\right)$ is a Frobenius group. Since a Sylow 3-group S_{3} of G is not cyclic, S_{3} is an elementary abelian group of order 9. Comparing the structure of $G L(2,3)$, we conclude that n_{3} is divisible by $5^{3} \cdot 7$ which is equal to -1 modulo 3. Hence $n_{3}=2 \cdot 5^{3} \cdot 7$ or $2^{3} \cdot 5^{3} \cdot 7$. Suppose $n_{3}=2^{3} \cdot 5^{3} \cdot 7$. Then $N\left(S_{3}\right)$ is a Frobenius group of order $2 \cdot 3^{2}$. This contradicts Lemma (4. 2). Hence $\left[N\left(S_{3}\right): S_{3}\right]=8$. We next show that the elements of order 3 of G form a single conjugate class. To show this it is sufficient to see that every element of order 3 is conjugate to an element of $C\left(h_{0}\right)$. Indeed, if $\pi \in S_{3}$ is not commutative with any 2 -element $\neq 1$ of $N\left(S_{3}\right)$, then π has 8 conjugate element in $N\left(S_{3}\right)$. This implies that all elements of order 3 of G are contained in a single conjugate class. Thus we have done. We consider the group $C\left(\pi_{1}\right)$ where π_{1} is an element of order 3. Clearly $C\left(\pi_{1}\right)$ is a 2,3 -group. Comparing the structure of $C\left(h_{0}\right)$, we get $\left|C\left(\pi_{1}\right)\right|=2^{2} \cdot 3^{2}$ and a Sylow 2 -subgroup of $C\left(\pi_{1}\right)$ is a four-group. An easy argument shows that $C\left(\pi_{1}\right)$ is 3 -closed or 2 -closed. If the former case occurs, then a Sylow 2subgroup S of $N\left(S_{3}\right)$ is a dihedral group and the center σ of S is commutative with at least one element $\neq 1$ of S_{3}. By complete reducibility σ is commutative with every element of S_{3}. This is impossible, since $\left|C\left(h_{0}\right)\right|$ can not be divisible by 9 . Therefore $C\left(\pi_{1}\right)$ is 2 -closed. And we get $C\left(\pi_{1}\right)=$ $\left\langle\pi_{1}\right\rangle \times A$ where A is isomorphic to the alternating group of degree 4. Since π_{1} is a real element, we have $\left[N\left(\left\langle\pi_{1}\right\rangle\right): C\left(\pi_{1}\right)\right]=2$. Let τ be a 2 -element in $N\left(\left\langle\pi_{1}\right\rangle\right)-C\left(\pi_{1}\right)$ then by complete reducibity of $C\left(\pi_{1}\right) /[A, A]$ we may assume A is invariant by τ. Since G does not contains a non cyclic abelian subgroup of order $8, \tau$ induces an outer automorphism of A. This implies $\langle\tau\rangle \cdot A \cong S_{4}$. Therefore we can choose three elements $\pi_{3}, \pi_{4}, \pi_{5} \in\langle\tau\rangle \cdot A-A$, such that

$$
\pi_{3}^{2}=\pi_{4}^{2}=\pi_{5}^{2}=1, \quad\left(\pi_{3} \pi_{4}\right)^{3}=\left(\pi_{4} \pi_{5}\right)^{3}=1, \quad\left(\pi_{3} \pi_{5}\right)^{2}=1
$$

These elements are the canonical generators of $\langle\tau\rangle \cdot A \cong S_{4}$ in the sense of Dickson [3]. Next consider $N\left(\left\langle\pi_{4} \pi_{5}\right\rangle\right)=\left(\left\langle\pi_{4} \pi_{5}\right\rangle \times B\right) \cdot\left\langle\pi_{4}\right\rangle$ where $C\left(\pi_{4} \pi_{5}\right)=\left\langle\pi_{4} \pi_{5}\right\rangle$ $\times B$ and $B \cdot\left\langle\pi_{4}\right\rangle \cong S_{4}$. And choose an involution π_{2} of B commutative with $\pi_{4} \cdot \pi_{2}$ is uniquely determined. Furthermore $\left\langle\pi_{1}, \pi_{2}\right\rangle \cong A_{4}$. We shall show that π_{1}, \cdots, π_{5} satisfy the relation of canonical generators of A_{7} :

$$
\begin{aligned}
& \pi_{1}^{3}=\pi_{2}^{2}=\pi_{3}^{2}=\pi_{4}^{2}=\pi_{5}^{2}=1, \\
& \left(\pi_{1} \pi_{2}\right)^{3}=\left(\pi_{2} \pi_{3}\right)^{3}=\left(\pi_{3} \pi_{4}\right)^{3}=\left(\pi_{4} \pi_{5}\right)^{3}=1, \\
& \left(\pi_{1} \pi_{3}\right)^{2}=\left(\pi_{1} \pi_{4}\right)^{2}=\left(\pi_{1} \pi_{5}\right)^{2}=\left(\pi_{2} \pi_{4}\right)^{2}=\left(\pi_{2} \pi_{5}\right)^{2}=\left(\pi_{3} \pi_{5}\right)^{2}=1 .
\end{aligned}
$$

We must prove only one relation $\left(\pi_{2} \pi_{3}\right)^{3}=1$, for the other relations are automatically satisfied from our choice of these elements. Since $\left\langle\pi_{2}, \pi_{3}\right\rangle \subset$ $C\left(\pi_{5}\right) \cong \Re_{5}$, then $\left\langle\pi_{2}, \pi_{3}\right\rangle$ is a dihedral group of order $12,8,4$, or 6 . Suppose $\left[\pi_{2}, \pi_{3}\right]=1$, then since G contains no elementary abelian subgroup of order 8 , we have $\pi_{2} \pi_{3}=\pi_{5}$. Hence $\pi_{2}=\pi_{5} \pi_{3} \in C\left(\pi_{1}\right)$. This is impossible as $\left\langle\pi_{1}, \pi_{2}\right\rangle$ $\cong A_{4}$. Suppose $\left|\left\langle\pi_{2}, \pi_{3}\right\rangle\right|=12$ or 8 . Take an involution π of the center of $\left\langle\pi_{2}, \pi_{3}\right\rangle$. If $\pi \neq \pi_{5}$, then $\left\langle\pi_{2}, \pi_{3}\right\rangle$ is contained in $C\left(\pi_{5}, \pi\right)$. This is impossible by (2,E). Hence $\pi=\pi_{5}$. This implies $\left(\pi_{2} \pi_{3}\right)^{2}=\pi_{5}$ or $\left(\pi_{2} \pi_{3}\right)^{3}=\pi_{5}$. Suppose $\left(\pi_{2} \pi_{3}\right)^{2}=\pi_{5}$ then $\pi_{2} \pi_{3} \pi_{2}=\pi_{5} \pi_{3} \in C\left(\pi_{1}\right)$. Since $C\left(\pi_{1}\right)$ is 2 -closed and is invariant by π_{4} we get $\left[\pi_{3}^{\pi_{2}}, \pi_{3} \pi_{2} \pi_{4}\right]=1$. This implies $\left[\pi_{3}, \pi_{3}{ }^{\pi_{4}}\right]=1$. Since $\pi_{4} \pi_{3} \pi_{4}=\pi_{3} \pi_{4} \pi_{3}$, we get $\pi_{4} \in C\left(\pi_{3}\right)$ which is impossible. Suppose $\left(\pi_{2} \pi_{3}\right)^{3}=\pi_{5}$ then $\pi_{2}{ }^{\pi_{8} \pi_{2}} \in C\left(\pi_{1}\right)$. Therefore $\left[\pi_{2}{ }_{2}^{\pi_{3} \pi_{2}}, \pi_{2} \pi_{3} \pi_{2} \pi_{4}\right]=1$. Since $\left[\pi_{2}, \pi_{4}\right]=1$, we get $\left[\pi_{2}{ }_{3}, \pi_{2}{ }^{\pi_{3} \pi_{4}}\right]=1$. Since $\pi_{3} \pi_{4}=\pi_{4} \pi_{3} \pi_{4} \pi_{3}$ we get $\left[\pi_{2} \pi_{3}, \pi_{2} \pi_{3} \pi_{4} \pi_{3}\right]=\left[\pi_{2}, \pi_{2} \pi_{3}\right]_{4} \pi_{4}=1$. This implies $\pi_{2} \pi_{3} \pi_{2} \pi_{3}=$ $\pi_{3} \pi_{2} \pi_{3} \pi_{2}$. Hence $\left(\pi_{2} \pi_{3}\right)^{4}=1$. This case has already been ruled out. Thus we have proved $H=\left\langle\pi_{1}, \pi_{2}, \cdots, \pi_{5}\right\rangle \cong A_{7}$.
H is a subgroup of index 50 , as $|G|=126000,|H|=2520$. Therefore G has a permutation representation R of degree 50 . We next show that R is a rank 3 -representation and its subdegrees are $1,7,42$. There are 14 conjugate classes in G. As this is easy to see, we just list the order of their representatives;

$$
1,2,4,8,8,3,6,5,5,5,5,10,7,7 .
$$

We compute the degrees of irreducible characters of G. By Lemma (4.1) we have already known that there exist irreducible characters of degrees $1,125,21,105,20,126,126,126$. Since the normalizer of a Sylow 7 -group is a Frobenius group we can apply (3. B) and we get a following euqality

$$
1 \pm d-(125)-(20)=0
$$

where d is the degree of an exceptional character. Hence $d=144$. Thus we have two irreducible characters of degree 144. Let $Z_{i}(i=1,2,3,4)$ be an irreducible character except those previously stated. Then $Z_{i}(1)$ must be divisible by $2 \cdot 7$, for Z_{i} is not contained in a block of p-defect 0 , where $p=2$ or 7 . Put $Z_{i}(1)=14 z_{i}$. Then

$$
126000=1+125^{2}+21^{2}+105^{2}+20^{2}+3 \cdot 126^{2}+2 \cdot 144^{2}+14^{2} \sum z_{i}^{2} .
$$

Hence $\sum z_{i}^{2}=48$. Hence $\left\{z_{i} \mid 1 \leq i \leq 4\right\}=\{2,2,2,6\}$. Thus we have determined all the degrees of irreducible characters of G. And we can conclude that the permutation representation R is of rank 3. Considering the subgroup structure of A_{7} we easily see that the subdegrees are 1, 7, 42. Therefore G is isomorphic to $U_{3}(5)$ by a theorem of D.G. Higman [5].
6. In this section we consider the following problem: Is the condition (0.3) essential? Our answer is more or less negative. Indeed we can show the following theorem.

Theorem. Let G be a group satisfying the conditions
(0.1) G is a doubly transitive permutation group on a set of $m+1$ letters, where m is an odd integer ≥ 3.
(0. 2') if H is a subgroup of G and contains all the elements of G which fix two different letters α, β then H contains exactly one involution h_{0} and h_{0} is a unique permutation of H which fixes at least three letters.
(0. 3^{\prime}) G does not contain a regular normal subgroup.

Then G is isomorphic to $U_{3}(5)$ or one of the groups of Ree type.
Remark. (0.2^{\prime}) is stronger than (0.2), \&0. However (0.2) and (0.3) imply (0. 2').

Proof. By way of contradiction we assume that there exists a group G which satisfies the conditions (0.1), (0.2^{\prime}) and (0.3^{\prime}) but is isomorphic to neither $U_{3}(5)$ nor one of the group of Ree type. In particular we assume that G has at least two conjugate classes of involutions. We shall use the same notation as in $\S 0 \sim \S 5$. Our proof proceeds in the following steps.
(6. A). The index $\left[H: H_{0}\right]$ is an odd integer >1.

Suppose $H=H_{0}$. Then G is a doubly transitive permutation group of order $2 m(m+1)$ and of degree $m+1$. N. Ito [6] has studied the groups with this property and has proved that $\operatorname{PSL}(2,5)$ and the minimal Ree group are only such groups. Since $P S L(2,5)$ does not satisfy (0.2^{\prime}), we get a contradiction. Next suppose $\left[H: H_{0}\right]$ is even. Then $C\left(h_{0}\right)$ is isomorphic to the group $\mathscr{\Omega}_{q}$ (see $\S 2$). Since the Sylow 2 -subgroups of $C\left(h_{0}\right)$ are semidihedral, a Sylow 2-subgroup of $C\left(h_{0}\right)$ is isomorphic to that of G. Since G does not have a normal subgroup of index 2 (see §4), all the involutions of G are contained in a single conjugate class. This is again a contradiction.
(6. B). Let n be the number of involutions of $H w$ which are conjugate to h_{0} in G, then the following equality holds

$$
m=q(q n+n+1) .
$$

This is a slight modification of (1.G). The proof of this statement is trivial if we refer the proof of (1. G) ([8], p. 801).
(6. C). The involutions of $H w$ are divided into two classes under conjugation by $N(H)=\langle H, w\rangle$. Each class contains the same number of involutions. These two classes are also G-conjugate classes.

Since [$H: H_{0}$] is odd, we may set

$$
H=H_{0} \times H_{1}
$$

where H_{1} is a group of odd order. If $h w$ is an involution, then $w h w=h^{-1}$. Therefore $H w$ contains n_{1} involutions, where

$$
n_{1}=|M|, \quad M=\left\{h \in H \mid w h w=h^{-1}\right\} .
$$

Since H_{1} is odd, each coset $h_{1} C_{H_{1}}(w)$ of H_{1} by $C_{H_{1}}(w)$ contains exactly one element which is inverted by w. Therefore

$$
n_{1}=2 \cdot\left|H_{1}\right| /\left|C_{H_{1}}(w)\right| .
$$

On the other hand w has $|N(H)| /\left|C_{N(H)}(w)\right|=4 \cdot\left|H_{1}\right| / 4 \cdot\left|C_{H_{1}}(w)\right|=n_{1} / 2$ conjugate elements in a subset $H w$. This implies (6.C).

By (6. C), we can conclude that G contains exactly two conjugate classes of involutions, since a suitable conjugate element of every involution of G is contained in $N(H)-H=H w$.
(6. D). $C\left(h_{0}\right) / H$ does not contain a regular normal subgroup.
R. Ree has proved ([8], p. 807) that if $C\left(h_{0}\right) / H_{0}$ contains a regular normal subgroup, then
(6. 1) $q+1=2^{r}$, $\left[H: H_{0}\right]=r . \quad\left|C\left(h_{0}\right)\right|=r \cdot 2^{r+1}\left(2^{r}-1\right)$, where r is an odd prime. Furthermore he has proved that a set $H w$ contains exactly two involutions $h_{0} w, w$ and if H_{1} is a subgroup of order r of H then

$$
\begin{equation*}
N\left(H_{1}\right)=C\left(H_{1}\right)=H \cup H w . \tag{6.2}
\end{equation*}
$$

By the above results and (6. C), we conclude $n=1$. Therefore

$$
\begin{equation*}
m=(q+2) q, \quad|G|=r \cdot 2^{2 r+1}\left(2^{2 r}-1\right) . \tag{6.3}
\end{equation*}
$$

(6. 2) implies that H_{1} is Sylow r-subgroup and G has a normal r-complement N. For every prime $p l 2^{2 r}-1$ there exists at least one Sylow p-subgroup P of N which is invariant by H_{1}. By (6.2) again, we see that H_{1} induces a fixed point free automorphism on P. Therefore $2^{2 r}-1 \equiv 1(\bmod$ r). This forces $r=2$. This is impossible. We have proved (6. D).

$$
\begin{equation*}
C\left(h_{0}\right) \cong Z_{2} \times P S L(2, q) \text { with } q+1 \equiv 0(\bmod 4) \tag{6.E}
\end{equation*}
$$

This is a direct consequence from a classification theorem of the Zassenhaus group due to H. Zassenhaus [14], W. Feit [4], N. Ito [6] and from the fact that [$H: H_{0}$] is odd.
(6. F). U is an abelian group.

By (6. E), $\langle H, w\rangle=N(H)$ is a generalized dihedral group of order $2(q-1)$. Therefore $H w$ contains $q-1$ involutions. By (6. C) we have $n=q-1 / 2$. Therefore $m=q\left(q^{2}+1\right) / 2$. Let p be an odd prime dividing $q-1$ (note that $\frac{q-1}{2}=\left[H: H_{0}\right]>1$). Then a Sylow p-subgroup of H induces a fixed point free automorphism on U. Hence U is nilpotent [12]. Let R be a subgroup of order $\frac{q^{2}+1}{2}$ of U. Then, since $H R$ is a Frobenius group and $|H|=q-1$ we see that R contains no characteristic subgroups. This implies that R is an elementary abelian r-group for some prime r. Since a subgroup Q of order q of U is abelian, the statement (6.F) is proved.

Now we shall show the final contradiction. The following argument is due to M. Suzuki ($[11], \mathrm{pp} .6 \sim 7$). If η is a linear character of U satisfying $\eta(R) \neq 1$, then η has exactly $q-1$ conjugate characters in B. Hence the character φ of B induced from η is irreducible. We have s such characters, $\varphi_{1} \cdots \varphi_{s}$ where $s=\left(q \cdot \frac{q^{2}+1}{2}-q\right) / q-1=q \cdot \frac{q+1}{2} . G$
has s exceptional characters $E_{1} \cdots E_{s}$ associated with $\varphi_{1} \cdots \varphi_{s}$. The characters E_{i} satisfy the following properties: $E_{i}(x)=E_{j}(x)$ for any element which is not conjugate to an element of $U-\{1\}$. And $E_{1} \cdots E_{s}$ are the only characters of G which contains φ_{i} and φ_{j} with different multiplicities for some i and j (Suzuki [10]).
B has a linear character $\zeta \neq 1$ satisfying the property that the restriction of ζ of H is invariant under w. Then the character induced from ζ is not irreducible, but a sum of two irreducible characters X and Y. Suppose that either X or Y is exceptional. Then $1^{*}-\zeta^{*}$ is the sum of at most four irreducible characters and contains all the exceptional characters (note that the inner product $\left\langle 1^{*}-\zeta^{*}, E_{i}-E_{j}\right\rangle_{G}=0$ and a character of degree m can not be exceptional). Since $s \geq 6$, this is impossible. If both restrictions $X \mid B$ and $Y \mid B$ contain φ_{i}, then the degrees of these two characters are not smaller than $(q-1) q \cdot \frac{q+1}{2}$. On the other hand, the sum of these degrees is equal to $m+1=q \cdot \frac{q^{2}+1}{2}+1$. This is impossible as $q \geq 3$. Hence at least one of them, say $X \mid B$, does not contain φ_{i}. This implies that the kernel K of the representation with character X contains R.

By the double transitivity of $G,|K|$ is divisible by $1+m$. Therefore $G=H \cdot U \cdot K$. Hence there exists a normal subgroup $N \neq G$, such that $N \supset U$. Let N_{0} be the minimal normal subgroup of G containing U. Then $\left|N_{0}\right|=m d(m+1)$ where d is a divisor of $q-1$. If $d=1, N_{0}$ contains a regular normal subgroup of order $m+1$. This is not the case. Hence $d>1$. Then we apply the same argument as before to N_{0} in place of G. We conclude that N_{0} contains a normal subgroup $N_{1} \neq N_{0}$ satisfying $N_{1} \supset U$. Since $G=H \cdot N_{0}, N_{0}$ contains a normal subgroup N_{2} of G satisfying $N_{2} \supset U$. This is against the minimal nature of N_{0}. Thus we have got a final contradiction.

References

[1] R. Brauer, Some applications of the theory of blocks of characters of finite groups III. J. of Algebra, 3 (1966), pp. 225-255.
[2] and M. Suzuki, On finite groups of even order whose 2-Sylow group is a quaternion group. Proc. Nat. Acad. Sci., 45 (1959), pp. 1757-1759.
[3] L.E. Dickson, Linear groups. New York, Dover (1958).
[4] W. Feit, On a class of doubly transitive permutation groups. Ill. J. Math., 4 (1960), pp. 170-186.
[5] D.G. Higman, Finite permutation group of rank 3. Math. Zeit, 86 (1964), pp. 146-i56.
[6] N. Ito, On a class of doubly transitive permutation groups. Ill. J. Math., 6 (1962), pp. 341-352.
[7] - On doubly transitive groups of degree n and order $2(n-1) n$. Nagoya Math. J., 27-1 (1966), pp. 409-417.
[8] R. Ree, Sur une famille de groupes de permutations doublement trasitifs. Canadian J. of Math., 16 (1964), pp. 797-819.
[9] I. Schur, Untersuchungen uber die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen. J. fur Math., 132 (1907), pp. 85-137.
[10] M. Suzuki, On finite groups with cyclic Sylow subgroups for all odd primes. Amer. J. of Math., 77 (1955), pp. 657-691.
[11] -, A characterization of the 3-dimensional projective unitary group over a finite field of odd characteristic. J. of Algebra, 2 (1965), pp. 1-14.
[12] J.G. Thompson, Finte groups with fixed-point-free automorphisms of prime order. Proc. Nat. Acad. Sci., 45 (1959), pp. 578-581.
[13] H.N. Ward, On Ree's series of simple groups. Trans. Amer. Math., 121 (1966), pp. 62-89.
[14] H. Zassenhaus, Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen. Hamb. Abh., 11 (1936), pp. 17-40.
Added in proof.
Quite recently O'nan [15] has characterized the simple groups $U_{3}(q), q$ odd, in terms of their doubly transitive permutation representation. However the case $q=5$ is exceptional.
[15] M. O'nan, A characterization of the three-dimensional projective unitary group over a finite field, (to appear).

Nagoya University
and
The Institute for Advanced Study

[^0]: Received November 4, 1968

 * The author expresses his gratitude to Prof. Gorenstein who has pointed out a gap in his original proof. This research was partially supported by National Science Foundation grant GP-7952X.

