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ON SOME PROPERTIES OF NORMAL MEROMORPHIC
FUNCTIONS IN THE UNIT DISC

TOSHIKO ZINNO

1. We denote by D the unit disc {z; |2] <1} and by & the totality
of one to one conformal mappings 2z’ = s(z) of D onto itself. A meromorphic
function f(2) in D is normal if and only if the family {f(s(2)}se o is a
normal family in D in the sense of Montel. We denote by M the totality
of the normal meromorphic functions in D. Moreover, Noshiro introduced
in [5] the notion of the normal meromorphic functions of the first category:
f(z) is a normal meromorphic function of the first category if and only if
f(z) belongs to M and any sequence {f,(#)} obtained from the family
{f(5(2))}scxe o Can not admit a constant as a limiting function. We denote
by ¢, the totality of the normal meromorphic functions of the first category.
For instance, Schwarzian triangle functions belong to %,. In §1, we shall
give a necessary condition (Th. 1) and a sufficient condition (Th. 2) for a
function to belong to M,.  Further we shall give some properties of a
function of M,. In these proofs the Hurwitz theorem will play an essential
role.

In 1957, Lehto and Virtanen ([4]) showed that even if f(2) and g(2)
belong to M, f(z)+ g(z) and f(2)g(z) do not necessarily belong to 9. Later
Lappan ([2], [3]) gave sufficient conditions for f(z)+ g(z) and f(z)g(z) to
belong to . In §2, we shall give a more general sufficient condition for
f(2)g(z) to belong to N than that of Lappan.

§1. Normal meromorphic functions of the first category

2. We consider the hyperbolic distance
|1 — Zy25] + |2 — 25]

=1 |
d(,, 7) = 2 log 11— Z125] — |2, — 2]

for z, and 2, in D, and the chordal distance

- le — B
X((X’[S) - '|/1+ [a[2 1/1+ l‘Blzﬁ
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and

o1
Y1+ |al?

e, ) =
where a and g are complex values. Put
Ulz,0) ={¢; d(z,8) < }.
We denote by Ul(z,d) the closure of Ulz,3d).
Lemma 1. Let f(2) be a function of M,.  Then so 1s

_af(@) +b
cf(z)+d

(ad — bc = 0).
This follows immediately from the definition of 9%,.

LemMA 2 (Noshiro [5]).  Let f(2) be a function of W,.  Then there exists a
positive number p, such that for any point z in D, f(z) takes every value at least
once in U(z, p,).

TueOREM 1.  If f(2) belongs to Ny, then f(2) has the following three pro-
perties :

(1)  There exist a positive number p, and a positive integer q such that for
any point z in D and every value e,

1=q(z,e) =g,
where q(z, &) is the number of a-points of f(z) in Ul(z, py).
(i1) For any two values e and 8 (a + ),

=1,121,13f,...d(zv(a>’ 2,(8) >0
=1,2,3, 00

"
where z,(a) and z,(8) denote a-points and B-points of f(2) respectively.

(i) For any value a and any positive number p, there exists a positive
number m,(< 1) such that

1S (@), @) > m, in  zeD— U U(a)p).

Proof of (i). Let p, be the same quantity in Lemma 2. Then
¢(z,@)=1 for any point z in D and any value a. Suppose that the set
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{q(2,a); z€ D and « is an arbitrary value} is unbounded. There exist a
sequence {z,} of points in D and a sequence {a,} of values such that

(1. 1) lim g(z,, a,) = oo.

N-—00

Put

fa(2) = f( lz—i—fzz,,z )

Since f(z) belongs to %,, there exist subsequences {f,, (2)} of {f.(2)} and
{a, } of {@,}, a non-constant function f4(2) and a value «, such that
lima, =a, and {f, (2)} converges uniformly to f,(z) on each compact

k>

subset of D. Put
gx(2) = fn, (2) — Uy s 9(2) = fo2) — @y, if @y o0
or

_ 1 1 _ 1
9:(2) —W_‘E: s 90(2) —‘m’

&

if @y = oo,

Then {g.(2)} converges uniformly to g,(z) on each compact subset of D, By
the Hurwitz theorem, the number of zeros of gz) in U(0, p,) is not larger
than that of g,(z) in U(0, p,) for every sufficiently large k. On the other
hand, since a transformation s(z) € & preserves the hyperbolic distance,
the former is equal to ¢(z,,, @, ). This contradicts (1. 1),

Proof of (ii). Suppose that there exist two values e« and g (@ = g) such
that 1nf d(z (a),2,(8) =0. Then there exist subsequences {z;} and {2}

ll= 3

of {z,(a)} and {2,(8)} such that

lim d(z}, 2!) = 0.

N—>00

PUt fn(z)'— ( z+zn ) gn—i%‘ and g—sn(z)__’z-l_z:? . BY

1+ 252 14252
¢ =s,), 0 and &, correspond to z, and 2} respectively. Obviously
lim d(0,&,) = lim d(z}, 2%) = 0. Since f(z) belongs to 9, a subsequence

{fn, (2)} of {fa(2)} converges uniformly to a limiting function fy(z) on each
compact subset of D.  Therefore %im Sn, (€)= %irn fa,0) = £4(0). On the
other hand, f, (¢, )= f(2/ ) =g and f, (0) = f(2},) = a. Hence a = g; this
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is a contradiction.

Remark.  As we see above, we can derive (ii) under the weaker condi-
tion f(z) € N than the condition f(z) € N,.

Proof of (iii). By Lemma 1, we may assume without loss of generality
that « =0. Let {a,}5., be all the zeros of f(z) in D. Suppose that there
exists a positive number p such that

inf 2(f(z), 0)=0.

zeD~ U Ulay,p)
V=1

Then there exists a sequence {z,} of points in D — U Ula,, p) such that
y=1

lim f(z,) =0. Put f,(2) = f(—li%;—’? . Since f(z) belongs to %,, there
exists a subsequence {f, (2)} of {f.(2)} converging uniformly to a non-

constant limiting function f,(2) on each compact subset of D. It holds

fo0) = }312 S, (0) = gg Sf(24,) = 0.

Taking 6, 0<d< 7‘0, sufficiently small, fy(z) has only one zero in U(0, 5).
Let m be its multiplicity. By the Hurwitz theorem, the number of zeros
of f, (2) in U(0,6) is equal to m for every sufficiently large k.  Namely,
that of f(z) in U(z,,, §) must be equal to m for every sufficiently large k.
On the other hand, we took {z, } and & such that a, & U(z,,, 6) for all »
and all k.  This is a contradiction. Thus the proof of Theorem 1 is
complete.

3. The inverse of Theorem 1 also holds. In fact, we can give its
proof assuming (i), (ii) and (iii) only for zeros and poles.

THEOREM 2. Let f(z) be meromorphic in D.  Suppose that f(z) satisfies
the following three conditions:

(1)"  There exists a positive number p, such that f(z) takes zero and oo at
least once in Uz, p,) for any point z in D.

(ii)" Let a, and b, be zeros and poles of f(z) in D respectively, then
inf d(a,,b,) >0.

iii)"  For any positive number p, there exists a positive number m, such that
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£ (@) <m, in €D~ UUl,p
and
1 . o
[f(2)| > oy m zeD yglU(ay,p)-

Then f(z) belongs to ;.
Proof. Take any sequence {s,(2)} out of 7. Put f.(2)= f(s,(2)).
For any fixed point 2z, in D, put &, = s,(2,).

(a) If inf d(;,,, 5)>0, then Ul¢wd)C D~ U Ulb,3), where

1,2,3,¢
1,23,

T3

0< 8, < ; luzlg d(§,,,,b) By the condition (iii)’, f(z) is bounded in
:1 2,3,

Ui, s,) for n=1,2,3, --.. Hence f,(z) is also bounded in U(z,s,) for

n=1,2,3,-++. Thus {f,(2)} is a normal family in U(z,,d,).

(b)y If _1i%1§ d(&,,b,) =0, then there exist subsequences {{, } and

v=1,2,3,00¢0

{b,.} of {¢,} and {b,} such that lim d(&n,, b,,) =0. By the condition (ii)’,

inf d(s“nk, a,) > 0.

k=1,2,
v:l 2,

ww

It holds that U(Z,,, &) c D — f_JQlU(a,,,az), where 0< 3, < ; il e, )
, 3,0

g

By the condition (iii)’ there exists a positive number m suc
| f(2)] >% in ze€Ul(z,,, 8) for k=1,2,3, -+,

so that

| fa, ()] >% in ze U(zy,0d,) for k=1, 2, 3,

Thus, {fa, (2)} is also a normal family in U(z,,8,). Therefore, there exists
a subsequence {f,, (2)} of {f,(2)} such that {f,, (2)} converges uniformly to
a limiting function on each compact subset of D. Since a transformation
s(z) € & preserves the hyperbolic distance, it is easy to see by the condi-
tion (i)’ that any limiting function of the above normal family is non-

constant. The proof is now complete.
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4. Let f(z) be meromorphic in D and let n(r,¢) be the number of
a-points of f(z) in the domain {z;|z] <7}

THEOREM 3. If f(2) belongs to N, then there exist two positive numbers A
and B such that for every r, sufficiently near 1,

(L 2) B << A

’

where A and B are independent of the value a.
To get Theorem 3, we need the following

LemMa 3. For positive numbers v and p, with 0<r<<1 and 0<<p<<d(0,7),
let 0 be the positive angle formed by the real axis and the line segment, starting from
the origin, tangent to the circle d(r,z) = p.

ing=_(e?—=11—77)
Then sin 6 Vv

This is obtained by an elementary calculation.

Proof of Theorem 3. We shall first prove the left inequality of (1. 2).
Put

e —1

bo = gmn g1

and R, ={z; @Cn—1)p,=<d(0,2)<(2n+ 1)p} for n=1,2,3, - -+, where p,
is the same quantity in (i) of Theorem 1. Let m,(e) be the number of
a-points of f(z) in R, and let 6, be the positive angle formed by the real
axis and the line segment, starting from the origin, tangent to the circle
d(&snr2) =p,. For any r, {3 <r<<1, there exists a positive integer N such
that

1. 3) Coni1 =7 < Consse
Obviously
(1. 4) n(r, a) > myla).

In the ring domain Ry, we can take at least [HL] mutually disjoint open
N

discs with a hyperbolic radius p,, where [ ]

Therefore by (i) of Theorem 1, we have

denotes the Gauss sign.
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1. 5) myla) = [011,,] >T7; —1> sir?ﬂN -1,
and moreover, by Lemma 3
=C ~-»€%;L — 1, where C= -‘#zf—:gl—
Thus by combining (1. 3), (1. 4) and (1. 5)
(1 —7)n(r, ) > (1 — Loysg)my(a)
S S YL P

It follows immediately that there exists a positive number B such that

B

n(r, a) > T—7

for every r, sufficiently near 1, and that B is independent of a.
We shall now prove the right inequality of (1.2). Put D(p) = {z;

d0,2) < p}, Alr) = “ do(z) = 1’3272 and s, = “ do(z), where do(z) =
lz] <# Uz, 00)

rdrd) _  gince dofz) is invariant by s(z) € &, s, is independent of z.

T—r)2"
Obviously, for any fixed value e,

D(d(0,7) + po) D U Ulz,(a), po).
2y(a)eD(d(0,7))

By (i) of Theorem 1, each point in the domain D(d(0,7) + 0,) belongs to at
most g-pieces of the open discs in {U(z,(a), p,); 2,(a) € D(d(0,7))}. Hence it
holds
¢ || awz= = i a0
zeD(d(0,7)+p0) 2y(«)eD(d(0,7)) z&U(zy(a),00)
qA(r") = n(r, @)s,,

' e?o— 1+ r(e? + 1)
where 7 e F1E r@P—1)

We get immediately that

A
1—

- = n(r, a),

where A is a constant which is independent of «. The proof of Theorem
3 is complete.
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Let T(», f) be the characteristic function of f(z) in the sense of Nevan-
linna. By Theorem 3 and Lehto and Virtanen ([4], p. 58), we shall get
the following

CoroLLARY 1. If f(2) belongs to N, then there exist two positive numbers
A’ and B’ such that

1
1—7r

1

B’ log —

+0() < T(r, f)< A’ log + 0(1).

CoRrROLLARY 2. If f(z) belongs to %y, then for any value e,

1= lz,(a)]) =

M8

1

1
-

14

and

(1 — |2z,(a)])"*" < oo for any positive number 2.

Ms

(2)

I

yv=1

Proof of (1). For any value a,

SU—la@h=2 3 (1= l2(@)]) =3 (1= Lenemale)

y=1 n=1 zy(a)ER, n=1

By (1. 5)

© 2 { e8Py — 1 - 1}
> nZ=1 PRSI} pLan

Proof of (2). For any positive number 2 and any value «,

= la@D = | (= it «)

lzy(a)| <7
= (1= )"0, a) + 1 +2) So (1 — t)*n(t, a)dt

By Theorem 3

:Hv—lT);Tdt = 0O(1).

gA(1~r)‘+A(1+z)S

oo

Hence (1 — |z,(a)])*** < .

v=1
§2. Products of normal meromorphic functions

5. Turorem 4. Let f(2) and g(z) be two functions of M. Let a, and
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a, be zeros of f(z) and g(z) respectively and let b, and b, be poles of f(z) and
oz) respectively. Suppose that

(1) 1nf d(ay, wW*>0 and  inf d(al,b,) >0

v=1,2,3, v=1,2,3,-
#©n=1,2,3 1=1,2,3,e¢
and
Sor any positive number o there exists a positive number m, such that
[fe)<m, in 2€ D— L;JIU(b,,p),
lg)| <m, in z€ D~ UlU(b:,p),
y=
lf@2) >t in zeD— U Ula,p)
mg v=1
and

|g(z)]>«;n—1‘ n zeD—UU( a, o).

o

Then the product f(z)g(z) belongs to N.

Proof. Take any sequence {s,(z)} out of &¥. Put f,(z) = f(s.(2)) and
9a(2) = g(sa(2)) for w=1,2,3, +-+. Since f(z) and g(z) belong to N, it
may be assumed without loss of generality that two sequences {f,(z)} and
{g.(2)} converge uniformly to limiting functions f,(z), g¢,(#) on each compact
subset of D respectively. For any fixed point 2z, in D, put &, = s,(z,). We
denote by 4, the least value of 1nf d(a,,,é’n), 1nf d bv,Z;n 1nf d( aly&n)

v=1,2,3
n=1,2,3

II li
e
NN
ww

14
n

(a) If 4, >0, then by the condition (2) there exists a positive number
m such that

%<|f(Z)l<m and %<]g(z)|<m in zeU(gn,%L)

*) For two sequences {z,} and {7} of points in D, we shall deﬁne . ;ng d(z,, 2h) =00,
1, 2, 3,

if {z,} or {27,} is empty.
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for n=1,23,+++. Since U (zo, f;‘) is mapped one to one comformally

onto U(é’”, —521—) by 2’ = s,(2), it holds

1 . — P}
i <1 fa@ga(@)] <m* in ze U(zl,;__zl_),

Thus {f,.(2)9.(2)} is a normal family in U<z0, 52:>

(b) Suppose that g, =0, say, 1inf d(a,,&,) =0. There exist sub-
y=1,2,3,00¢

7n=1,2,3, 000

sequences {a,,} and {¢, } of {a,} and {¢,} such that

(2. 1) Izl_fg d(§nk ’ a,,k) =0.

By Condition (1), &, = k_ir%f; d(a,,, b)) >0. By Condition (2), g(z) is
”;1:2:3::::

bounded in U (C,.k,%z—>, so that g, () is bounded in U <zo, —52—1) for every
sufficiently large k.  On the other hand, by (2. 1) I

lim £(£,,) = lim /(a,,) =0,

so that ;ﬂim S, (20) =£im f(&a,)=0. It follows that for every sufficiently
large k, f, (2) is bounded in a neighborhood U(z,,d;) of z,. Put § = min

(%A,%). The product f,, (2)g,, (2) is bounded in U(z,d) for every suf-
ficiently large k. Thus {f,, ()¢, ()} is a normal family in U(z,4). There-
fore, there exists a subsequence {fn, (2)gn,(2)} of {f.(2)9.(2)} such that
{fm,(2)gn, (2)} converges uniformly to a limiting function on each compact

subset of D. The proof is complete.
6. The following Examples 1 and 2 show that Theorem 4 fails to hold
without Condition (1) or Condition (2).

ExampLE 1. There exist two normal meromorphic functions 7y(z) and
T,(z) such that Ty(2) and T,(z) satisfy Condition (2) but not Condition (1)
and T,(z)T.(z) does not belong to 9.

To give this example, we need the following

LemMa 4. Let d be an irrational number satisfying 0<d<<1. Then the
set {nd — [ndl}p-, is dense on the closed interval [0,1], where [ 1 in { '} denotes
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—i —i

Fig. 1 Fig. 2

the Gauss sign. (see G.H. Hardy and E.M. Wright [1], p. 155)

Let T,(z) and T,(z) be Schwarzian triangle functions whose fundamental
triangles are shown in Figures 1 and 2 respectively. Let their system of
triangles be those shown in [Fig. 1] for 7,(2) and in [Fig. 2] for T,(z), where
we assume T,(0) =0, T,(A) =T(A")=00, T{(B)=1, Ty(0)=00, To(C)=T4(C")=0
and ToD)=1. Then T(2) and T,(z) belong to N,, so that T,(z) and T,(z)
satisfy Condition (2) by Theorem 1. Let &, and 7, be zeros of T,(z) and
poles of Ty(z) on the segment {z =2+ iy; 0<x <1, y =0} respectively.
By an elementary calculation, we get d(0,¢&,) = nlog (/2" +v3") and d(0,7,)=

onlogyo +1) for n=1,2,3, -+-. Since %%%;% is a positive irra-

tional number less than 1, it follows by Lemma 4 that the set

o

) — 5 log /o +v3)
[”log(l/z +v37) —2log (/2 +1)[n 2log 7 + 1 ]}

Nn=1

is dense on the closed interval [0, 2log (Y2 + 1)l.  Thus it is easy to see
that there exist subsequences {&, } and {7, } of {&,} and {7,} such that

(2. 2) Ilcim d(&n, s Ma,) = 0.

Hence T',(z) and T,(z) do not satisfy Condition (1), The Product ¢(z)=T,(2)T,(2)

does not belong to 9. In fact, if ¢(z) belongs to ¢, then we must have by
(2. 2)

lim p(é,, ) = lim g7, )
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On the other hand, ¢(§,,) =0 and ¢(7,, )= . This is a contradiction.

Now we shall give our second example.

LemMmaA 5 (Lehto and Virtanen [41). Let f(z) be a function of |. If f(z)
has an asymptotic value o, then the value « is an angular limit of f(2).

ExampLE 2. Let f(2) be an elliptic modular function and let g(z) be
a function of N;,. Then f(z) and g(z) satisfy Condition (1) because f(2)#0,1
and oo, But the product f(z)g(z) does not belong to 9%t.

In fact, let ¢*s be a point at which f(z) has an angular limit oo, let
a, be zeros of g(z), and let p, and ¢ the same quantities as those in Theo-
rem 1. By Theorem 1, there exists a positive number M such that

; 0 Po_
(2. 3) lg(z)] >M in zeD—yglU(au, 3q>‘

Moreover, since the number of zeros of g(z) in U(z, 0, is at most g for

every point z in D, the point e*’: is an accessible boundary point in the

intersection 4 of the domain D — tj U a,,fg?q‘-’—> and a Stolz domain 4 at ¢®’1.
v=1

Hence there exists a path I ending at e¢‘’t in the domain 4, so that
lim f(z) = co. Therefore by (2. 3) im f(2)g(z) = co. If f(2)g(z) belongs to

201 z—etV1
zel zel'

%, then by Lemma 5 f(z)g(z) must have an angular limit o at e!’s, On
the other hand, since g(z) has infinitely many zeros in the intersection of
every neighborhood of ¢+ and the Stolz domain 4, f(z)g(z) can not possess
an angular limit at ¢®’:,
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