ON A THEOREM OF RAMANAN

HIROSHI UMEMURA

Let G be a simply connected Lie group and P a parabolic subgroup without simple factor. A finite dimensional irreducible representation of P defines a homogeneous vector bundle E over the homogeneous space G/P. Ramanan [2] proved that, if the second Betti number b_2 of G/P is 1, the inequality in Definition (2.3) holds provided F is locally free. Since the notion of the H-stability was not established at that time, it was inevitable to assume that $b_2 = 1$ and F is locally free. In this paper, pushing Ramanan's idea through, we prove that E is H-stable for any ample line bundle H. Our proof as well as Ramanan's depends on the Borel-Weil theorem. If we recall that the Borel-Weil theorem fails in characteristic p > 0, it is interesting to ask whether our theorem remains true in characteristic p > 0.

§ 1. The Borel-Weil theorem

Let us review the Borel-Weil theorem on which the proof of our theorem heavily depends. We use the notation of Kostant [1] with slight modifications. For example, we shall denote by $\mathfrak p$ a parabolic Lie subalgebra which Kostant denotes by $\mathfrak u$. In this section all the results are stated without proofs. The details are found in the paper of Kostant cited above.

Let g be a complex semi-simple Lie algebra and let (g) be the Cartan-Killing form on g namely $(x, y) = \operatorname{tr} (adx \circ ady)$ for $x, y \in \mathfrak{g}$.

A compact form of $\mathfrak g$ is a real Lie subalgebra $\mathfrak f$ of $\mathfrak g$ satisfying the following conditions:

- (i) g = f + if is the direct sum of real Lie algebra.
- (ii) the Cartan-Killing form is negative definite on f. We fix a compact form once and for all. Let q = if so that the restriction of the Cartan-Killing form to q is positive definite. Evidently we have a real decom-

Received February 21, 1977.

position g = q + iq. The star operator is defined by the formula

$$(u+iv)^* = u - iv$$
 for any $u + iv \in \mathfrak{g} = \mathfrak{q} + i\mathfrak{q}$.

Now let V be a vector space. We denote by V' the dual of V.

Let $\mathfrak h$ be a Cartan subalgebra of $\mathfrak g$ and let ℓ be its dimension i.e., ℓ is the rank of the semi-simple Lie algebra $\mathfrak g$. We know that the restriction ($\mathfrak h$) of ($\mathfrak g$) to $\mathfrak h$ is non-singular and hence we can define a map $\mu \to x_\mu$ of $\mathfrak h'$ onto $\mathfrak h$ by the relation

$$(y, x_u) = \langle y, \mu \rangle$$
 for all $y \in \mathfrak{h}$.

If we define $(\mu, \lambda) = \langle x_{\mu}, \lambda \rangle$, we get a non-singular bilinear form (h') on h'. If we consider g as an h-module through the adjoint representation, then we get the decomposition of g into h-invariant spaces:

$$\mathfrak{g} = \mathfrak{h} + \sum_{\varphi \in \mathfrak{h}'} \mathfrak{g}^{\varphi}$$

where \mathfrak{h} acts on $\mathfrak{g}^{\mathfrak{p}}$ through the character φ . Let $e_{\mathfrak{p}} \in \mathfrak{g}$ denote an eigenvector corresponding to a character φ , hence $[x,e_{\mathfrak{p}}]=\langle x,\varphi\rangle e_{\mathfrak{p}}$ for any $x \in \mathfrak{q}$ and, by the structure theorem of semi-simple Lie algebra, $\mathfrak{g}^{\mathfrak{p}}=\mathbf{C}e_{\mathfrak{p}}$. Let Δ be the set of characters of \mathfrak{h} such that $\mathfrak{g}^{\mathfrak{p}}\neq 0$. Δ is the set of roots of \mathfrak{g} and an eigenvector corresponding to a root is called a root vector. We know that the root vector $e_{\mathfrak{p}}$ can be chosen so that

$$(e_{\varphi}, e_{\psi}) = 0 \qquad ext{if } \psi \neq -\varphi \ = 1 \qquad ext{if } \psi = -\varphi \ .$$

Then moreover we have $[e_{\varphi}, e_{-\varphi}] = x_{\varphi}$.

Let \mathfrak{h}^* be the R-linear subspace of \mathfrak{h}' generated by the set Δ . We know that the restriction of the Cartan-Killing form on \mathfrak{h}^* is positive definite. Let r be a subspace of \mathfrak{g} invariant under the adjoint representation of \mathfrak{h} . Then $\Delta(r)$ is by definition the subset of Δ consisting of all the roots φ such that the eigenspace \mathfrak{g}^* is contained in r and r^0 is the set of all the elements $z \in \mathfrak{g}$ such that (z, y) = 0 for any $y \in r$.

Let $\mathfrak b$ be a Borel subalgebra of $\mathfrak g$. We fix $\mathfrak b$ once and for all. Let now consider a simply connected complex Lie group G whose Lie algebra is isomorphic to $\mathfrak g$. Let B be the Borel subgroup of G corresponding to the Borel subalgebra $\mathfrak b$. Let $\mathfrak B$ be the set of all the parabolic Lie subalgebra $\mathfrak p$ containing the Borel subalgebra $\mathfrak b$. Let $\mathfrak b \subset \mathfrak p$ be a parabolic Lie subalgebra and $B \subset P$ be the parabolic subgroup corresponding to $\mathfrak p$.

It is well-known that the quotient space X=G/P is a projective algebraic variety. We assume that $\mathfrak p$ does not contain a simple factor. We denote by n the dimension of X. If we put $\mathfrak g_1=\mathfrak p\cap\mathfrak p^*$ and $\mathfrak m=\mathfrak b^0$, then $\mathfrak g_1$ is reductive in $\mathfrak g$ and $\mathfrak m$ is a maximal nilpotent Lie subalgebra and $\mathfrak m$ is the set of all nilpotent elements in $\mathfrak b$. We know that if $\mathfrak n=\mathfrak g^0$, then $\mathfrak n$ is the maximal nilpotent ideal in $\mathfrak p$ and that $\mathfrak p=\mathfrak g_1+\mathfrak n$. If we put $\Delta_+=\Delta(\mathfrak m)$ and $\Delta_-=-\Delta_+$, then $\Delta=\Delta_+\cup\Delta_-$ is a disjoint union and there exists a subset $\Pi\subset\Delta$ such that for any element $\varphi\in\Delta$, $\varphi=\sum_{\alpha\in\Pi}n_\alpha(\varphi)\alpha$ where the n_α are non-negative or non-positive integers according as $\varphi\in\Delta_+$ or $\varphi\in\Delta_-$. The set Π is called the set of simple roots.

Let G_1 be the subgroup of G corresponding to the subalgebra g_1 and $Z \subset \mathfrak{h}^* \subset \mathfrak{h}'$ be the set of all integral linear forms on \mathfrak{h} . Then the elements of Z are the weights of all the finite dimensional representation of G_1 . Let ν_1 be a finite dimensional irreducible representation of G_1 . An extremal weight of ν_1 is a weight appearing in ν_1 that becomes highest for a some lexiographical ordering of Z. We denote by W_1 the Weyl group of g_1 . If ξ is an extremal weight of ν_1 , then the collection $\{\sigma\xi\}$, $\sigma\in W_1$ is the set of all the extremal weights. Let $\xi \in \mathbb{Z}$. We denote by ν_i^{ε} the unique irreducible representation of g_1 having ξ as an extremal weight. Let $\xi_1, \, \xi_2$ be two elements of Z. Then the representations $\nu_1^{\xi_1}, \, \nu_2^{\xi_2}$ are isomorphic if and only if there exists an element $\sigma \in W_1$ such that $\sigma \xi_1$ $=\xi_2$. Let $\mathfrak{m}_1=\mathfrak{m}\cap\mathfrak{g}_1$ and $D_1=\{\mu\in Z\,|\, (\mu,\varphi)\geq 0 \text{ for all } \varphi\in\varDelta(\mathfrak{m}_1)\}$. The elements of D_1 will be called dominant. One knows that D_1 is a fundamental domain for the action of W_1 on Z. Hence every irreducible representation of G_1 is equivalent to ν_1^{ε} for one and only one $\xi \in D_1$. weight ξ is called the highest weight of the representation ν_1^{ϵ} . Similarly $-D_1$ is a fundamental domain for the action of W_1 on Z. Hence every irreducible representation of G_1 is equivalent to ν_1^{ϵ} for one and only one $\xi \in -D_1$. The weight ξ is called the lowest weight of the representation. An irreducible representation of G_1 is determined by its lowest weight as well as by its highest weight. When we take g itself as a parabolic subgroup, we denote W, D for W_1 and D_1 . Note that $D \subset D_1$ and W_1 is a subgroup of W.

Furthermore if we put

$$g_1 = \frac{1}{2} \sum_{\varphi \in \mathcal{A}(\mathfrak{m}_1)} \varphi$$

$$g_2 = \frac{1}{2} \sum_{\varphi \in \mathcal{A}(\mathfrak{m}_2)} \varphi$$

and

$$g=g_1+g_2,$$

then $g_1 \in D_1$ and $g \in D$.

Define a subset $W^1 \subset W$ by putting $W^1 = \{ \sigma \in W \mid \sigma \Delta_- \cap \Delta_+ \subset \Delta(\mathfrak{n}) \}$. Let D^0_1 be a subset of D_1 defined by putting $D^0_1 = \{ \xi \in D \mid g + \xi \text{ is regular} \}$. Recall that an element $\mu \in Z$ is said to be regular if $(\mu, \varphi) \neq 0$ for all $\varphi \in \Delta$.

LEMMA (1.1) (Kostant [1]). The mapping $D \times W^1 \to Z$ given by $(\lambda, \sigma) \mapsto \sigma(g + \lambda) - g$ maps $D \times W^1$ bijectively onto D_1^0 .

Now for any $\sigma \in W$, we denote by $n(\sigma)$ the number of roots in $\sigma \Delta_- \cap \Delta_+$.

Let N be the subgroup of G corresponding to the subalgebra $\mathfrak n$ of $\mathfrak g$. Then $P=G_1N$ is a semi-direct product. It is not difficult to see that any irreducible representation of P is trivial on N and hence is equivalent to $\nu_1^{-\ell}$ for some $\xi \in D_1$ on G_1 . Conversely if $\nu_1^{-\ell}$, $\xi \in D_1$ is an irreducible representation of G_1 , we can extend it to an irreducible representation of P by giving the action of P trivial. Hereafter we will regard $\nu_1^{-\ell}$ as so extended. Thus, up to equivalence, all irreducible representation of P are of the form $\nu_1^{-\ell}$ for some $\xi \in D_1$.

Let now $\xi \in D_1$ and consider the product $G \times V_1^{-\xi}$. If we set

$$(au, s) \equiv (a, \nu_1^{-\xi}(u)s)$$

for any $a \in G$, $u \in P$ and $s \in V_1^{-\ell}$, then \equiv is an equivalence relation, and $E^{-\ell} = G \times V_1^{-\ell} / \equiv \to G/P$ is a vector bundle with fibre $V_1^{-\ell}$. Let $a, b \in G$. If $x = bP \in X$, let $ax \in X$ denote the coset abP. Similarly if $v \in E^{-\ell}$ is the equivalence class containing $(b, s) \in G \times V_1^{-\ell}$, let $av \in E^{-\ell}$ denote the equivalence class containing (ab, s). It is clear then that if $X_0 \subset X$ is an open set in X and ψ is a local holomorphic section of $E^{-\ell}$ defined on $a^{-1}X_0$, given by $a(\psi)(x) = a\psi(a^{-1}x)$ where $x \in X_0$ is a local holomorphic section of $E^{-\ell}$ defined on X_0 . Now the mapping $\psi \mapsto a\psi$ defines an operator $\rho^{-\ell}(a)$ on $H^i(X, E^{-\ell})$. Since G/P is projective $H^i(X, E^{-\ell})$ is an finite dimensional representation of G. The Borel-Weil theorem teaches us that $H^i(X, E^{-\ell})$ is irreducible and gives us its lowest weight.

Borel-Weil Theorem (1.2). Let $\xi \in D_1$. Then if $\xi \notin D_1^0$, one has $H^j(X, E) = 0$ for any j. If $\xi \in D_1^0$, then upon writing $\xi = \xi(\lambda, \sigma)$ one has $H^j(X, E^{-\xi}) = 0$ for all $j \neq n(\sigma)$ and for $j = n(\sigma)$, the representation on $H^j(X, E^{-\xi})$ is isomorphic to the irreducible representation ν^{-1} of G.

We shall use the theorem in the following weak form.

COROLLARY (1.3). Using the notation of the theorem, if $\xi \notin D$, then $H^0(X, E^{-\xi}) = 0$.

For if $H^0(X, E^{-\xi}) \neq 0$, $\xi = \xi(\lambda, \sigma)$ with $n(\sigma) = 0$. $\sigma(\Delta_-) = \Delta_-$ hence $\sigma = \mathrm{id}$. Therefore $\xi \in D$.

§ 2. Stability of homogeneous vector bundles

LEMMA (2.1). Let E be an irreducible homogeneous vector bundle of rank r. Let $s \leq r$ be an integer and E' be an irreducible component of $\Lambda^s E$. Then the first Chern class $c_1(E')$ of E' is equal to $\frac{s}{r}$ rank $E'c_1(E)$.

Proof. Since E corresponds to the irreducible representation of the reductive Lie algebra, $\Lambda^s E$ is the direct sum of indecomposable homogeneous vector bundles. Since g₁ is reductive, g₁ is isomorphic to the direct sum $c \oplus \mathscr{D}g_1$ where c is the center of g_1 and $\mathscr{D}g_1 = [g_1, g_1]$. We know that \mathfrak{h} is also a Cartan subalgebra of \mathfrak{g}_1 . Hence, denoting by \mathfrak{k} a Cartan subalgebra of $\mathscr{D}g_1$, $\mathfrak{h}=\mathfrak{c}\oplus\mathfrak{k}$. Therefore $\mathfrak{h}'=\mathfrak{c}'\oplus\mathfrak{k}'$. \mathfrak{c}' is generated by the weights of representations of degree 1 of G_1 and \mathfrak{k}' is generated by the root system of $\mathscr{D}g_1$. Now let $\omega^1 = (\omega^1_{(1)}, \omega^1_{(2)}) \in \mathfrak{c}' \oplus \mathfrak{k}' = \mathfrak{h}'$ be the highest weight of the irreducible representation of G_1 yielding the vector bundle Then other weights appearing in the representation are of the form $(\omega_{(1)}^1, \omega_i)$ with $\omega' \in \mathfrak{k}'$ $1 \leq i \leq r$. det E is given by the representation of degree 1 of G_1 with its weight $\sum_{i=1}^r (\omega_{(1)}^i, \omega_i) = \text{trace of the representation}$ ω^1 . But $\sum_{i=1}^r (\omega_{(1)}^1, \omega_1')$ should be in $c' \oplus 0$. Hence $\sum_{i=1}^r (\omega_{(1)}^1, \omega_i') = r(\omega_{(1)}^1, 0)$. The weights appearing in $\Lambda^s V^{\omega_1}$ are of the form $(s\omega_{(1)}^1, \omega')$ with $\omega' \in f'$. $\det E'$ is given by the representation of degree 1 of G_1 with its weight $\sum_{i=1}^{t} (s\omega_{(i)}^{1}, \omega_{i}^{\prime})$ where t is the rank of E'. By the same argument as above we conclude $\sum_{j=1}^{t} (s\omega_{(1)}^1, \omega_j) = ts(\omega_{(1)}^1, 0)$. This proves Lemma (2.1).

LEMMA (2.2). Let E' be an irreducible homogeneous vector bundle over X. Assume that there exists an ample line bundle H such that $(c_1(E') \cdot H^{n-1}) \leq 0$. Then $H^0(X, E') = 0$ if rank $E' \geq 2$.

Proof. Let $-\xi_1$ be the lowest weight of the representation of G_1 giving the vector bundle E. Let $-\xi_2$ be the weight of the representation of G_1 of degree 1 giving the line bundle $\det E'$. Hence $-\xi_2 = \operatorname{tr} \nu_1^{-\xi_1}$. If $\xi_2 \in D$, then $H^0(X, \det E') \neq 0$ by the Borel-Weil theorem. Hence $\det E' = \mathscr{O}_X$ i.e., $\xi_2 = 0$. Now let us observe: $1^0 \dim_{\mathcal{C}} V^{-\xi_1} \geqslant 2$, 2^0 an irreducible representation of a semi-simple Lie algebra is the tensor product of irreducible representations of simple Lie algebras, 3^0 the Dynkin diagram of a simple Lie algebra is connected. It follows, from the above observations and from $\xi_2 = 0$, that there exists a simple root β such that $(\xi_1, \beta) < 0$. This shows that ξ_1 does not belong to the Weyl chamber D. Hence by the Borel-Weil theorem $H^0(X, E') = 0$. If $\xi_2 \in D$, then there exists a simple root $\beta \in \Pi$ such that $(\xi_2, \beta) < 0$. The lowest weight $-\xi_1$ is written in the form $-\xi_1 = -\frac{1}{r}\xi_2 + \sum_{\alpha \in \Pi_1} n_\alpha \alpha$ where n_α is a non-positive

integer and r is the rank of E'.*) Therefore $(\xi_1, \beta) = \frac{1}{r}(\nu, \beta) - \sum_{\alpha \in \Pi_1} n_{\alpha}(\alpha, \beta)$

< 0. Hence $\xi_1 \in D$ and the lemma follows from the Borel-Weil theorem.

DEFINITION (2.3). Let Y^n be a non-singular projective variety and H an ample line bundle over Y. A vector bundle E over Y is said to be H-stable (in the sense of Mumford and Takemoto) if for any coherent subsheaf F with $1 \le \operatorname{rank} F < \operatorname{rank} E$, we have following inequality;

$$\frac{(c_1(F)\cdot H^{n-1})}{\operatorname{rank} F} < \frac{(c_1(E)\cdot H^{n-1})}{\operatorname{rank} E} .$$

THEOREM (2.4). Let E be an irreducible homogeneous vector bundle over X. Then E is H-stable for any ample line bundle H over X.

Proof. Let F be a subsheaf of E with $1 \le \operatorname{rank} F \le \operatorname{rank} E$ such that we have

$$\frac{(c_1(F) \cdot H^{n-1})}{\operatorname{rank} F} \ge \frac{(c_1(E) \cdot H^{n-1})}{\operatorname{rank} E} .$$

We shall show the existence of such F leads to a contradiction. Let s be the rank F. If we apply Λ^s to the exact sequence $0 \to F \to E$, we get $\Lambda^s F \to \Lambda^s E$ which is injective at the generic point of X. Since F is torsion free, $\Lambda^s F$ is isomorphic to a line bundle L over X minus a sub-

^{*)} $\Pi_1 \subset \Pi$ is a simple root system of \mathfrak{g}_1 .

variety of codimension 2. On the other hand L uniquely extends to a line bundle over X. We denote the extention again by L which is the first Chern class $c_1(F)$ of F. By tensoring L^{-1} , we get a generic injection $\mathcal{O} \to \varLambda^s E \otimes L^{-1}$ over X minus a subvariety of codimension 2. Hence $H^0(X, \varLambda^s E \otimes L^{-1}) \neq 0$. Now we recall the fact that a line bundle is homogeneous. It follows $\varLambda^s E \otimes L^{-1}$ is homogeneous. Let E' be an irreducible component of $\varLambda^s E$. The first Chern class $c_1(E')$ is given by Lemma (2.1) and equal to $\frac{s}{r}$ rank $E' \cdot c_1(E)$. Hence $c_1(E' \otimes L^{-1}) = \frac{s}{r}$ rank $E' \cdot c_1(E)$

$$-\operatorname{rank} E' \cdot c_1(F) = \operatorname{rank} E' \Big(rac{s}{r} c_1(E) - c_1(F) \Big). \quad ext{It follows } (c_1(E' \otimes L^{-1}) \circ H^{n-1})$$

 ≤ 0 . By Lemma (2.2) $H^{\scriptscriptstyle 0}(X,E'\otimes L^{\scriptscriptstyle -1})=0$ if $\operatorname{rank} E'\geq 2$. Hence the generic injection $\mathscr{O}\to \varLambda^sE\otimes L^{\scriptscriptstyle -1}$ is trivial onto the irreducible component E' if $\operatorname{rank} E'\geq 2$. Therefore there exist line bundles M_i $1\leq i\leq \ell$ such that $\bigoplus_{i=1}^\ell M_i$ is a direct summand of $\varLambda^sE\otimes L^{\scriptscriptstyle -1}$ and the map above factors through $\mathscr{O}\to\bigoplus_{i=1}^\ell M_i\to \varLambda^sE\otimes L^{\scriptscriptstyle -1}$. We choose M_i so that ℓ is minimum. The calculation above shows that $(M_i\cdot H^{n-1})\leq 0$. On the other hand we have a generic injection $\mathscr{O}\to M_i$ for any $1\leq i\leq \ell$. Hence $M_i=\mathscr{O}$ and the morphism $\mathscr{O}\to\bigoplus_{i=1}^\ell M_i=\bigoplus_{i=1}^\ell\mathscr{O}$ is given by a constant matrix. Tensoring L, we get $L\stackrel{f}\longrightarrow\bigoplus_{i=1}^\ell L\stackrel{f}\longrightarrow \varLambda^sE$. Let $-\xi_2$ be the weight of the representation of degree 1 of G_1 defining L. Since f is given by the constant matrix, f is induced by the homomorphism of G_1 -modules $V^{-\epsilon_2}\to\bigoplus_{i=1}^\ell V^{-\epsilon_2}$. The homomorphism f of vector bundles is induced by the decomposition of the G_1 -module $\varLambda^sV^{-\epsilon_1}$ where $\xi\in D_1$ and E is defined by G_1 -module $V^{-\epsilon_1}$. We have proved that the homomorphism f0 of the vector bundle f1 to the vector bundle f2 is induced by the homomorphism of the f3-module f4 to the vector bundle f5 is induced by the homomorphism of the f3-module f4 to the vector bundle f5 is induced by the homomorphism of the f3-module f4 to the vector bundle f5 is induced by the homomorphism of the f3-module f4 to the vector bundle f5 is induced by the homomorphism of the f3-module f5 to the f3-module f5 is induced by the homomorphism of the f3-module f5 to the f3-module f5 is induced by the homomorphism of the f3-module f5 to the f3-module f5 is induced by the homomorphism of the f3-module f5 to the f3-module f5 is induced by the homomorphism of the f3-module f5 to the f5 is induced by the homomorphism of the

Now we notice the following; let ρ and ρ' be representations of G_1 we are given a homomorphism φ of G_1 -module V^{ρ} to G_1 -module $V^{\rho'}$. It induces a homomorphism Φ of vector bundle E^{ρ} to vector bundle $E^{\rho'}$. If we know Φ , by looking at Φ on a fibre we can recover φ .

By the remark above, we can recover the homomorphism of $V^{-\epsilon_2}$ to $\Lambda^s V^{\epsilon_1}$ from the homomorphism $L \to \Lambda^s E$ hence from the homomorphism $\Lambda^s F \to \Lambda^s E$ by looking at the homomorphism on a general fibre since these two homomorphism coincide on an open set of X. This shows that the image of $V^{-\epsilon_2}$ in $\Lambda^s V^{-\epsilon_1}$ is reduced i.e., written in the form $x_1 \wedge x_2 \wedge \cdots \wedge x_s$. The subspace generated by x_1, x_2, \cdots, x_s in $V^{-\epsilon_1}$ is G_1 -invari-

ant. This contradicts the irreducibility of $V^{-\xi_1}$.

EXAMPLES (2.4). The universal bundle and the tangent bundle of the Grassmannian are H-stable. In particular the tangent bundle of the projective space P^n is H-stable.

REFERENCES

- [1] Kostant, B. Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. of Math. Vol. 74, 1961.
- [2] Ramanan, S. Holomorphic vector bundles on homogeneous spaces, Topology vol. 5, 1966.

Department of Mathematics Nagoya University