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FORMAL FOUNDATION OF ANALYTICAL

DYNAMICS BASED ON THE

CONTACT STRUCTURE

MINORU KURITA

Dedicated to Prof, K. Ono in celebration of his 60th birthday

A systematic treatment of analytical dynamics was given by E. Cartan

in [1], where the 1-form Σ ^ ί ^ i — Hdt plays the fundamental role. We
i

give here a further investigation. One of our main purposes is to clarify

relations between dynamical systems and Finsler spaces and the other is to

formulate an intrinsic bundle structure of the systems. This paper is closely

related to my previous papers [4] [5].

1. A contact structure on the dynamical system

The phase space in analytical dynamics can be stated mathematically as

follows. Let M be an n-dimensional differentiate manifold of class C°° and

local coordinates of a point x in M be x1, , xn. Let p be a vector

in the dual tangent space whose components with respect to the natural

frame are p19 , pn. The dual tangent bundle CT(M) of M consists of

points {x,p) and CT(M) is nothing but a phase space. By the coordinate

transformation

X1 = ψ\x\ , xn) (i = 1,2, • • - , * ) (1. 1)

p / s a r e t r a n s f o r m e d as

We omit summation symbols in this paper, as is usual in the tensor calculus.

We denote the time interval — oo < t < oo by τ. A function H = H{x9p9t)

of class C°° on CT{M) x r with the assumption

the rank of the matrix ( d2# ) = n (lβ 3)
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defines a dynamical system on M. Hereafter we use notations Hxt, HPι9

HPiJ)j for the derviatives dHldx\ dHldpi9 d2HldPidpj.

In general a 1-form ω on a 2n + 1 dimensional manifold such that

ω Λ (rfω)n 7̂= 0 is said to define a contact structure. Here we have

THEOREM 1. A l-form Ω = pidxi — Hdt defines a contact structure on
CT(M) x τ, where exceptional points form a set without inner points.

This can be verified as follows. We get by calculation

Q A (dΩ)n = (-1) 2 {ViH9i- H)dpλA AdpnAdxιA • AdxnAdt.

If ViHPi—H vanishes on a open set we get by differentiation PiHPiPj = 0

which contradicts to (1. 3).

Next we put

θι = dxι - HPidt, Pi = dpi + # χ i dt (i = 1, - , w). (1. 4)

Then we get a fundamental relation

dΩ= PiAβ*. (1.5)

A curve a; = &(*)> p = 3?(i) on CT(M) is called a d̂tfA if it satisfies 0* = 0,

^ = o (ί = 1, , n). Then we get

T H E O R E M 2. We take a family C of curves x(t), p(t) (t1^t ^ t2) with

x{1) = x{tx), ίc(2) = x(tz)9 where xw and x{2) are fixed points in M.

The integral \ Ω is stationary for the path in the above sense among the family C.

The proof rums as follows as is essentially given in [1], We take a 1-para-

metric family x{t,ε), p{t9ε) from C and assume that ε = 0 for the path.

Then we have dΩ(d/dt9dldε) = Pt(dldt) θ\dldέ) - Pt(dldε)θ\d/dt) and for ε = 0

θ\dldt) = 0, Piidjdt) = 0, and so

dU\ dt * dε ) " dt u \ dε ) dε u \ dt ) ~ Ό'

Hence we get
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Next we take a 1-form

ω = Pidx* (1. 6)

on CT{M). We restrict this to a submanifold generated by a family of paths

x = x{t9a\ , ak), p = p{t,ai, , ak). By virtue of the relation θ\dldt) =

0, Piid/dt) = 0 we get by the same process as in the proof of theorem 1

dΩ{dldt, d/da1) = 0. Hence dΩ, which is an exterior differential form of

second order, does not contain terms dtt\daι. We put dΩ = mhιdah/\daι

{mhι = —mιh). Then by d{dΩ) = 0 we see that dΩ does not contain t. When

we put t = const., dΩ reduces to dpίAdxί and we get the well known

theorem.

THEOREM 3. The form dω = dPiAdx* on CT{M) is invariant for a shift of

points {x,p) along the path through each point.

This leads to an invariance of

Λ

where / \ means a lack of the terms dpt and dx\ This is a volume ele-

ment for a set of paths in CT(M).

2. Finsler space
Let M be an n-dimensional differentiate manifold with a point x,

whose local coordinates are a;1, , xn. We denote the components of a

vector y in T{M) at x by yι

9 , yn with respect to the natural frame.

A Finsler structure F on M is defined by a function F = F(x9y) on Γ(Λf)

(2/ Ψ 0) or its subspace, satisfying the following conditions.

(1) F{x, y) is positively homogeneous of degree 1 in y1, , yn

(2) rank of the matrix ( „ ^ τ ) is ^ — 1.

When we put Pi = % (i = 1, , n), (2. 1)

we can define a fundamental mapping (2c, 2/)->(#>#)• The image of the

mapping is a hypersurface N which we called p-manifold in [4] [5]. A 1-form

ω = ptdx1 on N gives a contact structure, and when we express N locally

by
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pn = - H(x\ , xn, p19 , pn^) (2. 2)

and put 0α = dxa — HVadxn, ρa = rfpα + Hχadxn, we get tfω = /0αΛ#α. Here

the index a runs as <z = 1, 2, , n —1. The solution curves of 0α = 0,

Pa = 0 are lifts to CT(M) of extremals on M of our Finsler structure. (The

sign of ρa is different form that in [5]. ) The form ω is invariant under a

dilatation (or a geodesic flow c.f. [4] p. 93). Hence the invariance of

\ Λ dPih- Adpn
i

AdxxA- Adxn (2. 3)

follows.

We can construct conversely a Finsler structure from a hypersurface in
CT{M) given by (2. 2), where the rank of the matrix (HPaPt) is equal to n — 1.

(#, & = 1, , n — 1) This can be done as follows. We put za = HPa. By

the above assumption pα 's are functions of x1, , #n, 31, , z71"1 locally.

We put za = yajyn and define F by

F = pα2/α — //(α;1, , xn, Pi, , Pn-i)yn (2. 4)

When we consider F as a function of x\ , xn, y1, , yn it is homo-

geneous of degree 1 in y1, , yn. Moreover we get

=~ Pa ~\~ y — — — y —-
/α dPb dya

dH d% n _ rr _ _ rr _

Finally by the differentiation of ya = ynHPa with respect to yc we get

δac = ynHVaVbFybyc Hence the rank of the matrikx ( i v r ) is the same with

that of (HPaVb), namely n — 1. Thus we have proved

THEOREM 4. i w ίfe hypersurface (2. 2), zffertf ίfe rawA of the matrix {HPaPb)

is equal to n — l, we can define a Finsler structure by (2. 4) on M, whose p -manifold

is (2. 2).

3. Relations between dynamical systems and Finsler spaces

By theorem 4 we can construct a Finsler structure on the dynamical

system. We only put xn+1 = t, pn+1 = — H. Then applying theorem 4 to

this case we get
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THEOREM 5. For a given dynamical system defined in section 1 we can construct

a Finsler structure F on MXτ in such a way that the lifts of extremals of F to
cT{Mx T) correspond to the paths of the dynamical systems.

As an example we take up the fundamental case

H = \ 9iJ\x) {Vi - ct(x)) (pj - cj(x)) + U(x),

where x = {x1, , xn) and det{gίJ)ψ0. We put {giΛ) = (gίj)~ι. We have

z* = HPt = gίJ(Pj - cj), Pi- c< = giόz
j. Putting z* = yΊvn+1 we get F = Pύi1 -

Hyn+1 = {2yn+1)-1gijy
ίyi + c^1 — Uyn+1. And so the paths of our dynamical

system correspond to the extremals of the integral

ctx - U(x))dt.

Next we take up a case of an autonomous system. This means that

H(x,p,t) does not contain t. In this case along each path, namely a solu-

tion curve of Qι = 0, pt = 0, H is constant, as is well known. We take up

a hypersurface

H{x,p) = E (const.). (3. 1)

We assume gradp H = {HPί, , HVn) ψ (0, , 0). (The set of points such

that grad2)Jfί=0 is a one without inner points.) Then we can assume HVni=0

without loss of generality and we can put

p 9 = - h(x\ , xn, ? ! , • • • , pn-i) (3. 2)

locally. If we know

we can introduce a Finsler structure on M based on the equienergy surface

(3. 1) by theorem 4. We have by (3. 1) and (3. 2)

H(x\ , xn, p19 , pn-ίf -h) = E. (3. 3)

Now we take x\ , xn, p19 , pn^19 E as independent variables and

differentiate (3. 3) with respect to pa. Then we get dhjdpa = HpJHPn. Again

we differentiate this with respect to pb and we get

rr rr Hί rr J*L , rr ^h dh d*h
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Putting Ya=HPnXa, Yn=-

d2h
~XaXb = (Hp r

YJHpn we get

Hence we get

THEOREM 6. If the quadratic form HPiP.Y^Yj is of rank n — 1 for Yt satisfy-

ing HPiYi = 0, we can introduce a Finsler structure F based on the equienergy surface

(3. 1) as in theorem 4.

Explicit calculation of F runs as follows. We put yι = λHv.9 from which

we get pt = Ki(%9 z) where zi = yVλ. We put these into H(x,p) — E = 0 and

we get λ locally, which is possible when

dλ

This can be verified as follows. We have z1 —HP.{x,K{x9z)) and by different-

iation with respect to z* we get diS - HPiPkdKkl3zj. Hence (dKJΘzj) is an

inverse to (HPiPj). Now the assumption in theorem 6 rp.rhir.es tn

HΌ.

Tj rj

• £lPnPn Jti

ΉPn 0

which proves (3. 4), where the exceptional points form a set without inner

points.

The application of theorem 6 to the case

U(x)

gives F = pd = λ-ίgijy
ίyj + c^1 = ± i/2(E - U)gυy

ιyj + c.y1, (3.5)

which is known as Maupertuis's principle, (c.f. [3] p. 225)

Next we consider a relation between the invariant volume element

dV = (-1) (dω)nlnl = dpx/\ AdpnAdx'A (3. 6)

on CT(M) and that on the equienergy surface (3. 1). By theorem 6 a Finsler

structure is introduced on M corresponding to (3. 1). The contact structure
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associated with it can be given by ω = Vidx1 (E = const.) and the invariant

volume element on it is given by a constant multiple of (2. 3), namely

dVE = Σί-D^Pir fPiΛ yCδlΛ AdpnAdx1A Adxn. (3. 7)

We have by (3. 3)

dpn = -(ΉpJ-1 (lίtdx* + HVadVa -r </£) -(ί = 1, , n; a=l, , w-1).

Putting this into (3. 6) (3,7) we get the following relation.

THEOREM 6. dV = (PiHp^

4. Structure equations of dynamical systems

We consider a dynamical system with a function H= H(x,φ,t). Putting

θj = tfa* - jyPtrf/, ^ = dVi + ίζ* rf/ (4. 1)

we have got for Ω = Pidxι — Hdt

Now we take up a coordinate transformation

»' = 9*(«S , »n)" (ι = 1, , «>. (4. 2)

Then we get by virtue of the relation p t = pjdx^dx*

When we put £* = rfά* — £Γpt rfί, /ô  = dpt 4- fliίrfί, we get

Then we seek for

^ = Pi + ^ ^ (r i y = rH) (4. 4)

3αy

such that μi = -j^Γμj. (4.5)

(4. 4) assures the relation dΩ = μiAΘ1. We put

«(i = ft<«/, W = ftip,, A*̂  = HPiPj. (4. 6)

(Au) is transformed as ^ tensor for the transformation (4. 2). We have
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dθι = - (bjθ1 + hiS

Pί)l\dt, dpi = (βy** + b{p3)Kdt. (4. 7)

By the frame transformation θ1, pt, dt -> 0\ pi, dt in the dual tangent

bundle of cT(M)xτ, where μ/s are given by (4. 4) we get

dθι = - ((b'j - h™rkj)β! + h"μj)Adt. (4. 8)

Putting dhiS = w|y0* + i '^/a* + wudt (4. 9)

we have »"* = -g^-, W = - ^ g^- H* + -jjr H*, (4. 10)

7ih3

«Λ5 — __ γ »Λjh (A -[-I)
~~ dxk '

With these preliminaries we prove

THEOREM 7. For θ\ Pi given by (4. 1) we can uniquely find

μι = Pι + r ^ {rtJ = rH) (M)

λ{ = PLθ* + Q{kμk + R{dt, (L)

which satisfy the relations

dθι = θsAλ) + mγ&hμt-W'μjKdU (I)

A μk + - | - β ^ Λ ^ ~ V Λ Λ , (II)

ί = 0. (Ill)

Remark. We assume zίΛb = — zikJ. We have by (4.4) dΩ = μi A0\

Hence 0 = rf(tfβ) = dμiAOί — μthdθ*. Putting (I) (II) into this relation we

get

mf =

î/jb + Zjki + ^Λij = 0.

proof of theorem 7. We will find such μif λ{. Considering the terms in

(III) containing dt we get by (4. 9) (L)

MΓ

Putting (L) into (I) we get

0k + Q?μ* + R)dt) + m)kβJAμk - hίjμjAdt. (4. 13)
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We compare this with (4. 8). Firstly

(B)

and then we get

hίkhjhrkh = -^(hίkbi + hJkbl - wίj). (A)
Δ

Next we get by (4. 13) (4. 8)

PU = Plj, Q}k = ~ m}K (4. 14)

We get by (4. 9) (L)

uίJ + hikP{h + h*JPlh = 0, υί3h + hίkQίh.+ h*JQih = 0. (4. 15)

By (M) (4. 7) dμt does not contain terms μjAμk for the base θ\μi9dt.

Hence Qf = Qψ. (4. 16)

We put Aίlj = hikhιhP{h and jB<yft = A'*QίΛ. Then we have by (4. 14) (4. 15)

(4.16)

= - hlkutJ, ΛίlJ = i4»>,

From these relations we get Aίjι and BiJh. Hence

hίkhJ'hPι

kh = - 4 - (AiΛwly + h^ul1 - hιkuij) (C)

hikQlh = - - L (t;*^ + yiA - ^Λi). (D)

Putting (htJ) = (A^)"1 we can resume (A) (B) (C) (D) as follows, where vtJk,

wiJ are given by (4. 10) and uiJ by (4. 11).

rtJ = \ {Kjb\ + hikb) - hikh3hw
kh), (A')

R) = A«*rw - bj, (B')

Pϊ/ = - -y- (*««" + ^ < M " ~ h«nhtιhjmuT) (C)

Qi^ = - « ί ' = - ~ *« (»" ' + « ! y i - »"')• (D')
Δ

Now we will verify that (M) (L) with (A') (B') (C) (Dr) satisfy (I) (II) (III).

By (4. 9) (4. 15) we get (III). By (4. 13) (4. 14) (B) (4. 8) we get (I). As to

(II) we proceed as follows. We put
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driS = sijkθ
k + sϊj μjc +

Then we have by (4. 1) (4. 4)

(4. 17)

We express dμi + μ5Kλ{ in Θ\ μi9 dt by (4.4) (4.7) (L). We have

dμ* + μjAλi = d(Pi + nfi1) + μ,A{PίkP + Q{kμk + R{dt)

& + Htμj - rjk^))l\dt + {Sijjc^ + stjμt + Sijdt)A0l'

- hjk{μk - rmθh))Adt + μJA{P{τcθk + R{dt).

These reduce to (II) when we put

Wij
 =
 Pij

 S
ij9 %ijk

 = S
ijk

 S
ikj9

Kij = — a,/ + rjkb\ + rikb
kj - hkhrkirhj + $iJ%

Thus we have proved theorem 7.

As a consequence we get the desired relation (4. 5), namely

THEOREM 8. For the coordinate transformation xι = φ^x) (i = 1, , n) θι

and μi are transformed as

si _
0 "

Proof For the coordinate transformation in question θι is transformed

as in (4. 3). We take λ{ which is transformed as connection forms from λ{.

Then dθi — θjAλj is transformed into dθ* — θjM) as a vector. Therefore,

if we take mjfc, hu

9 nk

ίj9 KΦ zijk which are transformed from mγ9 hίJ etc

as tensors and βt = μjdxjldx\ the relations (I) (II) (III) hold good for θ\ μi9

λj, hίJ etc.

Now by βi = (Pj + r^dx^dx1 and (4. 3) we have βi = ρi + ti5θ\ On

the other hand we have dΩ = μtK& = ftΛS* and dΩ^pi/\θ\ Hence we

get tij = tji. By theorem 7 λ{ and βi = pi + fifi5 [fi5 — fj€) are determined

uniquely from θ\ pi so as to satisfy (I) (II) (III). Hence βt coincides with

βi determined from corresponding S* and pt. Q.E.D.

Next we take up the fundamental case
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H=z-γ gίJ(χ> t) (Pi — cάx, t)) {pj — cj(x, t)) + U(xf t).

Then we have

_ XT _ nij vi3k — o fJij _ d9lJ

— n V i V . — g , v — υ , uk k
uX

- ck) -

- 9"{Vι - C).

We put (gtJ) = (g^)-1 and

l i l 2 9

 dχ dx d

We get from (A') (B') (C)

Pa = ΠJ, QίJ = 0, mi1 = 0,

Hence by (E) and (4. 17) n\5 = 0.

Next we take up the simpler case

Hg

Then we have P*tJ = Γk

ij9 riS = - Γk

upk, R} = gkhΓjhpk and

0* = rfα* - gίjpjdt, μt = ̂ , - Γkjpkdxj + C îrff.

W e P U t Uii = ^ 3 ^ ~ r " ' ~W ' R m - ~9? d^~

Then we get

zίjk = ^

5. Product structures and connections
By the preceding consideration we can naturally construct a product

structure on cT{M)Xτ when we decompose the dual tangent space of CT{M)
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Xτ into Si spanned by θι, , θn

9 S2 spanned by μ19

ned by dt. If we put

and T span-

/ v 3*'

P =

0 0

\

o ( # ) o ' Λ

•0 0 \

0

0

0

-Uj

0

°\
0

0

P constitutes the structure group and A gives an affine connection on CT(M) x τ.

Moreover we have

THEOREM 8. The quadratic forms h^θ*, hίJ'/**/*/> θiμi are intrinsic forms

on cT(M)Xτ.

For an autonomous case H=H(x,p) we have dx\ θi = dpt + r^dx5 from

θ\ μt when we put t - const. A product structure can be defined on
CT(M) when we decompose the dual tangent spaces into Si spanned by dx1,

• , dxn and S2 spanned by σ19 , σn. The fundamental quadradratic

forms hijdxidxi, hijσισj, dxiai are given on CT{M), and an affine connection

is also defined.

6. Mapping by the flow

We shift each point (x,p) of CT(M) along the path, namely the solution

curve of θι = 0 and ^ = 0 (hence μi = 0). We fix a time interval t and we

get a mapping of (%,p)-+(x',p') of CT(M) into itself which we call a flow.

We will show how the tangent spaces are mapped by the flow.

We take a vector field T = d/dt along the flow. Then we get

Θ\T) = 0, μt(T) = 0.

Let X be a vector field which commutes with T. Then we get from (I)

(II) in 4

T{μt{X)) = λ{(T)μj(X) + KiβΘ
j{X\

and 2{(T) = R{. We put X= u1-^ + Vi-J— and we get
dx oPi

θ\X) = «', μt(X) = (Pt

Putting zt = μt(X) we get
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= - R)uj

dt "3™ ' " " " dt

Here we have by (III)

dklJ _ _ hik DJ _ Ijkj ftί (Ω θ\

The equations (6. 1) (6. 2) are fundamental and correspond to the Jacobi's

equations in the calculus of variation. The invariance of the volume element

(3. 6) can be seen from the vanishing of the trace of the matrix.

We have from

d
dt

which wait for

1

(6. 1) (6. 2)

d t η _

dt ιJ

future applications.

)

*',

2u'

(Rί) /.

d { h i j

dt tZj)- 2hilKuu
Jzi,
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