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FORMAL FOUNDATION OF ANALYTICAL
DYNAMICS BASED ON THE
CONTACT STRUCTURE
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Dedicated to Prof. K. Ono in celebration of his 60th birthday

A systematic treatment of analytical dynamics was given by E. Cartan
in [1], where the 1-form >lp,dq, — Hdt plays the fundamental role. We
give here a further investilgation. One of our main purposes is to clarify
relations between dynamical systems and Finsler spaces and the other is to
formulate an intrinsic bundle structure of the systems. This paper is closely
related to my previous papers [4] [5].

1. A contact structure on the dynamical system
The phase space in analytical dynamics can be stated mathematically as
follows. Let M be an n-dimensional differentiable manifold of class C* and

n

local coordinates of a point # in M be z!, + -« - , 2", Let p be a vector
in the dual tangent space whose components with respect to the natural
frame are p;, +++,p,. The dual tangent bundle °‘T(M) of M consists of
points (x,p) and °T(M) is nothing but a phase space. By the coordinate

transformation
x' — ¢i(x1’ ...... R x”) (i =1,2, + -, n) (1_ 1)

p;’s are transformed as
_ ox’
i = Di Ao . . 2
Pi=P; 5 (1. 2)
We omit summation symbols in this paper, as is usual in the tensor calculus.
We denote the time interval —oo <#<<co by z. A function H= H(z,p,t)
of class C* on ‘T(M) x ¢ with the assumption

the rank of the matrix ( aZZIa{p )= n (1. 3)
0D
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defines a dynamical system on M. Hereafter we use notations H,, H,,
H,,, for the derviatives 9H/ox’, 0H|ap;, 3°H|3p0p;.

In general a 1-form o on a 2r+1 dimensional manifold such that
o A (do)* #0 is said to define a contact structure. Here we have

THEOREM 1. A4 1-form Q= p,dx'— Hdt defines a contact structure on
‘T(M) x =, where exceptional points form a set without inner points.
This can be verified as follows. We get by calculation

(r+D(n+2)
QA@"=(-1) °* (pHp,— H)AP A« - Ndp Adx' A -« - Adz™ A\dt.
If p,H,— H vanishes on a open set we get by differentiation p,H,, =0
which contradicts to (1. 3).
Next we put

0' = da' — Hpdt, p;=dp,+Hedt (i=1, -+, n). (1. 4)
Then we get a fundamental relation
dQ = p;A6'. (1. 5)

A curve z = 2(¢), p = p(¢t) on ‘T(M) is called a path if it satisfies ¢* =0,
p;=0(=1+++,n). Then we get

THEOREM 2. We take a family C of curves x=(t), p(t) (t,=t=¢,) with
2D = 2(¢;), x® = x(t,), where 2 and x® are fixed points in M.

The integral SQ is stationary for the path in the above sense among the family C.

The proof rums as follows as is essentially given in [1]. We take a 1-para-
metric family x(¢,¢), p(¢,¢) from C and assume that e=0 for the path.
Then we have dQ(3/dt,d/ae) = p,(8/5t) 6°(3]ae) — p,(d]de) 6(3/at) and for =0
6'/at) = 0, p,(d8/t) =0, and so

dg(ait, aas)=ig ’L)—LQ(L)=0.

Hence we get
[ S al)ae ]= Ll 5 o))
=laar oGl ar=[o(F0). L o



ANALYTICAL DYNAMICS 109

Next we take a 1-form

on ‘T(M). We restrict this to a submanifold generated by a family of paths
z=a(t,aly ««+, a), p=p(t,al, -+, a"). By virtue of the relation 6°(9/ot)=
0, 0,(8/0t) =0 we get by the same process as in the proof of theorem 1
dfQ(o/at, 3/éa') =0. Hence d@, which is an exterior differential form of
second order, does not contain terms dtAde'. We put dQ2 = myda"Ada
(mn, = —my,). Then by d(dQ) =0 we see that d@ does not contain {. When
we put ¢ = const., dQ reduces to dp,Adz’ and we get the well known
theorem.

TueoreM 3. The form do = dp;Adx' on “T(M) is invariant for a shift of
points (x,p) along the path through each point.

This leads to an invariance of

(r-1)(n-2)

(o) =(=1) *  (—DISdnAc - AdDA- - - AdpaAda
PN
/\.../\dx"/\.../\dx'”',

where -~ means a lack of the terms dp; and dxz’. This is a volume ele-
ment for a set of paths in “T(M).

2. Finsler space

Let M be an n-dimensional differentiable manifold with a point z,
whose local coordinates are «!, -+ -, x". We denote the components of a
vector y in T(M) at z by y! «-., y™ with respect to the natural frame.
A Finsler structure F on M is defined by a function F = F(z,y) on T(M)
(y #=0) or its subspace, satisfying the following conditions.

n

(1) F(x,y) is positively homogeneous of degree 1 in y!, -,y

2

. a .
(2) rank of the matrix <ayiay’ ) is n—1.
When we put D, = g; (i=1,¢¢+, n) (2. 1)

we can define a fundamental mapping (x,y)—>(x,p). The image of the
mapping is a hypersurface N which we called p-manifold in [4] [5]. A 1-form
o = p,dx’ on N gives a contact structure, and when we express N locally
by
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Pn=—H(x' <+, 2% 2y, + -, pn—l) (2° 2)

and put 6° =dx®— H,dz", p,=dp,+ H,.dz", we get do = p,A6*. Here
the index « runs as ¢=1,2, ---, n—1. The solution curves of §* =0,
P, =0 are lifts to ‘T(M) of extremals on M of our Finsler structure. (The
sign of p, is different form that in [5].) The form o is invariant under a
dilatation (or a geodesic flow c.f. [4] p. 93). Hence the invariance of

n(n-1)

0Aldo)'=(~1) 7 (=S (~1"pdpA e+ ADBA <+ Adp,
AdxtA -+« Adx™ (2. 3)

follows.

We can construct conversely a Finsler structure from a hypersurface in
‘T(M) given by (2. 2), where the rank of the matrix (H,,,) is equal to » —1.
(@b=1,+-+, n—1) This can be done as follows. We put 2*=H,. By
the above assumption p,’s are functions of x, -+ -, 2", 2}, + -+, 2" locally.
We put 2* = y*/y™ and define F by

F= pa:'/a '"'H(x19 s, 17, Py ¢+ Pn—l)?/”- (2. 4)

When we consider F as a function of 2!, ---, 2" %! -+, y™ it is homo-
geneous of degree 1 in y', - -, y*. Moreover we get

oF

b 0Dp » 0H 0p, —

aya = pa+y aya, _y apb aya pa!
aF . 3pa a __ aH apa no__ _ — =
ay"' = ay” i apu ayn Yy H H Pne

Finally by the differentiation of y® = y"H, with respect to ¥° we get
S0c = Y*Hy,p, Fipye. Hence the rank of the matrikx (Fyy) is the same with
that of (H,,,), namely » —1. Thus we have proved

THEOREM 4. For the hypersurface (2. 2), where the rank of the matrix (H,,,,)

is equal to n— 1, we can define a Finsler structure by (2. 4) on M, whose p-manifold
s (2. 2).

3. Relations between dynamical systems and Finsler spaces

By theorem 4 we can construct a Finsler structure on the dynamical
system. We only put 2"** =¢, p,.,, = — H. Then applying theorem 4 to
this case we get
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TuEOREM 5. For a given dynamical system defined in section 1 we can construct
a Finsler structure F on MXc in such a way that the lifis of extremals of F to
‘T(Mx <) correspond to the paths of the dynamical systems.

As an example we take up the fundamental case

H= 2 g"(@) (p: — (@) (p; — ci(a) + Ula),
where z = (x!, + - -, ") and det(g/)+0. We put (g;;) = (9*/)'. We have
2t = Hy, = g"(p; — ¢;)s p;— ¢; = g;;#°. Putting 2’ = y’[/y™* we get F=py' —
Hy™ = (2y™")g,;4'y’ + ¢;y* — Uy™*. And so the paths of our dynamical
system correspond to the extremals of the integral

SF(x, §)dt = S(‘%‘ 0is@) &' + e — Ula))dt.

Next we take up a case of an autonomous system. This means that
H(z,p,t) does not contain ¢. In this case along each path, namely a solu-
tion curve of ¢° =0, p, =0, H is constant, as is well known. We take up
a hypersurface

H(z,p) = E (const.). (3. 1)

We assume grad, H= (H,, * -+, H,)# (0, - -+, 0. (The set of points such

that grad, H=0 is a one without inner points.) Then we can assume H, #0
without loss of generality and we can put

Po=— (&l «« s &% Dyt s Domy) (8. 2)

locally. If we know
aZh = e o o —
det(m>7b0 (@b=1, «++, n—1.)
we can introduce a Finsler structure on M based on the equienergy surface
(3. 1) by theorem 4. We have by (3. 1) and (3. 2)
H(xly « -+, 2% Dy = * s Pn-1s — h) = E. (3. 3)

Now we take z!,:--, 2" Py, *+*, Doy E as independent variables and
differentiate (3. 3) with respect to p,. Then we get 8h/dp, = H,/H,. Again

we differentiate this with respect to p, and we get

ah ah oh__oh a*h
e op, ~ Hen o, T o Gp . op, B o am,

Hy ., — H, =0.
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Putting Y,=H, X,, Y,=—H, X,=—H,Y,./H, we get

a%h
apaapb
Hence we get

XaXb = (Hpn)da(Hpa?oYaYb + ZHPaPnYaYn + HIJ,.?,.Y%) = (Hpn)—sHm’; Yin'

THEOREM 6. If the quadratic form H,, Y,Y; is of rank n —1 for Y, satisfy-
ing H,Y; =0, we can introduce a Finsler structure F based on the equienergy surface
(8. 1) as in theorem 4. ,

Explicit calculation of F runs as follows. We put y* = 2H,,, from which
we get p; = K;(x,2) where z' = y°/2. We put these into H(z,p)— E =0 and
we get 2 locally, which is possible when

This can be verified as follows. We have 2’ =H, (x, K(x,2)) and by different-
iation with respect to 2’ we get ;= H,, 0Kdz’. Hence (3K,/32’) is an

inverse to (H,, ). Now the assumption in theorem 6 reduces to

Hyp o oooooes H,, H,

' #0,
Hypovoveeees Hyp, Hp,
Hy «coveeees H, 0

which proves (3. 4), where the exceptional points form a set without inner
points.

The application of theorem 6 to the case
H= %‘-‘7”(”) (P — c(=)) (15 — ¢4()) + U(w)

gives  F =09 =294 + .y’ = £V2AE - U)g 5y’ + ¢y, (3. 5)

which is known as Maupertuis’s principle. (c.f. [3] p. 225)

Next we consider a relation between the invariant volume element
n(n—1)

av=(—1) * (do)*n!=dp, A+ Adp Adx' A+ - Adz™ (3. 6)

on ‘T(M) and that on the equienergy surface (3. 1). By theorem 6 a Finsler
structure is introduced on M corresponding to (3. 1). The contact structure
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associated with it can be given by o = p;dz’ (E = const.) and the invariant
volume element on it is given by a constant multiple of (2. 3), namely
O

dVe =2 (=1)""'p;dps A+ + - Adps A v+« AdpaAdat A« -+ Adx™. 3.7
We have by (3. 3)

dpn = —(Hp ) (Huda' + Hy dp, ~ dE) (i=1, +++, n; a=1, + -, n—1).
Putting this into (3. 6) (3,7) we get the following relation.

THEOREM 6. dV = (p,Hp, ) 'dEANdV 5.

4, Structure equations of dynamical systems

We consider a dynamical system with a function H = H(x,p,¢). Putting

¢’ = dz' — H, dt, p;=dp;+ H,dt (4. 1)

we have got for Q = p,dx' — Hdt
dQ = p; N6
Now we take up a coordinate transformation
g =gl ceeere, 1) (=1, n) (4. 2)
Then we get by virtue of the relation p; = po%’ 0%

ax’ a s ox* o
H:= Hz;—a':;i— + ngpka-;(—ﬁ,*) » Hpy=Hj TR

When we put §° = dz* — H;, dt, p; = dp; + Hzdt, we get

ozt . oz’ o2x*  ox’

0" = 2u7 O Pe= g Ps Pe gy G O 4. 3)
Then we seek for
te = 05+ 10" (ri=73) (4. 4)
such that = %%pj. (4. 5)
(4. 4) assures the relation dQ = g, A6'. We put
@ = Hywss bl = Hupy h' = Hyy, (4. 6)

(h*?) is transformed as a tensor for the transformation (4. 2). We have
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do' = — (bi¢' + ht'p))Adt, de, = (a0 + ble;)Adt. (4. 7)

By the frame transformation ¢, e, dt-—>§’, p;, dt in the dual tangent
bundle of ‘T(M)xz, where p,’s are given by (4. 4) we get

dot = — ((b% — hitr)e’ + hil p) \dt. (4. 8)

Putting dht = ull6* + v % + wiidt (4. 9)

. ont’ oht’ ont onti .

we have ptik = o wii = T -—Tpk*H,,k + “ont Hro (4. 10)
iJ

Vo= aall;k — Vet (4. 11)

With these preliminaries we prove

THEOREM 7. For 6', p, given by (4. 1) we can uniquely find
py = P+ 1yt (ri5 = 73) (M)
il = PLi6* + Qi*p + Ridt, (L)

which satisfy the relations

o' = 6/ A2 + mit¢ A — W ps Adt, (1)
dpe = = s AR+ 08,00 A i+ —— 2000 N6 — Kost? At (ID)
dht/ 4+ hi%3] + h¥ 3L = 0. (I11)

Remark. We assume 2z, = —z45. We have by (4.4) dQ = p; A6
Hence 0 = d(dQ) = dp; N6 — p,Ad6'.  Putting (I) (II) into this relation we
get

ik — ki — p—
mi* =mbt, nf; =nl, K= Kj,
2k + Zgrs + 2 = 0.

proof of theorem 7. We will find such g; 2/. Considering the terms in
(III) containing d¢ we get by (4. 9) (L)

w4+ h* R{ + h*' R} = 0.
Putting (L) into (I) we get

do* = 0 A(PL6* + QY + RidE) + mi*0’ A e — h¥ s Adt. (4. 13)
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We compare this with (4. 8).  Firstly
Ri = — bl + hitry (B)
and then we get
BRI = 5 (R0 + B7%0E — ), (A)
Next we get by (4. 13) (4. 8)
P, =Pi;, Qi =—mj". (4. 14)
We get by (4. 9) (L)
ui? + REPL, + BHPh, =0, v+ RPFQIM + WM QY = 0. (4. 15)
By (M) (4. 7) dp; does not contain terms p;Ag, for the base ¢, p;, dt.
Hence Q" =QY. (4. 16)
We put A*Y7 = hi*p'*P], and B*" = hi*Q{*. Then we have by (4. 14) (4. 15)
(4. 16)
A ATV = — plRgld, AT = AV,
BUM 4 Bt = —yiih,  BUit = pind,

From these relations we get A‘/' and B*/*. Hence

hikhthllcn — _]2-_(hiku}lcj + hjku]lci _ hlku,ﬁj) (C)
BQE = — Ly oy — ), (D)

Putting (h,;) = (h19)"* we can resume (A) (B) (C) (D) as follows, where vi/*,
w'/ are given by (4. 10) and «}’ by (4. 11).

¥y = —;‘ (hiib% + hydl — hyhyw™™), (A"
Rj = h'*ry — b}, (B")
Pty = — - (hugtf + hotth — B hhyi™) (©)
Q}i!: _mlici_____. __%_hkl(vlij_i_vlji_vtjl). (D')

Now we will verify that (M) (L) with (A’) (B") (C") (D) satisfy (I) (II) (III).
By (4.9) (4. 15) we get (III). By (4. 13) (4. 14) (B) (4. 8) we get (I). As to
(IT) we proceed as follows. We put
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dri; = sipd* + sk + sydt.

Then we have by (4.1) (4. 4)

sty = g;i: y S = g;f — 7enStss
— 07y 0745 0745 .17

Sig = -+ PP Hp, — a—pkak .

We express dp, + p;A2] in 6, p;, dt by (4. 4) (4.7) (L). We have
dps + py A2l = d(o; + r448") + 2 N(PLO* + Q1F e + Ridt)

= (@’ + bi(ps — rpd) Adt + (sinb + % + s5dE) O

— 75010 4+ R (e — 18" Adt + 11y N(P1,6° + Ridt).
These reduce to (II) when we put

k em o Pk __ ok o —

ni; = —Pi; = Siss Riji = Sijn = Sinps (E)

Kij = — a;; + rudh + r3df — B viuyrng + 5450
Thus we have proved theorem 7.
As a consequence we get the desired relation (4. 5), namely
TueoreM 8. For the coordinate transformation %° = ¢'(x) (i =1, - - -, ‘n) Vs

and p; are transformed as

%" _ ox’
o O =t

gt =

Proof. For the coordinate transformation in question ¢° is transformed
as in (4. 3). We take i/ which is transformed as connection forms from /.
Then d¢* — ¢’ A2i is transformed into df*— §’A1i as a vector. Therefore,
if we take mi*, h*’/, @%,, K, Z; which are transformed from mi*, hi’ etc
as tensors and f; = p;02'/0%%, the relations (I) (IT) (III) hold good for &', #,,
i, k7 etc.

Now by #; = (0; + ry6%02’/0%* and (4. 3) we have f; = p;, + t;;6°. On
the other hand we have dQ = g, A0' = F;AG° and dQ = p,Af°. Hence we
get ¢;;=t;. By theorem 7 1] and Z; = p; + 7,6 (7;; = 75;) are determined
uniquely from §°, p; so as to satisfy (I) (IT) (III). Hence #; coincides with
Z; determined from corresponding 4° and p;. Q.E.D.

Next we take up the fundamental case
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H= 16"z, 1) (0, — ci(w, ) (53 — eiles ) + Ul 1.
Then we have

) i
hil = H,, = g', pit =0, gl = %gx"

~ ) ik
b} = Hxip‘ = ai] (g”ﬂ(pk - ck)) = aéqxf (pk - Ck) - gik giﬁ

) 17 B i i3
w =0 1 aH, = Ut aaga'ck 9" (P — ¢

We put (g;;) = (¢°/)"! and

_ 1 09; a9 99,
[’f = = gkl 1 o %)
! 29 oz’ + o’ o' )

We get from (A’) (B") (C')

Pt; =T%;, QY =0, mi! =0,

- _ _ 1 7 dcy ac 1

i o gk — 1 nf Och acy 09ns
R} = g"* Iin(pe — ¢&) + 59 <axj — 3xh+ 5t )

Hence by (E) and (4. 17) nk; =0,
Next we take up the simpler case

H= —é— g (x)p,p; + Ulz).

Then we have P%; =TI%;, r;y=—1I%p» R} = g*"I'i,p, and
0" =da' —gtlp;dt, p; = dp, — I'tpdn’ + Uydt.
2 ) Ve : A )
We put Uy = 2o~ T % Ry = 2L _ S0 4 1y, 1y~
Then we get

R = % Rijp0 Ky = — (§""R} j3x0:0m + Usy).

5. Product structures and connections
By the preceding consideration we can naturally construct a product
structure on ‘T(M)Xc when we decompose the dual tangent space of “T(M)
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Xt into S; spanned by ¢', - - -, 6%, S, spanned by g, * -, g, and T span-
ned by dt. If we put

( ai:’_ ) 0 0 (21) 0 0

ox

P= 0 < g;z ) NE A=} 0 —(25) 0 |»
0 0 1 0 0 0

P constitutes the structure group and A gives an affine connection on ‘7(M)X<.
Moreover we have

TuroreMm 8. The quadratic forms h,;6°¢), hiip,p,, 6°p, are intrinsic forms
on ‘T(M)X«.
For an autonomous case H= H(xz,p) we have dx‘, ¢; = dp; + ryde’ from
0’y p; when we put f=const. A product structure can be defined on
‘T(M) when we decompose the dual tangent spaces into S, spanned by dz!,
<+, dz™ and S, spanned by ¢, ¢+ -, g, The fundamental quadradratic
forms hdx'dx’, h*'¢,0j, dx‘ec; are given on ‘T(M), and an affine connection

is also defined.

6. Mapping by the fiow

We shift each point (z,p) of ‘T(M) along the path, namely the solution
curve of ¢ =0 and p, =0 (hence g, =0). We fix a time interval ¢ and we
get a mapping of (z,p)—(2',p’) of ‘T(M) into itself which we call a flow.
We will show how the tangent spaces are mapped by the flow.

We take a vector field T = 3/ot along the flow. Then we get

01(T) =0, Fi(T) = 0.
Let X be a vector field which commutes with 7. Then we get from (I)
(II) in 4
T(6" (X)) = =2(T)F(X) + b pf X),
T(e(X) = 2T X) + Kyt (X),

and 2T)=R{. We put X=1u' aii + v, a?o- and we get

0Z(X) = ui, #Z<X) = (Pi + 7”0l)(X) =y, + ri,-u’.

Putting z; = p,(X) we get
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‘2’;1 = — Riu’ + hi'z,, ‘flztz = Kju’ + Riz;. (6. 1)
Here we have by (III)
7 . .
dg; I h”R;{ — hiji- (6- 2)

The equations (6. 1) (6. 2) are fundamental and correspond to the Jacobi’s
equations in the calculus of variation. The invariance of the volume element
(3. 6) can be seen from the vanishing of the trace of the matrix.

<<~R;) <w>)
(Kp)  (R]) /.

We have from (6. 1) (6. 2)

—ddt—(uizi) = hilzz; + Ku'n, %(h”zizj) = 2h' K ju'z;,

%(huu"u’) =2u'z;,
which wait for future applications.
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