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ON A CROSSED PRODUCT
OF A DIVISION RING

NOBUO NOBUSAWA

1. Let R and C be a ring and its center, and G an automorphism
group of R of order n. By a factor set {c,.}, we mean a system of
regular elements ¢, . (6,7 € G) in C such that

0
(1) CoivpCrip = Cot,6Cair »

A crossed product W = W (R, G, {c,..}) is a ring containing R such that
w =UEZ(};u,,R (direct) with regular elements #, and au, = u,a’ for a in R and
Uslhy = UgeCs o - As usual, we identify W(R, G, {c,..}) and W(R,G, {c; :})
when ¢,, . and ¢, . are cohomologous (in C). When €5 - =1, the crossed
product is called splitting. In this note, we shall deal with a division ring
D as R, and when S = {a€ D|a’ =a for all ¢ in G}, we suppose [D : Sl=n.
In this case, D/S is called a strictly Galois extension with a Galois group
G([31,{4]). The purpose of this note is to discuss a splitting property of W
by extending the base ring S as well as D, which is an analogy of the
classical result of commutative case. We shall show that there exist a divi-
sion ring D’ such that S< D’ € D and a kind of (non-commutative) Kronec-
ker product D*¥* = D® D" over S such that W(D* G, {c,, .}) becomes splitting.
The construction of the Kronecker product seems very interesting to the
author and an example will be given in the last section.

2. Let D be a division ring and z,,---, 2, m indeterminates. A
polynomial ring D[x, * -+, x,] is defined in a natural way, supposing
commutativity of multiplication between elements of D and z; and bet-
ween x; and z;. The quotient division ring of D[x,, - -+, x,] 18 called
the rational function division ring, whose existence is almost clear when
we imbed D[z, :--, #,] into the formal power series division ring
D{x, +++, 25} = D{x  H{Xp-1} - {2,} Of 2, ---, 2, over D and take the
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minimum division ring containing it. We denote the rational function
division ring by D(z). A discrete valuation of rank m is then introduced
in D(z) as follows. Every element of D(x) is considered as a formal power
series in D{x,, + -+, x,}, and let us express an element f(z)= Xa(i;, * - *,
im)@ 't + + - xin,  Define a mapping ¢ such that o(f(x)) = (s;, = * *, Sn)
where s, = min i, (the min being taken over all i, such that a(i}, -+ -, in)
#0), S, =min ¢, (the min being taken over all i, such that a(s; i, - - -,
im)#0), ++++, and finally s, = min i, (the min being taken over all i,
such that a(s;, + *+, Sp-1, in) #0). Between two m tuples of integers (i;, *
<y im) and (4, * -, ju) we introduce an order such that (i, -, i) >
(Go**sdm) if iy >34, orif i, =4, and i,> 7, -+ , or if i, =7, i,=7s
*y bme1 = Jm—y and i, >j,. All f(x) such that ¢(f(x))=(0, ---,0)
form a ring called the valuation ring and denoted by Vp, and all f(x)
such that ¢(f(x))>(0, ++-,0) form a prime ideal of V., which is called
the valuation ideal and denoted by Py, (See [6])

3. Let D, G and {c,, .} be as in 1. We consider a rational function
division ring D(¢, *+ * *, t,) = D(¢) where we suppose m = —1. We want
to extend G to an automorphism group of D(¢) as follows. G acts on ele-
ments of D as usual, but ¢; will be mapped in the following manner. Let
us express G = {ay, ***, opn,¢c} and set {,=1¢;, for ¢ =¢; and ¢, =1. Then
set

(2) t; = t;ltdrca, T (‘7’7 € G)-

(Here we assume that ¢,,.=c. ,=1)
It is seen that G induces an automorphism group of D(¢), since (¢[)f =
(£ e € ) = (850t p Co, o) M (E5 b gepCari )€l o = tTptacoCaep = t,° due to (1). Let
B be the fix ring of G, namely B = {f(¢t) € D(¢)| f(¢)’ = f(¢) for all ¢ in G}.
This is an analogue of the Brauer field defined in [5]. Naturally G is a
group of outer automorphisms of D(¢) and hence [D(¢): Bl=n by Galois
theory of division rings. (See [1]). What is more important, a basis #,,
-+, u, of DIS is also a basis of D(¢)/B. (2) implies that the crossed product
W(D(t), G, {c,. -}) is a splitting crossed product. Now our intension is clear.
Specialize B and D(¢) as well to get a finite extension D’ and D* such that
W(D*/D',G, {c, .}) is again splitting. To do so, the discussion in 2 will be
applied for the case x;,=1—1¢; (i =1, - -+, m). Thus D(¢)= D(x) and, by
the specialization with respect to the valuation in 2,¢,—>1 and ¢z —>¢,, o,
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i.e. ¢, and ¢: are all contained in Vp(y — Ppwy, which also means ¢, are
units. Keep this important fact in mind.

Let V5 be the valuation ring of B; Vz=Vp, N B, and Py the valuation
ideal of B; Pz = Pp,, N B. Then the specialization D’ of B with respect
to the valuation is Vy/Ps and clearly S< D' c D. Now consider a set

U= {; u.fx)| fi{x) € Vg} and a set P= @ uipi(x)|pi(x) € Pg}.

ProrosiTioN. U is a ring and P is an ideal of U.

Proof. To prove Proposition, it is sufficient to show that f(x)u, €U
for f(x) in Vy and p(x)u; € P for p(x) in Ps. Let v, - - -, v, be the dual
basis of u,, + -+, u, with respect to the trace function Tr of D/S for the
Galois group G. That is, Tr(viu;) = 6; (Kronecker delters). The existence
of such v; is clear since Tr(D)# 0, the latter being a consequence of the
existance of a normal basis for D/S [2]. (Also see[3].) Put f(x)u; = Zu.hs(x)
with #;(x) € B, and we have hx) = Tr(v.f(x)u;). But clearly Tr(zjkf(x)uj)
€ Vo and hence hy(x) € Vy which implies f(x)u; are contained in U for
f(x) in V. The second part is similarly proved.

4. Now put D*=U/P. (Note that P is not necessarily prime although
we use the letter P.) Every element of D* has expression u,® a; where
a;€ D' and conversely. The multiplication of 3} u; ® a; and i} #; ® b; should
be performed as follows. Let f(x) (or g(x)) be elements of V; such that
fi{x)—>a; (or, g(x)—>b;) in the specialization. When (2 u;f:(x)) (X u:g,(x))
= ush(x) with hyx) in Vy and h(x) —>c;, we have (3 u;® a) (X2 %, ® b;)
=21u;®c;. Due to Proposition, the product is well defined (does not
depend on the choice of f{x) and gy(x)). D* is a generalized Kronecker
product D@D’. Lastly, we observe that G induces an automorphism group
of U and that of P respectively, and hence G is considered to be an auto-
morphism group of D*. Clearly the fix ring of G is D'=S®D’. Re-
garding t,, set t, = Xu;fi(x) with fi(x) in B. Since fix) = Trlvit,) = Eéigt:
€ Vpwy N B, t, are in U. Naturally ¢, & P. Applying the same discruession
to t;', we can see t;'€ U —P. Thus, if we set s, =¢, mod P, (2) says

$T = 57'S4¢ €4, -, Which proves our result:

THEOREM. W(D*,G,{c,, .}) is a splitting crossed product.
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CoroLLarY. W(D,G,{c,, .}) € D, (a matrix algebra over D).

Proof. By denoting by D, the right multiplication ring of D, GD,
coincides with the totality of S (= S,)-homomorphisms of D to D by Galois
theory of division rings. Now, W(D,G,{c,, .}) € W(D*, G, {c,, .}) = W(D*,
G, {1}), the latter being isomorphic to GD*. From the first discussion,
GD* coincides with the totality of D’-homomorphisms of D*, which is
naturally (isomorhic to) Dj.

5. Let A denote the quaternion algebra Q(i,j) over the rational
number field @ as usual. Consider a simple extension A/Q(i). This is
a strictly Galois extension with a Galois group G ={e,0} where j*=—3j
(=iji7!). Take a factor set: c¢.,.=c¢,,=¢Cs=1 and ¢, ,=2. In this
case, (2) says ¢t =2t (t=t,). Then B=Q)(¢t + 2t jt —2t7'). By
the specialization t —>1, D"=A and hence D¥*=A® A over Q(i). We
take #, =1 and u, =j. Now we show some examples of multiplication.
Since 1®j=1-(—j(t—2t")+j-0mod P, 1®7)1ARj)=(—7(t—2¢1)) mod
P=—(t—2t"? mod P=—1 mod P=1®(-1). Since j®(—1)=1.0+
j+(=1) mod P, 1®/)(G®(—=1)=(—7(t—2t"))(—j) mod P=—(t—2t7")
mod P=j-(j(¢t —2¢7") mod P=j®(—j). Similarly, we have (j ®1)(1®j)
=jQ®jand (®1)(G®(—1)=1®1. Thus, combining all results, we have
1®;+;®1)1®j+j®(—1) =0, which shows D* is not a division ring.

Since ¢ = é— (¢ + 2t7%) — jj(¢ — 2¢71)), ¢ mod P = %(1 ®3+7®j), and
since t° = % (¢ + 2t + jj(t —2¢t7Y), t° mod P= % 1®3—7& 7). On

the other hand, since j = —j(t —2¢t™!) by t —>1, j®j = j(—j(t — 2¢™!)) mod
P, which shows (j®j) /®j)=(t—2t"") mod P=1®1. Thus, if we set
s=¢ mod P, ss’= %(1 ®9—1®1)=2, or s =2s"'. This is nothing but
(2).
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