M. Nisio

Nagoya Math. J.
Vol. 34 (1969), 89-104

ON THE CONTINUITY OF STATIONARY GAUSSIAN PROGESSES

MAKIKO NISIO

1. Introduction

Let us consider a stochastically continuous, separable and measurable stationary Gaussian process ${ }^{1)} \boldsymbol{X}=\{X(t),-\infty<t<\infty\}$ with mean zero and with the covariance function $\rho(t)=E X(t+s) X(s)$. The conditions for continuity of paths have been studied by many authors from various viewpoints. For example, Dudley [3] studied from the viewpoint of ε-entropy and Kahane [5] showed the necessary and sufficient condition in some special case, using the rather neat method of Fourier series.

In this note we shall discuss the continuity of paths of \boldsymbol{X}, making use of the idea presented by Kahane. Our results are following: We express the covariance function ρ in the form

$$
\rho(t)=\int_{-\infty}^{\infty} e^{i t \lambda} d F(\lambda)
$$

with a finite measure $d F$, symmetric with respect to origin.
Put $\quad s_{n}=F\left(2^{n}, 2^{n+1}\right], \quad n=0,1,2, \cdots$.
Theorem 1. If $E \sup _{t \in[0,1]}|X(t)|<\infty$, then $\sum_{n=0}^{\infty} \sqrt{s_{n}}<\infty$.
Theorem 2. Suppose that we can choose a decreasing sequence $\left\{M_{n}\right\}$ so that $M_{n} \geq s_{n}$ and $\sum_{n=0}^{\infty} \sqrt{M_{n}}<\infty$. Then $E \sup _{t \in[0,1]}|X(t)|<\infty$.

Theorem 3. Suppose that ρ is convex on a small interval $[0, \delta]$. Then $\sum_{n=0}^{\infty} \sqrt{s_{n}}<\infty$, if \boldsymbol{X} has continuous paths.
By virtue of Theorem 2, we can easily see
Corollary. Suppose that ρ is convex on a small interval $[0, \delta]$ and s_{n} is

[^0]1) We mean a real valued process.
decreasing. Then \boldsymbol{X} has continuous paths if, and only if, $E \sup _{t \in[0,1]}|X(t)|<\infty$, which is equivalent to $\sum_{n=0}^{\infty} \sqrt{s_{n}}<\infty$.

The author with to express her sincerely thanks to Professor T. Sirao for his valuable suggestions.

2. Lemmas

Let $\left\{T_{j}, j=1,2, \cdots\right\}$ be a sequence of increasing positive numbers such that $\sum_{j=1}^{\infty} \frac{1}{T_{j}}<\infty$. According to [5, p. 69], we shall define following functions,

$$
\begin{aligned}
& \chi(x)=\max (1-|x|, 0), \quad-\infty<x<\infty, \\
& \theta_{r}(\lambda)=\prod_{j=r}^{\infty} \chi\left(\sum_{T_{j}}^{\lambda}\right), \quad-\infty<\lambda<\infty, \\
& K_{r}(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i t \lambda} \lambda\left(\frac{\lambda}{T_{r}}\right) d \lambda \\
& l_{r}(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i t \lambda} \theta_{r}(\lambda) d \lambda=\frac{1}{\sqrt{2 \pi}} \int_{-T_{r}}^{T_{r}} e^{i t \lambda} \theta_{r}(\lambda) d \lambda \\
& l_{r}^{*}(t)=\frac{1}{\sqrt{2 \pi}} \int_{-T_{r-1}}^{T_{r-1}} e^{i t \lambda} \theta_{r}(\lambda) d \lambda .
\end{aligned}
$$

As to these functions, we can easily see that θ_{r} is symmetric, non-negative and continuous, and l_{r} and l_{r}^{*} continuous. Since

$$
\begin{equation*}
K_{r}(t)=\frac{\sqrt{2}}{t^{2} T_{r} \sqrt{\pi}}\left(1-\cos T_{r} t\right) \geq 0, \tag{1}
\end{equation*}
$$

l_{r} is non-negative as the convolution of $K_{n}, n \geq r$. The following Lemma 1 is clear.

Lemma 1.

$$
\begin{aligned}
& l_{r}(t)=\left(l_{r+1}^{*} * K_{r}\right)(t) \equiv \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} l_{r+1}^{*}(t-s) K_{r}(s) d s \\
& l_{r}(t)=\left(l_{r+1} * K_{r}\right)(t) \equiv \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} l_{r+1}(t-s) K_{r}(s) d s \\
& \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} l_{r}(t) d t=1 .
\end{aligned}
$$

We express \boldsymbol{X} in the form

$$
X(t)=\int_{-\infty}^{\infty} e^{i t \lambda} d \Phi(\lambda)
$$

with a random measure $d \Phi$. Let \boldsymbol{X} satisfy the condition of Theorem 1. We define stationary Gaussian processes \boldsymbol{Y}_{r} and \boldsymbol{Y}_{r}^{*} by

$$
\begin{equation*}
Y_{r}(t, \omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} X(t-s, \omega) l_{r}(s) d s \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
Y_{r}^{*}(t, \omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} X(t-s, \omega) l_{r}^{*}(s) d s \tag{3}
\end{equation*}
$$

respectively. By virtue of the condition of Theorem 1, we can see that, for a. a. ω, the Lebesgue integral of the right side of (2), as well as (3), is a continuous function of t. Moreover, \boldsymbol{Y}_{r} and \boldsymbol{Y}_{r}^{*} are expressible in the form

$$
\begin{equation*}
Y_{r}(t)=\int_{-T_{r}}^{T_{r}} e^{i t \lambda} \theta_{r}(\lambda) d \Phi(\lambda) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
Y_{r}^{*}(t)=\int_{-T_{r-1}}^{T_{r-1}} e^{i t \lambda} \theta_{r}(\lambda) d \Phi(\lambda) . \tag{5}
\end{equation*}
$$

As to the supremum value of these processes, we have Lemma 2,
Lemma 2.

$$
\begin{aligned}
& E \sup _{t \in[0,1]}\left|Y_{r}(t)\right| \leq a \\
& E \sup _{t \in[0,1]}\left|Y_{r}^{*}(t)\right| \leq 2 a
\end{aligned}
$$

where $\quad a=E \sup _{t \in[0,1]}|X(t)|$.
Proof. By Lemma 1, we have

$$
E \sup _{t \in[0,1]}\left|Y_{r}(t)\right|<\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} E \sup _{t \in[0,1]}|X(t-s)| l_{r}(s) d s=a .
$$

Put $Z_{r}(t)=Y_{r}(t)-Y_{r}^{*}(t)$. Then \boldsymbol{Z}_{r} has continuous paths and is expressible in the form

$$
Z_{r}(t)=\int_{T_{r-1}<|\lambda| \leq T} e_{r}^{i t \lambda} \theta_{r}(\lambda) d \Phi(\lambda)
$$

Therefore \boldsymbol{Z}_{r} and \boldsymbol{Y}_{r}^{*} are mutually independent. So, for any topological Borel set A of $C[0,1]$,

$$
P\left(\tilde{\boldsymbol{Y}}_{r} \in A\right)=\int_{C[0,1]} P\left(\tilde{\boldsymbol{Y}}_{r}^{*} \in A-\xi\right) P\left(\tilde{\boldsymbol{Z}}_{r} \in d \xi\right)
$$

where f stands for the restriction on $[0,1]$ of f. Hence, for $\varepsilon>0$,

$$
\begin{aligned}
& P\left(\sup _{t \in[0,1]}\left|Y_{r}(t)\right|<c\right) \leq \sup _{\xi \in C[0,1]} P\left(\sup _{t \in[0,1]}\left|Y_{r}^{*}(t)+\xi(t)\right|<c\right) \\
\leq & P\left(\sup _{t \in[0,1]}\left|Y_{r}^{*}(t)+\xi_{c}(t)\right|<c\right)+\varepsilon
\end{aligned}
$$

with $\xi_{c} \in C[0,1]$. On the other hand, by virtue of the symmetricty of \boldsymbol{Y}_{r}^{*},

$$
P\left(\sup _{t \in[0,1]}\left|Y_{r}^{*}(t)+\eta(t)\right|<c\right)=P\left(\sup _{t \in[0,1]}\left|Y_{r}^{*}(t)-\eta(t)\right|<c\right), \eta \in C[0,1]
$$

Therefore, we have

$$
\begin{aligned}
& 1-\left(\sup _{t \in[0,1]}\left|Y_{r}^{*}(t)\right| \geq c\right)=P\left(2 \sup _{t \in[0,1]}\left|Y_{r}^{*}(t)\right|<2 c\right) \\
\geq & P\left(\sup _{t \in[0,1]}\left|Y_{r}^{*}(t)+\xi_{c}(t)\right|+\sup _{t \in[0,1]}\left|Y_{r}^{*}(t)-\xi_{c}(t)\right|<2 c\right) \\
\geq & P\left(\sup _{t \in[0,1]}\left|Y_{r}^{*}(t)+\xi_{c}(t)\right|<c, \sup _{t \in[0,1]}\left|Y_{r}^{*}(t)-\xi_{c}(t)\right|<c\right) \\
\geq & 1-2 P\left(\sup _{t \in[0,1]}\left|Y_{r}^{*}(t)+\xi_{c}(t)\right| \geq c\right) \\
\geq & 2 P\left(\sup _{t \in[0,1]}\left|Y_{r}(t)\right|<c\right)-2 \varepsilon-1 .
\end{aligned}
$$

Tending ε to 0 , we get

$$
P\left(\sup _{t \in[0,1]}\left|Y_{r}^{*}(t)\right| \geq c\right) \leq 2 P\left(\sup _{t \in[0,1]}\left|\dot{Y}_{r}(t)\right| \geq c\right)
$$

Hence

$$
\begin{align*}
& \sum_{n=0}^{N}-\frac{n}{2^{k}} P\left(\frac{n}{2^{k}} \leq \sup _{t \in[0,1]}\left|Y_{r}^{*}(t)\right|<\frac{n+1}{2^{k}}\right) \tag{6}\\
= & \frac{1}{2^{k}} \sum_{n=1}^{N} P\left(\sup _{t \in[0,1]}\left|Y_{r}^{*}(t)\right| \geq \frac{n}{2^{k}}\right)-\frac{N}{2^{k}} P\left(\sup _{t \in[0,1]}\left|Y_{r}^{*}(t)\right| \geq \frac{N+1}{2^{k}}\right) \\
\leq & \sum_{n=0}^{N+1} \frac{n+1}{2^{k}} P\left(\frac{n}{2^{k}} \leq \sup _{t \in[0,1]}\left|Y_{r}(t)\right|<\frac{n+1}{2^{k}}\right)+\frac{N+1}{2^{k-1}} P\left(\sup _{t \in[0,1]}\left|Y_{r}(t)\right| \geq \frac{N+1}{2^{k}}\right) .
\end{align*}
$$

Appealing to the former half of Lemma 2, we have $N P\left(\sup _{t \in[0,1]}\left|Y_{r}(t)\right| \geq \frac{N+1}{2^{k}}\right)$ tends to 0 , as $N \uparrow \infty$. So, (6) implies the latter half of Lemma 2.

Define stationary Gaussian processes \boldsymbol{V}_{r} and \boldsymbol{V}_{r}^{*} by

$$
V_{r}(t)=\frac{1}{\sqrt{2 \pi}} \int_{|s|>\frac{1}{\sqrt{T_{r}}}} Y_{r+1}(t-s) K_{r}(s) d s
$$

and

$$
V_{r}^{*}(t)=\frac{1}{\sqrt{2 \pi}} \int_{|s|>\frac{1}{\sqrt{T_{r}}}} Y_{r+1}^{*}(t-s) K_{r}(s) d s
$$

Then we can easily see, by Lemma 2,
Lemma 3.

$$
\begin{aligned}
& E \sup _{t \in[0,1]}\left|V_{r}(t)\right| \leq \frac{4 \sqrt{2} a}{\sqrt{\pi T_{r}}} \\
& E \sup _{t \in[0,1]}\left|V^{*}(t)\right| \leq \frac{8 \sqrt{2} a}{\sqrt{\pi T_{r}}}
\end{aligned}
$$

3. Proof of Theorem 1.

To prove Theorem 1, we shall firstly show the following proposition,
Proposition. Let $\left\{T_{r}\right\}$ be a sequence of increasing positive numbers such that $\sum_{r=1}^{\infty} \frac{1}{\sqrt{T_{r}}}<\infty$. Then

$$
\sum_{j=1}^{\infty}\left(\int_{T_{j}<|\lambda| \leq T_{j+1}} \prod_{k=j+1}^{\infty}\left(1-\frac{|\lambda|}{T_{k}}\right)^{2} d F(\lambda)\right)^{\frac{1}{2}}<\infty
$$

Proof.
We define successively random variables S_{j}, S_{j}^{\prime} and $H_{j}, j=1,2, \cdots$, as follows,

$$
\begin{aligned}
& S_{1}(\omega) \equiv 0 \\
& H_{1}(\omega) \equiv Y_{1}\left(S_{1}(\omega), \omega\right) \\
& S_{1}^{\prime}(\omega) \equiv\left\{\begin{array}{l}
\min \left\{t ;|t| \leq \tau_{1}, Y_{2}^{*}(t, \omega)=\min _{|s| \leqslant \tau_{1}} Y_{2}^{*}(s, \omega), \text { if } H_{1}(\omega)<\min _{|s| \leqslant \tau_{1}} Y_{2}^{*}(s, \omega)\right. \\
\min \left\{t ;|t| \leq \tau_{1}, Y_{2}^{*}(t, \omega)=\max _{|s| \leqslant \tau_{1}} Y_{2}^{*}(s, \omega), \text { if } H_{1}(\omega)>\max _{|s| \leqslant \tau_{1}} Y_{2}^{*}(s, \omega)\right. \\
\min \left\{t ;|t| \leq \tau_{1}, Y_{2}^{*}(t, \omega)=H_{1}(\omega), \quad\right. \text { otherwise }
\end{array}\right.
\end{aligned}
$$

where $\tau_{1}=1+\frac{1}{\sqrt{T_{1}}}$. We can easily see that S_{1}^{\prime} is measurable with respect to the Borel field, \mathscr{D}_{1}, spanned by $\left\{d \Phi(\lambda),|\lambda| \leq T_{1}\right\}$.

$$
S_{j+1}(\omega) \equiv\left\{\begin{array}{l}
S_{j}^{\prime}(\omega), \text { if } Y_{j_{+1}}\left(S_{j}^{\prime}(\omega), \omega\right) \geq H_{j}(\omega) \\
\min \left\{t ;|t| \leq \tau_{j}, Y_{j+1}(t, \omega)=\max _{|s| \leqslant \tau_{j}} Y_{j+1}(s, \omega), \text { if } H_{j}(\omega)>\max _{|s| \leqslant \tau_{j}} Y_{j+1}(s, \omega)\right. \\
\min \left\{t ;|t| \leq \tau_{j}, Y_{j+1}(t, \omega)=H_{j}(\omega),\right. \text { otherwise. }
\end{array}\right.
$$

$$
H_{j+1}(\omega) \equiv Y_{j+1}\left(S_{j+1}(\omega), \omega\right) .
$$

$$
S_{j+1}^{\prime}(\omega) \equiv\left\{\begin{array}{l}
\min \left\{t ;|t| \leq \tau_{j+1}, Y_{j+2}^{*}(t, \omega)=\min _{|s|<\tau_{j+1}} Y_{j+2}^{*}(s, \omega)\right\}, \\
\text { if } H_{j+1}(\omega)<\min _{|s| \leq \tau_{j+1}} Y_{j_{j+2}}^{*}(s, \omega) \\
\min \left\{t ;|t| \leq \tau_{j+1}, Y_{j+2}^{*}(t, \omega)=\max _{|s| \leqslant \tau_{j+1}} Y_{j+2}^{*}(t, \omega)\right\}, \\
\text { if } H_{j+1}(\omega)>\max _{|s| \leq \tau_{j+1}} Y_{j+2}^{*}(s, \omega) \\
\min \left\{t ;|t| \leq \tau_{j+1}, \quad Y_{j+2}^{*}(t, \omega)=H_{j+1}(\omega)\right\}, \text { otherwise, }
\end{array}\right.
$$

where $\tau_{j}=1+\frac{1}{\sqrt{T_{1}}}+\cdots \cdots+\frac{1}{\sqrt{T_{j}}}$. Successively, we can prove that S_{j} and S_{j}^{\prime} are measurable w. r. to the Borel field, \mathscr{B}_{j}, spanned by $\{d \Phi(\lambda)$, $\left.|\lambda| \leq T_{\jmath}\right\}$.

We shall show the boundedness of H_{j}.

Lemma 4.

$$
\sup _{j=1,2, \cdots}\left|H_{j}(\omega)\right|<\infty, \quad \text { a. a. } \omega
$$

Proof. By virtue of Lemma 3, we have

$$
\begin{equation*}
\sum_{r=1}^{\infty} E \sup _{|t| \leqslant \tau}\left|V_{r}(t)\right|<\infty, \tag{7}
\end{equation*}
$$

where $\tau=\lim _{j \rightarrow \infty} \tau_{j}$. On the other hand,

$$
\begin{align*}
& \quad \sup _{|t| \leqslant \tau}\left|\frac{1}{\sqrt{2 \pi}} \int_{|s| \leqslant \frac{1}{\sqrt{T_{r}}}} X(t-s) l_{r}(s) d s\right| \tag{8}\\
& \leq \frac{1}{\sqrt{2 \pi}} \int_{|s| \leqslant \frac{1}{\sqrt{T_{r}}}} \sup _{|u| \leqslant 2 \tau}|X(u)| l_{r}(s) d s \\
& \leq \sup _{|u| \leqslant 2 \tau}|X(u)|<\infty, \quad \text { a. a. } \omega .
\end{align*}
$$

Therefore, we see

$$
\sup _{r=1,2, \cdots} \sup _{|t| \leqslant \tau}\left|Y_{r}(t)\right|<\infty . \quad \text { a. a. } \omega .
$$

Recalling the definition of H_{j}, we have Lemma 4.

$$
\begin{align*}
& H_{j+1}(\omega)-H_{j}(\omega) \tag{9}\\
= & \left\{\left(H_{j+1}(\omega)-H_{j}(\omega)\right) \vee 0\right\}-\left\{\left(Y_{j}\left(S_{j}(\omega), \omega\right)-\sup _{|s| \leqslant \tau_{j}} Y_{j+1}(s, \omega)\right) \vee 0\right\}^{2)} .
\end{align*}
$$

On the other hand, for $t \in\left[-\tau_{j-1}, \tau_{j-1}\right]$,

$$
\begin{aligned}
Y_{j}(t) & =\frac{1}{\sqrt{2 \pi}} \int_{|s| \leq \frac{1}{\sqrt{T_{j}}}} Y_{j+1}(t-s) K_{j}(s) d s+\frac{1}{\sqrt{2 \pi}} \int_{|s|>\frac{1}{\sqrt{T_{j}}}} Y_{j+1}(t-s) K_{j}(s) d s \\
& \leq \sup _{|t| \leqslant \tau_{j}} Y_{j_{1}+1}(t)+\sup _{|t| \leqslant \tau_{j-1}} V_{j}(t) .
\end{aligned}
$$

So,

$$
Y_{j}(t)-\sup _{|s| \leqslant \tau_{j}} Y_{j+1}(s) \leq \sup _{|s| \leqslant \tau_{j-1}} V_{j}(t), \quad|t| \leq \tau_{j-1}
$$

Therefore,

$$
\left(Y_{j}\left(S_{j}\right)-\sup _{|s| \leqslant \tau_{j}} Y_{j+1}(s)\right\rangle \vee 0 \leq \sup _{|t| \leqslant \tau_{j-1}}\left|V_{j}(t)\right| .
$$

Appealing to Lemma 3, we have

$$
\begin{equation*}
\sum_{j=1}^{\infty} E\left\{\left(Y_{j}\left(S_{j}\right)-\sup _{|s| \leqslant \tau_{j}} Y_{j+1}(s)\right) \vee 0\right\}<\infty . \tag{10}
\end{equation*}
$$

As to the first term of the right side of (9),

$$
\begin{aligned}
& \sum_{j=1}^{n}\left(H_{j+1}-H_{j}\right) \vee 0 \\
= & H_{n+1}-H_{1}+\sum_{j=1}^{n}\left(Y_{j}\left(S_{j}\right)-\sup _{|s| \leq \tau_{j}} Y_{j+1}(s)\right) \vee 0 .
\end{aligned}
$$

Therefore, using Lemma 4 and (10), we get

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left(H_{j+1}-H_{j}\right) \vee 0<\infty, \quad \text { a. a. } \omega . \tag{11}
\end{equation*}
$$

On the other hand, recalling the definition of H_{j}, we see

$$
\begin{equation*}
\left(H_{j+1}-H_{j}\right) \vee 0=\left(Y_{j_{+1}}\left(S_{j}^{\prime}\right)-H_{j}\right) \vee 0 \tag{12}
\end{equation*}
$$

2) $a \vee b=\max (a, b)$.

$$
\geq\left\{\left(Y_{j+1}\left(S_{j}^{\prime}\right)-Y_{j+1}^{*}\left(S_{j}^{\prime}\right)\right) \vee 0\right\}-\left\{\left(H_{j}-\sup _{|t| \leqslant \tau_{j}} Y_{j+1}^{*}(t)\right) \vee 0\right\}
$$

So, using the similar method as (10), we get

$$
\begin{equation*}
\sum_{j=1}^{\infty} E\left\{\left(H_{j}-\sup _{|t| \leqslant \tau_{j}} Y_{j+1}^{*}(t)\right) \vee 0\right\}<\infty . \tag{13}
\end{equation*}
$$

Therefore, combining (11) and (13) to (12), we have

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left(Y_{j+1}\left(S_{j}^{\prime}\right)-Y_{j+1}^{*}\left(S_{j}^{\prime}\right)\right) \vee 0<\infty, \quad \text { a. a. } \omega \tag{14}
\end{equation*}
$$

Put

$$
\begin{aligned}
& \gamma_{j}=Y_{j+1}\left(S_{j}^{\prime}\right)-Y_{j+1}^{*}\left(S_{j}^{\prime}\right) \text { and } \\
& v_{j}=\int_{T_{j}<|\lambda| \leqslant T_{j+1}} \prod_{k=j+1}^{\infty}\left(1-\frac{|\lambda|}{T_{k}}\right)^{2} d F(\lambda) .
\end{aligned}
$$

Then, we see, appealing to the independence of $d \Phi$,

$$
P\left(\gamma_{j} \leq x / \mathscr{B}_{j}\right)=\frac{1}{\sqrt{2 \pi v_{j}}} \int_{-\infty}^{x} e^{-\frac{y^{2}}{2 v_{j}}} d y
$$

since S_{j}^{\prime} is \mathscr{B}_{j}-measurable.
Hence

$$
\begin{equation*}
E\left(\gamma_{j} \vee 0\right)=\frac{\sqrt{v_{j}}}{\sqrt{2 \pi}} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left(\gamma_{j} \vee 0\right)^{2}=\frac{v_{j}}{2} \tag{16}
\end{equation*}
$$

Appealing to the following Lemma
Lemma. [5, p. 64]. If X is a non-negative random variable with mean finite, then

$$
P(X>\lambda E(X)) \geq(1-\lambda)^{2} \frac{(E X)^{2}}{E X^{2}}, \quad \forall \lambda \in(0,1),
$$

we can derive

$$
P\left(\sum_{j=1}^{\infty}\left(\gamma_{j} \vee 0\right)>\frac{\sum_{j=1}^{n} \sqrt{v_{j}}}{2 \sqrt{2 \pi}}\right) \geq P\left(\sum_{j=1}^{n}\left(\gamma_{j} \vee 0\right)>\frac{\sum_{j=1}^{n} \sqrt{v_{j}}}{2 \sqrt{2 \pi}}\right) \geq \frac{1}{4 \pi} .
$$

So,

$$
P\left(\sum_{j=1}^{\infty}\left(\gamma_{j} \vee 0\right) \geqq \frac{\sum_{j=1}^{\infty} \sqrt{v_{j}}}{2 \sqrt{2 \pi}}\right) \geq \frac{1}{4 \pi}
$$

By virtue of (14), we conclude

$$
\sum_{j=1}^{\infty} \sqrt{v_{j}}<\infty
$$

This completes the proof of Proposition.
Making use of Proposition, we can easily prove Theorem 1. Put $T_{k}=2^{k}$ and $\alpha=\prod_{k=0}^{\infty}\left(1-3 \cdot 2^{-k-2}\right)^{2}$. Then we have

$$
\begin{aligned}
& 2 \alpha F\left(2^{j}, 3 \cdot 2^{j-1}\right]=\alpha \int_{2^{j}<|\lambda| \leqslant \frac{3}{2} 2^{j}} d F(\lambda) \leq \int_{2^{j}<|\lambda| \leqslant \frac{3}{2} 2^{j}} \prod_{k=j+1}^{\infty}\left(1-\frac{|\lambda|}{2^{k}}\right)^{2} d F(\lambda) \\
\leqslant & \int_{2^{j}<|\lambda| \leqslant 2^{j+1}} \prod_{k=j+1}^{\infty}\left(1-\frac{|\lambda|}{2^{k}}\right)^{2} d F(\lambda) .
\end{aligned}
$$

So, by Proposition,

$$
\begin{equation*}
\sum_{j=0}^{\infty} F\left(2^{j}, 3 \cdot 2^{j-1}\right]^{\frac{1}{2}}<\infty . \tag{17}
\end{equation*}
$$

Put $T_{k}=3 \cdot 2^{k-1}$ and $\alpha=\prod_{k=0}^{\infty}\left(1-\frac{1}{3} 2^{-k+1}\right)^{2}$. Then we have

$$
\begin{aligned}
& 2 \alpha F\left(3 \cdot 2^{j-1}, 2^{j+1}\right] \leq \int_{3 \cdot 2^{j-1}<|\lambda| \leqslant 2^{j+1}} \prod_{j+1}^{\infty}\left(1-\frac{|\lambda|}{3 \cdot 2^{k-1}}\right)^{2} d F(\lambda) \\
\leq & \int_{\cdot 2^{j-1}<|\lambda| \leqslant 3 \cdot 2^{j}} \prod_{k=j+1}^{\infty}\left(1-\frac{|\lambda|}{3 \cdot 2^{k-1}}\right)^{2} d F(\lambda) .
\end{aligned}
$$

So,

$$
\begin{equation*}
\sum_{j=0}^{\infty} F\left(3 \cdot 2^{j-1}, 2^{j+1}\right]^{\frac{1}{2}}<\infty . \tag{18}
\end{equation*}
$$

By virtue of (17) and (18), we have Theorem 1.

4. Proof of Theorem 2

We shall first assume that s_{n} is decreasing and $\sum_{n=0}^{\infty} \sqrt{s_{n}}<\infty$. We put $c(j)=2^{2 j}$ and define ξ_{j} and η_{j} by

$$
\xi_{j}(t)=\int_{c(j-1)<|\lambda| \leqslant c(j)} e^{i t \lambda} d \Phi(\lambda)
$$

and

$$
\eta_{j}=\max _{k=0, \cdots, c(j+1)}\left|\xi_{j}\left(\frac{k}{c(j+1)}\right)\right|, \quad j=1,2, \cdots
$$

respectively. Then the process ξ_{j} has continuous paths. Appealing to the following Lemma,

Lemma. [5. Proposition 2].

$$
E \eta_{j} \leq h+\sum_{k=0}^{c(j+1)} \int_{h}^{\infty}|x| d \mu_{\xi_{j}\left(\frac{k}{c(j+1)}\right)}(x), \quad h>0
$$

where μ_{ξ} is the probability law of ξ, we have

$$
E \eta_{j} \leq h+(c(j+1)+1) \sqrt{\frac{2 \sigma_{j}}{\pi}} e^{-\frac{h^{2}}{2 \sigma_{j}}}
$$

where $\sigma_{j}=2 F(c(j-1), c(j)]$. Let $h=h(j)=\sqrt{2 \sigma_{j} \log c(j+1)}$.
Then we see

$$
\begin{equation*}
E \eta_{j} \leq 2 h(j) \tag{19}
\end{equation*}
$$

Since

$$
\begin{gathered}
\sigma_{j}=\sum_{k=2^{j-1}}^{2^{j}-1} s_{k}, \text { we get } \\
2^{j} \sigma_{j}=2^{j} \sum_{k=2^{j-1}}^{2^{j}-1} s_{k} \leq 2^{2 j} s_{2^{j-1}}
\end{gathered}
$$

Hence,

$$
\sqrt{2^{j} \sigma_{j}} \leq 2^{j} \sqrt{s_{2^{j-1}}} \leq 4 \sum_{k=2^{j-2}}^{2^{j-1}} \sqrt{s_{k}}
$$

Consequently, by (19), we have

$$
\begin{equation*}
\sum_{j=1}^{\infty} E \eta_{j}<\infty \tag{20}
\end{equation*}
$$

Define ζ and θ by

$$
\begin{aligned}
& \zeta(j, k, p, q, r)=\xi_{j}\left(\frac{k}{c(j+1)}+\frac{q}{c(j+1) c(p)}+\frac{r}{c(j+1) c(p+1)}\right) \\
- & \xi_{j}\left(\frac{k}{c(j+1)}+\frac{q}{c(j+1) c(p)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& r=1, \ldots, c(p), \quad q=1, \ldots, c(p), k=0, \ldots, c(j+1), p=1,2, \ldots, \\
& j=1,2, \ldots, \text { and } \\
& \quad \theta(j, p)=\max _{k, q, r}|\zeta(j, k, p, q, r)| .
\end{aligned}
$$

Then we see

$$
\begin{aligned}
E \zeta^{2}(j, k, p, q, r) & =2 \int_{c(j-1)<\lambda \leqq c(j)}\left(1-\cos \frac{r}{c(j+1) c(p+1)} \lambda\right) d F(\lambda) \\
& \leq \frac{1}{2} \frac{\sigma_{j}}{c^{2}(j) c^{2}(p)} .
\end{aligned}
$$

Again, using the same Lemma, we have

$$
E \theta(j, p) \leq 2 \sqrt{\log c(p+1) c(j+1)}-\frac{\sqrt{\sigma_{j}}}{c(j) c(p)} .
$$

Therefore

$$
\begin{equation*}
\sum_{j=1}^{\infty} \sum_{p=1}^{\infty} E \theta(j, p)<\infty . \tag{21}
\end{equation*}
$$

By virtue of the separability of \boldsymbol{X} and $\boldsymbol{\xi}_{\boldsymbol{j}}$, we have

$$
\sup _{t \in[0,1]}|X(t)| \leq \sum_{j=1}^{\infty} \cdot \sup _{t \in[0,1]}\left|\xi_{j}(t)\right|+|d \Phi(0)|, \quad \text { a. a. } \omega,
$$

and

$$
\sup _{t \in[0,1]}\left|\xi_{j}(t)\right| \leq \eta_{j}+\sum_{p=1}^{\infty} \theta(j, p), \quad \text { a. a. } \omega
$$

So, taking (20) and (21) into account, we complete the proof of Theorem 2 in the first case.

Define a symmetric finite measure G by

$$
G(A)=F(A)+\sum_{n=0}^{\infty}\left(M_{n}-s_{n}\right) \delta_{2 n+1}(A), \quad A \subset[0, \infty),
$$

where $\boldsymbol{\delta}_{a}$ is the delta measure concentrated at a. Let \boldsymbol{X}_{1} and \boldsymbol{X}_{2} be the mutually independent stationary Gaussian processes whose covariance function has the spectral measure F and $\sum_{n=0}^{\infty}\left(M_{n}-s_{n}\right) \delta_{2 n}(A)$, respectively. Then G is the spectral measure of the covariance function of $\boldsymbol{X}_{1}+\boldsymbol{X}_{2}$ and $G\left(2^{n}, 2^{n+1}\right]=M_{n}$. So, using the result, we just proved,

$$
E \sup _{t \in[0,1]}\left|X_{1}(t)+X_{2}(t)\right|<\infty .
$$

Repeating the same method as Lemma 2, we have

$$
E \sup _{t \in[0,1]}\left|X_{1}(t)\right|<\infty .
$$

This completes the proof of Theorem 2.

5. Proof of Theorem 3

To prove Theorem 3, we shall first show the following Lemma,
Lemma 5. Assume that a symmetric, positive continuous function R is convex and decreasing on $[0, \pi]$. Then any Fourier coefficient a_{n}, i. e. $a_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i n t} R(t) d t$, is non-negative. Moreover, $\sum_{h=-\infty}^{\infty} a_{n}=R(0)$.

Proof. By symmetricity of R, for $n \geq 1$,

$$
\begin{equation*}
a_{-n}=a_{n}=\frac{1}{\pi} \int_{0}^{\pi} R(t) \cos n t d t=\frac{1}{n \pi} \int_{0}^{n \pi} R\left(\frac{s}{n}\right) \cos s d s \tag{22}
\end{equation*}
$$

$$
\begin{aligned}
& \int_{2 k \pi}^{2(k+1) \pi} R\left(\frac{s}{n}\right) \cos s d s \\
= & \int_{0}^{\frac{\pi}{2}}\left(R\left(\frac{2 k \pi+s}{n}\right)-R\left(\frac{2 k \pi+\pi-s}{n}\right)-R\left(\frac{2 k \pi+\pi+s}{n}\right)+R\left(\frac{2 k \pi+2 \pi-s}{n}\right)\right) \cos s d s .
\end{aligned}
$$

By virtue of the convexity of R, the integrand is non-negative, and we have

$$
\int_{2 k \pi}^{2(k+1) \pi} R\left(\frac{s}{n}\right) \cos s d s \geq 0 .
$$

On the other hand, by the monotonicity of R,

$$
\int_{2 k \pi}^{2 k \pi+\pi} R\left(\frac{s}{n}\right) \cos s d s=\int_{0}^{\frac{\pi}{2}}\left(R\left(\frac{2 k \pi+s}{n}\right)-R\left(\frac{2 k \pi+\pi-s}{n}\right)\right) \cos s d s \geq 0 .
$$

Therefore, appealing to (22), $a_{n} \geq 0$.
Since R is continuous and bounded variation, its Fourier series converges to R uniformly on any closed subset of $(-\pi, \pi)$. Hence $\sum_{n=-\infty}^{\infty} a_{n}=R(0)$.

Lemma 6. Let R be a continuous, symmetric and positive definite function on $(-\infty, \infty)$. Assume that each Fourier coefficient a_{n}, i.e. $a_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i n t} R(t) d t$,
is non-negative. Then, the spectral measure $d G$ of R satisfies

$$
\sum_{n=0}^{\infty} \sqrt{G\left(2^{n}, 2^{n+1}\right]}<\infty
$$

if $\quad \sum_{n=0}^{\infty} \sqrt{\sum_{k=2^{n}+1}^{2^{n+1}} a_{k}}<\infty$.
Proof. By the symmetry of $d G$,

$$
\begin{align*}
a_{n} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i n t}\left(\int_{-\infty}^{\infty} e^{i t \lambda} d G(\lambda)\right) d t \tag{23}\\
& =\frac{1}{\pi} \int_{0}^{\infty} \frac{\sin (\lambda-n) \pi}{\lambda-n} d G(\lambda)+\frac{1}{\pi} \int_{0}^{\infty} \frac{\sin (\lambda+n) \pi}{\lambda+n} d G(\lambda),
\end{align*}
$$

where $\frac{\sin 0 \pi}{0}$ is read as $\lim _{x \rightarrow 0} \frac{\sin \pi x}{x}=\pi$.
Put $f(\lambda)=\sum_{n=2^{k}-4}^{2^{k+1}+3} \frac{\sin (\lambda-n) \pi}{\lambda-n}, \quad \lambda \geq 0, \quad(k=4,5, \ldots)$.
Then we have, for $m=2^{k-1}+1, \ldots, 2^{k}, \quad \mu \in(0,1]$,

$$
\begin{gathered}
f(2 m-1+\mu)=\sum_{j=0}^{2 m-2^{k}+3} \frac{\sin (j+\mu) \pi}{j+\mu}+\sum_{l=1}^{2^{k+1}+4-2 m} \frac{\sin (l-\mu) \pi}{l-\mu} \\
\geq\left(\frac{1}{\mu}-\frac{1}{1+\mu}+\frac{1}{2+\mu}+\frac{1}{1-\mu}-\frac{1}{2-\mu}+\frac{1}{3-\mu}\right) \sin \mu \pi \geq \frac{7}{12} \frac{\sin \mu \pi}{\mu(1-\mu)},
\end{gathered}
$$

and, by the same method,

$$
f(2 m+\mu) \geq \frac{7}{12} \frac{\sin \mu_{\pi}}{\mu(1-\mu)}, \quad \mu \in(0,1], \quad m=2^{k-1}, \ldots, 2^{k}-1 .
$$

Therefore,

$$
\begin{equation*}
\int_{2^{k}+}^{2^{k+1}} f(\lambda) d G(\lambda) \geq \frac{7}{12} \sum_{l=2^{k}}^{2^{k+1}-1} \int_{0+}^{1} \frac{\sin \pi \mu}{\mu(1-\mu)} d G(l+\mu) \tag{24}
\end{equation*}
$$

On the other hand, we have the following inequalities,

$$
\begin{equation*}
f(\lambda) \geq 0, \quad \lambda \in\left[2^{k+1}, 2^{k+1}+4\right] \cup\left[2^{k}-5,2^{k}\right] . \tag{25}
\end{equation*}
$$

(26) $\quad f\left(2^{k+1}+4+\mu\right)=\frac{-\sin \mu_{\pi}}{1+\mu}+\frac{\sin \mu_{\pi}}{2+\mu}-\frac{\sin \mu_{\pi}}{3+\mu}+\cdots+\frac{\sin \mu_{\pi}}{2^{k}+8+\mu}$

$$
\begin{array}{r}
\geq\left(-\frac{1}{1+\mu}+\frac{1}{2+\mu}-\frac{1}{3+\mu}\right) \sin \mu \pi \geq-\frac{5}{6} \frac{\sin \mu \pi}{1+\mu} \geq-\frac{5}{6}(3-\sqrt{8}) \frac{\sin \mu \pi}{\mu(1-\mu)}, \\
\mu \in[0,1] .
\end{array}
$$

$$
\begin{equation*}
f\left(2^{k+1}+j+\mu\right) \geq-\frac{5}{6}(3-\sqrt{8}) \frac{\sin \mu \pi}{\mu(1-\mu)}, \mu \in[0,1], j=5, \ldots, 2^{k+1}-1, \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
f\left(2^{k}-j+\mu\right) \geq-\frac{5}{6}(3-\sqrt{8}) \frac{\sin \mu_{\pi}}{\mu(1-\mu)}, \mu \in[0,1], \quad j=6, \ldots, 2^{k-1}+1 \tag{28}
\end{equation*}
$$

Hence, by (25) and (28),

$$
\begin{equation*}
\int_{2^{k-1}+}^{2^{k}} f(\lambda) d G(\lambda) \geq-\frac{5}{6}(3-\sqrt{8}) \sum_{l=2^{k-1}}^{2^{k}-1} \int_{0+}^{1} \frac{\sin \mu \pi}{\mu(1-\mu)} d G(l+\mu) \tag{29}
\end{equation*}
$$

and, by (25) and (27),

$$
\begin{equation*}
\int_{2^{k+1}+}^{2^{k+2}} f(\lambda) d G(\lambda) \geq-\frac{5}{6}(3-\sqrt{8})_{l=2^{k+1}}^{2^{k+2}} \int_{0+1}^{1} \frac{\sin \mu \pi}{\mu(1-\mu)} d G(l+\mu) \tag{30}
\end{equation*}
$$

As to the value of integral of f on the remainder set of λ, we see

$$
\begin{gather*}
\left|\int_{0}^{2^{k}-1} f(\lambda) d G(\lambda)\right| \leq \sum_{m=2^{k}-2}^{\infty} \int_{0}^{2^{k-1}} \frac{1}{(2 m-\lambda)(2 m+1-\lambda)} d G(\lambda) \tag{31}\\
\quad \leq \sum_{m=2^{k}-2}^{\infty} \frac{G\left[0,2^{k-1}\right]}{\left(2 m-2^{k-1}\right)^{2}} \leq \frac{R(0)}{2^{k-1}-5}
\end{gather*}
$$

and, similarly

$$
\begin{equation*}
\left|\int_{2^{k+2}}^{\infty} f(\lambda) d G(\lambda)\right| \leq \frac{R(0)}{2^{k+1}-5} \tag{32}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
& \left|\sum_{n=2^{k}-4}^{2^{k+1}+3} \int_{0}^{\infty} \frac{\sin (\lambda+n) \pi}{\lambda+n} d G(\lambda)\right| \tag{33}\\
& \quad \leq \sum_{m=2^{k-1}-2}^{2^{k}+2} \frac{R(0)}{(2 m)^{2}} \leq \frac{R(0)}{2^{k}-5}
\end{align*}
$$

Consequently, taking (23) into account, we have

$$
\begin{equation*}
\delta_{k}+\frac{3 R(0)}{2^{k-1}-5} \geq \frac{7}{12} \Delta_{k}-\frac{5}{6}(3-\sqrt{8})\left(\Delta_{k+1}+\Delta_{k-1}\right) \tag{34}
\end{equation*}
$$

where $\quad \delta_{k}=\sum_{n=2^{k}-4}^{2^{k+1}+3} \frac{a_{n}}{\pi}$ and $\Delta_{k}=\sum_{l=2^{k}}^{2^{k+1}-1} \int_{0+}^{1} \frac{\sin \mu \pi}{\mu(1-\mu)} d G(l+\mu)$.
Since $\Delta_{k} \leq \pi \cdot G\left(2^{k}, 2^{k+1}\right], \Delta_{k}$ tends to 0 as $n \uparrow \infty$. Therefore (34) implies

$$
\sum_{k \geq 5} \sqrt{\delta_{k}}+\sum_{k \geq 5} \frac{\sqrt{3 R(0)}}{\sqrt{2^{k-1}-5}}+\sqrt{\Delta_{4}} \geq\left(\sqrt{\frac{7}{12}}-2 \sqrt{\frac{5}{6}(3-\sqrt{8})}\right) \sum_{k \geq 5} \sqrt{\Delta_{k}} \geq\left(\sqrt{\frac{7}{12}}-\sqrt{\frac{6.88}{12}}\right) \sum_{k \geq 5} \sqrt{\Delta_{k}}
$$

By the assumption of Lemma 6, i.e., $\sum_{k} \sqrt{\delta_{k}}<\infty$, we have

$$
\begin{equation*}
\sum_{k=1}^{\infty} \sqrt{\Delta_{k}}<\infty . \tag{35}
\end{equation*}
$$

Appealing to the following inequality

$$
\frac{\sin \mu \pi}{\mu(1-\mu)} \geq 1, \quad \text { on }[0,1],
$$

we have $\Delta_{k} \geq G\left(2^{k}, 2^{k+1}\right]$ and, by (35), we complete the proof of Lemma 6.
Using Lemmas 5 and 6 , we can easily prove Theorem 3. By the assumption of Theorem 3, we can choose a positive Δ, so that ρ is positive convex and decreasing on $[0, \Delta]$. Define a Gaussian process $\tilde{\boldsymbol{X}}$ by $\tilde{X}(t)=X\left(\frac{\pi t}{\Delta}\right)$. Then the covariance function $\tilde{\rho}$ of $\tilde{\boldsymbol{X}}$ is $\tilde{\rho}(t)=\rho\left(\frac{\pi t}{\Delta}\right)$, and its spectral measure \tilde{F} is $\tilde{F}(A)=F\left(\frac{\Delta}{\pi} A\right)$ for any Borel set A. Since $\tilde{\rho}$ satisfies the condition of Lemma 5, we can construct a periodic covariance function R by

$$
R(t)=\sum_{n=-\infty}^{\infty} a_{n} e^{i n t}, \quad-\infty<t<\infty,
$$

where $a_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \tilde{\rho}(t) e^{-i n t} d t$. Let \boldsymbol{Y} be a stationary Gaussian process with mean zero and with the covariance function R. Since $R=\tilde{\rho}$ on $[-\pi, \pi], \boldsymbol{Y}$ has the locally same probability law as $\tilde{\boldsymbol{X}}$. So, \boldsymbol{Y} has continuous paths. Hence Kahane's Theorem [5, p. 73], [3, p. 300] tells us that

$$
\sum_{k=0}^{\infty} \sqrt{\sum_{n=2^{k}+1}^{2^{k+1}} a_{n}}<\infty
$$

Therefore, by Lemma 6, we have

$$
\sum_{n=0}^{\infty} \sqrt{F\left(\frac{\Delta}{\pi} 2^{n}, \frac{\Delta}{\pi} 2^{n+1}\right]}<\infty .
$$

This implies Theorem 3.

References

[1] Yu. K. Belayev, Continuity and Hölder's conditions for sample functions of stationary Gaussian processes, Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 2, 23-33.
[2] J. Delporte, Extension des conditions suffisantes pour la construction de functions aléatoires normales, presque sûrement continues, possédant une covariance donnée, C. R. Acad. Sci. Paris 256 (1963), 3816-3819.
[3] R.M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, Jour. of Functional Analysis, 1 (1967), 290-330.
[4] X. Fernique, Continuité des processus Gaussiens, C. R. Acad. Sci, Paris 258 (1964), 60586060.
[5] J.P. Kahane, Series de Fourier aléatoires, Sém. Math. Supér. Univ. de Montréal. (1963).
[6] T. Sirao and H. Watanabe, On the Hölder continuity of stationary Gaussian processes, (to appear).

Kobe University

[^0]: Received May 24, 1968

