ON A THEOREM OF RAMANAN

HIROSHI UMEMURA

Let G be a simply connected Lie group and P a parabolic subgroup without simple factor. A finite dimensional irreducible representation of P defines a homogeneous vector bundle E over the homogeneous space G / P. Ramanan [2] proved that, if the second Betti number b_{2} of G / P is 1 , the inequality in Definition (2.3) holds provided F is locally free. Since the notion of the H-stability was not established at that time, it was inevitable to assume that $b_{2}=1$ and F is locally free. In this paper, pushing Ramanan's idea through, we prove that E is H-stable for any ample line bundle H. Our proof as well as Ramanan's depends on the Borel-Weil theorem. If we recall that the Borel-Weil theorem fails in characteristic $p>0$, it is interesting to ask whether our theorem remains true in characteristic $p>0$.

§ 1. The Borel-Weil theorem

Let us review the Borel-Weil theorem on which the proof of our theorem heavily depends. We use the notation of Kostant [1] with slight modifications. For example, we shall denote by \mathfrak{p} a parabolic Lie subalgebra which Kostant denotes by \mathfrak{u}. In this section all the results are stated without proofs. The details are found in the paper of Kostant cited above.

Let g be a complex semi-simple Lie algebra and let (g) be the CartanKilling form on g namely $(x, y)=\operatorname{tr}(a d x \circ a d y)$ for $x, y \in \mathfrak{g}$.

A compact form of g is a real Lie subalgebra \mathfrak{f} of g satisfying the following conditions:
(i) $\mathfrak{g}=\mathfrak{f}+i \mathfrak{f}$ is the direct sum of real Lie algebra.
(ii) the Cartan-Killing form is negative definite on f. We fix a compact form once and for all. Let $\mathfrak{q}=i \mathfrak{l}$ so that the restriction of the CartanKilling form to \mathfrak{q} is positive definite. Evidently we have a real decom-
position $g=q+i q$. The star operator is defined by the formula

$$
(u+i v)^{*}=u-i v \quad \text { for any } u+i v \in \mathfrak{g}=\mathfrak{q}+i q
$$

Now let V be a vector space. We denote by V^{\prime} the dual of V.
Let \mathfrak{G} be a Cartan subalgebra of g and let ℓ be its dimension i.e., ℓ is the rank of the semi-simple Lie algebra g. We know that the restriction (\mathfrak{h}) of (\mathfrak{g}) to \mathfrak{h} is non-singular and hence we can define a map $\mu \rightarrow x_{\mu}$ of \mathfrak{G}^{\prime} onto \mathfrak{G} by the relation

$$
\left(y, x_{\mu}\right)=\langle y, \mu\rangle \quad \text { for all } y \in \mathfrak{h}
$$

If we define $(\mu, \lambda)=\left\langle x_{\mu}, \lambda\right\rangle$, we get a non-singular bilinear form (\mathfrak{h}^{\prime}) on \mathfrak{g}^{\prime}. If we consider \mathfrak{g} as an \mathfrak{h}-module through the adjoint representation, then we get the decomposition of \mathfrak{g} into \mathfrak{b}-invariant spaces:

$$
\mathfrak{g}=\mathfrak{h}+\sum_{\varphi \in \mathfrak{h}^{\prime}} \mathrm{g}^{\varphi}
$$

where \mathfrak{h} acts on g^{φ} through the character φ. Let $e_{\varphi} \in \mathrm{g}$ denote an eigenvector corresponding to a character φ, hence $\left[x, e_{\varphi}\right]=\langle x, \varphi\rangle e_{\varphi}$ for any $x \in \mathscr{G}$ and, by the structure theorem of semi-simple Lie algebra, $\mathfrak{g}^{\varphi}=\boldsymbol{C} e_{\varphi}$. Let Δ be the set of characters of \mathfrak{b} such that $\mathfrak{g}^{\circ} \neq 0 . \Delta$ is the set of roots of \mathfrak{g} and an eigenvector corresponding to a root is called a root vector. We know that the root vector e_{φ} can be chosen so that

$$
\begin{aligned}
\left(e_{\varphi}, e_{\psi}\right) & =0 & & \text { if } \psi \neq-\varphi \\
& =1 & & \text { if } \psi=-\varphi .
\end{aligned}
$$

Then moreover we have $\left[e_{\varphi}, e_{-\varphi}\right]=x_{\varphi}$.
Let $\mathfrak{h}^{\#}$ be the R-linear subspace of \mathfrak{h}^{\prime} generated by the set Δ. We know that the restriction of the Cartan-Killing form on $\mathfrak{h}^{\#}$ is positive definite. Let \mathfrak{r} be a subspace of \mathfrak{g} invariant under the adjoint representation of \mathfrak{h}. Then $\Delta(\mathfrak{r})$ is by definition the subset of Δ consisting of all the roots φ such that the eigenspace \mathfrak{g}^{φ} is contained in \mathfrak{r} and \mathfrak{r}^{0}, is the set of all the elements $z \in \mathfrak{g}$ snch that $(z, y)=0$ for any $y \in r$.

Let \mathfrak{b} be a Borel subalgebra of \mathfrak{g}. We fix \mathfrak{b} once and for all. Let now consider a simply connected complex Lie group G whose Lie algebra is isomorphic to g . Let B be the Borel subgroup of G corresponding to the Borel subalgebra \mathfrak{b}. Let \mathfrak{B} be the set of all the parabolic Lie subalgebra \mathfrak{p} containing the Borel subalgebra \mathfrak{b}. Let $\mathfrak{b} \subset \mathfrak{p}$ be a parabolic Lie subalgebra and $B \subset P$ be the parabolic subgroup corresponding to \mathfrak{p}.

It is well-known that the quotient space $X=G / P$ is a projective algebraic variety. We assume that \mathfrak{p} does not contain a simple factor. We denote by n the dimension of X. If we put $\mathfrak{g}_{1}=\mathfrak{p} \cap \mathfrak{p}^{*}$ and $\mathfrak{m}=\mathfrak{b}^{0}$, then g_{1} is reductive in g and \mathfrak{m} is a maximal nilpotent Lie subalgebra and \mathfrak{m} is the set of all nilpotent elements in \mathfrak{b}. We know that if $\mathfrak{n}=g^{0}$, then \mathfrak{n} is the maximal nilpotent ideal in \mathfrak{p} and that $\mathfrak{p}=\mathfrak{g}_{1}+\mathfrak{n}$. If we put $\Delta_{+}=\Delta(\mathfrak{m})$ and $\Delta_{-}=-\Delta_{+}$, then $\Delta=\Delta_{+} \cup \Delta_{-}$is a disjoint union and there exists a subset $\Pi \subset \Delta$ such that for any element $\varphi \in \Delta, \varphi=\sum_{\alpha \in \Pi} n_{\alpha}(\varphi) \alpha$ where the n_{α} are non-negative or non-positive integers according as $\varphi \in \Delta_{+}$ or $\varphi \in \Delta_{-}$. The set Π is called the set of simple roots.

Let G_{1} be the subgroup of G corresponding to the subalgebra g_{1} and $Z \subset \mathfrak{h}^{\#} \subset \mathfrak{h}^{\prime}$ be the set of all integral linear forms on \mathfrak{h}. Then the elements of Z are the weights of all the finite dimensional representation of G_{1}. Let ν_{1} be a finite dimensional irreducible representation of G_{1}. An extremal weight of ν_{1} is a weight appearing in ν_{1} that becomes highest for a some lexiographical ordering of Z. We denote by W_{1} the Weyl group of \mathfrak{g}_{1}. If ξ is an extremal weight of ν_{1}, then the collection $\{\sigma \xi\}, \sigma \in W_{1}$ is the set of all the extremal weights. Let $\xi \in Z$. We denote by ν_{i}^{ξ} the unique irreducible representation of g_{1} having ξ as an extremal weight. Let ξ_{1}, ξ_{2} be two elements of Z. Then the representations $\nu_{1}^{\xi_{1}}, \nu_{2}^{\xi_{2}}$ are isomorphic if and only if there exists an element $\sigma \in W_{1}$ such that $\sigma \xi_{1}$ $=\xi_{2}$. Let $\mathfrak{m}_{1}=\mathfrak{m} \cap \mathfrak{g}_{1}$ and $D_{1}=\left\{\mu \in Z \mid(\mu, \varphi) \geq 0\right.$ for all $\left.\varphi \in \Delta\left(\mathfrak{m}_{1}\right)\right\}$. The elements of D_{1} will be called dominant. One knows that D_{1} is a fundamental domain for the action of W_{1} on Z. Hence every irreducible representation of G_{1} is equivalent to ν_{1}^{ξ} for one and only one $\xi \in D_{1}$. The weight ξ is called the highest weight of the representation ν_{i}^{ξ}. Similarly $-D_{1}$ is a fundamental domain for the action of W_{1} on Z. Hence every irreducible representation of G_{1} is equivalent to ν_{1}^{ξ} for one and only one $\xi \in-D_{1}$. The weight ξ is called the lowest weight of the representation. An irreducible representation of G_{1} is determined by its lowest weight as well as by its highest weight. When we take g itself as a parabolic subgroup, we denote W, D for W_{1} and D_{1}. Note that $D \subset D_{1}$ and W_{1} is a subgroup of W.

Furthermore if we put

$$
g_{1}=\frac{1}{2} \sum_{\varphi \in \Delta\left(m_{1}\right)} \varphi
$$

$$
g_{2}=\frac{1}{2} \sum_{\varphi \in \Delta\left(m_{2}\right)} \varphi
$$

and

$$
g=g_{1}+g_{2}
$$

then $g_{1} \in D_{1}$ and $g \in D$.
Define a subset $W^{1} \subset W$ by putting $W^{1}=\left\{\sigma \in W \mid \sigma \Delta_{-} \cap \Delta_{+} \subset \Delta(\mathfrak{n})\right\}$. Let D_{1}^{0} be a subset of D_{1} defined by putting $D_{1}^{0}=\{\xi \in D \mid g+\xi$ is regular $\}$. Recall that an element $\mu \in Z$ is said to be regular if $(\mu, \varphi) \neq 0$ for all $\varphi \in \Delta$.

Lemma (1.1) (Kostant [1]). The mapping $D \times W^{1} \rightarrow Z$ given by (λ, σ) $\mapsto \sigma(g+\lambda)-g$ maps $D \times W^{1}$ bijectively onto D_{1}^{0}.

Now for any $\sigma \in W$, we denote by $n(\sigma)$ the number of roots in $\sigma \Delta_{-} \cap \Delta_{+}$.

Let N be the subgroup of G corresponding to the subalgebra \mathfrak{n} of g. Then $P=G_{1} N$ is a semi-direct product. It is not difficult to see that any irreducible representation of P is trivial on N and hence is equivalent to $\nu_{1}^{-\xi}$ for some $\xi \in D_{1}$ on G_{1}. Conversely if $\nu_{1}^{-\xi}, \xi \in D_{1}$ is an irreducible representation of G_{1}, we can extend it to an irreducible representation of P by giving the action of N trivial. Hereafter we will regard $\nu_{1}^{-\xi}$ as so extended. Thus, up to equivalence, all irreducible representation of P are of the form $\nu_{1}^{-\xi}$ for some $\xi \in D_{1}$.

Let now $\xi \in D_{1}$ and consider the product $G \times V_{1}^{-\xi}$. If we set

$$
(a u, s) \equiv\left(a, \nu_{1}^{-\xi}(u) s\right)
$$

for any $a \in G, u \in P$ and $s \in V_{1}^{-\xi}$, then \equiv is an equivalence relation, and $E^{-\xi}=G \times V_{1}^{-\xi} / \equiv \rightarrow G / P$ is a vector bundle with fibre $V_{1}^{-\xi}$. Let $a, b \in G$. If $x=b P \in X$, let $a x \in X$ denote the coset $a b P$. Similarly if $v \in E^{-\xi}$ is the equivalence class containing $(b, s) \in G \times V_{1}^{-\xi}$, let $a v \in E^{-\xi}$ denote the equivalence class containing ($a b, s$). It is clear then that if $X_{0} \subset X$ is an open set in X and ψ is a local holomorphic section of $E^{-\xi}$ defined on $a^{-1} X_{0}$, given by $a(\psi)(x)=a \psi\left(a^{-1} x\right)$ where $x \in X_{0}$ is a local holomorphic section of $E^{-\xi}$ defined on X_{0}. Now the mapping $\psi \mapsto a \psi$ defines an operator $\rho^{-\xi}(a)$ on $H^{i}\left(X, E^{-\xi}\right)$. Since G / P is projective $H^{i}\left(X, E^{-\xi}\right)$ is an finite dimensional representation of G. The Borel-Weil theorem teaches us that $H^{i}\left(X, E^{-\xi}\right)$ is irreducible and gives us its lowest weight.

Borel-Weil Theorem (1.2). Let $\xi \in D_{1}$. Then if $\xi \notin D_{1}^{0}$, one has $H^{j}(X, E)$ $=0$ for any j. If $\xi \in D_{1}^{0}$, then upon writing $\xi=\xi(\lambda, \sigma)$ one has $H^{j}\left(X, E^{-\xi}\right)$ $=0$ for all $j \neq n(\sigma)$ and for $j=n(\sigma)$, the representation on $H^{j}\left(X, E^{-\xi}\right)$ is isomorphic to the irreducible representation $\nu^{-\lambda}$ of G.

We shall use the theorem in the following weak form.
Corollary (1.3). Using the notation of the theorem, if $\xi \notin D$, then $H^{0}\left(X, E^{-\xi}\right)=0$.

For if $H^{0}\left(X, E^{-\xi}\right) \neq 0, \xi=\xi(\lambda, \sigma)$ with $n(\sigma)=0 . \sigma\left(\Delta_{-}\right)=\Delta_{-}$hence $\sigma=\mathrm{id}$. Therefore $\xi \in D$.

§ 2. Stability of homogeneous vector bundles

Lemma (2.1). Let E be an irreducible homogeneous vector bundle of rank r. Let $s \leq r$ be an integer and E^{\prime} be an irreducible component of $\Lambda^{s} E$. Then the first Chern class $c_{1}\left(E^{\prime}\right)$ of E^{\prime} is equal to $\frac{s}{r} \operatorname{rank} E^{\prime} c_{1}(E)$.

Proof. Since E corresponds to the irreducible representation of the reductive Lie algebra, $\Lambda^{s} E$ is the direct sum of indecomposable homogeneous vector bundles. Since g_{1} is reductive, g_{1} is isomorphic to the direct sum $\mathfrak{c} \oplus \mathscr{D} g_{1}$ where \mathfrak{c} is the center of g_{1} and $\mathscr{D} g_{1}=\left[g_{1}, g_{1}\right]$. We know that \mathfrak{h} is also a Cartan subalgebra of \mathfrak{g}_{1}. Hence, denoting by \mathfrak{f} a Cartan subalgebra of $\mathscr{D} \mathfrak{g}_{1}, \mathfrak{h}=\mathfrak{c} \oplus \mathfrak{f}$. Therefore $\mathfrak{h}^{\prime}=\mathfrak{c}^{\prime} \oplus \mathfrak{f}^{\prime} . \mathfrak{c}^{\prime}$ is generated by the weights of representations of degree 1 of G_{1} and \mathfrak{F}^{\prime} is generated by the root system of $\mathscr{D} \mathfrak{g}_{1}$. Now let $\omega^{1}=\left(\omega_{(1)}^{1}, \omega_{(2)}^{1}\right) \in \mathfrak{c}^{\prime} \oplus \mathfrak{f}^{\prime}=\mathfrak{G}^{\prime}$ be the highest weight of the irreducible representation of G_{1} yielding the vector bundle E. Then other weights appearing in the representation are of the form $\left(\omega_{(1)}^{1}, \omega_{i}^{\prime}\right)$ with $\omega^{\prime} \in \mathfrak{f}^{\prime} 1 \leq i \leq r$. $\operatorname{det} E$ is given by the representation of degree 1 of G_{1} with its weight $\sum_{i=1}^{r}\left(\omega_{(1)}^{1}, \omega_{i}^{\prime}\right)=$ trace of the representation ω^{1}. But $\sum_{i=1}^{r}\left(\omega_{(1)}^{1}, \omega_{1}^{\prime}\right)$ should be in $c^{\prime} \oplus 0$. Hence $\sum_{i=1}^{r}\left(\omega_{(1)}^{1}, \omega_{i}^{\prime}\right)=r\left(\omega_{(1)}^{1}, 0\right)$. The weights appearing in $\Lambda^{s} V^{\omega^{1}}$ are of the form $\left(s \omega_{(1)}^{1}, \omega^{\prime}\right)$ with $\omega^{\prime} \in \mathfrak{Y}^{\prime}$. $\operatorname{det} E^{\prime}$ is given by the representation of degree 1 of G_{1} with its weight $\sum_{j=1}^{t}\left(s \omega_{(1)}^{1}, \omega_{j}^{\prime}\right)$ where t is the rank of E^{\prime}. By the same argument as above we conclude $\sum_{j=1}^{t}\left(s \omega_{(1)}^{1}, \omega_{j}^{\prime}\right)=t s\left(\omega_{(1)}^{1}, 0\right)$. This proves Lemma (2.1).

Lemma (2.2). Let E^{\prime} be an irreducible homogeneous vector bundle over X. Assume that there exists an ample line bundle H such that $\left(c_{1}\left(E^{\prime}\right) \cdot H^{n-1}\right) \leq 0$. Then $H^{0}\left(X, E^{\prime}\right)=0$ if rank $E^{\prime} \geq 2$.

Proof. Let $-\xi_{1}$ be the lowest weight of the representation of G_{1} giving the vector bundle E. Let $-\xi_{2}$ be the weight of the representation of G_{1} of degree 1 giving the line bundle $\operatorname{det} E^{\prime}$. Hence $-\xi_{2}=\operatorname{tr} \nu_{1}^{-\xi_{1}}$. If $\xi_{2} \in D$, then $H^{0}\left(X, \operatorname{det} E^{\prime}\right) \neq 0$ by the Borel-Weil theorem. Hence $\operatorname{det} E^{\prime}=$ \mathcal{O}_{X} i.e., $\xi_{2}=0$. Now let us observe: $1^{0} \operatorname{dim}_{C} V^{-\xi_{1}} \geqslant 2,2^{0}$ an irreducible representation of a semi-simple Lie algebra is the tensor product of irreducible representations of simple Lie algebras, 3^{0} the Dynkin diagram of a simple Lie algebra is connected. It follows, from the above observations and from $\xi_{2}=0$, that there exists a simple root β such that $\left(\xi_{1}, \beta\right)<0$. This shows that ξ_{1} does not belong to the Weyl chamber D. Hence by the Borel-Weil theorem $H^{0}\left(X, E^{\prime}\right)=0$. If $\xi_{2} \oplus D$, then there exists a simple root $\beta \in \Pi$ such that $\left(\xi_{2}, \beta\right)<0$. The lowest weight $-\xi_{1}$ is written in the form $-\xi_{1}=-\frac{1}{r} \xi_{2}+\sum_{\alpha \in \Pi_{1}} n_{\alpha} \alpha$ where n_{α} is a non-positive integer and r is the rank of $\left.E^{\prime} . *\right) \quad$ Therefore $\left(\xi_{1}, \beta\right)=\frac{1}{r}(\nu, \beta)-\sum_{\alpha \in \Pi_{1}} n_{\alpha}(\alpha, \beta)$ <0. Hence $\xi_{1} \notin D$ and the lemma follows from the Borel-Weil theorem.

DEFINITION (2.3). Let Y^{n} be a non-singular projective variety and H an ample line bundle over Y. A vector bundle E over Y is said to be H-stable (in the sense of Mumford and Takemoto) if for any coherent subsheaf F with $1 \leq \operatorname{rank} F<\operatorname{rank} E$, we have following inequality;

$$
\frac{\left(c_{1}(F) \cdot H^{n-1}\right)}{\operatorname{rank} F}<\frac{\left(c_{1}(E) \cdot H^{n-1}\right)}{\operatorname{rank} E}
$$

THEOREM (2.4). Let E be an irreducible homogeneous vector bundle over X. Then E is H-stable for any ample line bundle H over X.

Proof. Let F be a subsheaf of E with $1 \leq \operatorname{rank} F<\operatorname{rank} E$ such that we have

$$
\frac{\left(c_{1}(F) \cdot H^{n-1}\right)}{\operatorname{rank} F} \geq \frac{\left(c_{1}(E) \cdot H^{n-1}\right)}{\operatorname{rank} E}
$$

We shall show the existence of such F leads to a contradiction. Let s be the $\operatorname{rank} F$. If we apply Λ^{s} to the exact sequence $0 \rightarrow F \rightarrow E$, we get $\Lambda^{s} F \rightarrow \Lambda^{s} E$ which is injective at the generic point of X. Since F is torsion free, $\Lambda^{s} F$ is isomorphic to a line bundle L over X minus a sub-
$\left.{ }^{*}\right) \Pi_{1} \subset \Pi$ is a simple root system of \mathfrak{g}_{1}.
variety of codimension 2 . On the other hand L uniquely extends to a line bundle over X. We denote the extention again by L which is the first Chern class $c_{1}(F)$ of F. By tensoring L^{-1}, we get a generic injection $\mathcal{O} \rightarrow \Lambda^{s} E \otimes L^{-1}$ over X minus a subvariety of codimension 2. Hence $H^{0}\left(X, \Lambda^{s} E \otimes L^{-1}\right) \neq 0$. Now we recall the fact that a line bundle is homogeneous. It follows $\Lambda^{s} E \otimes L^{-1}$ is homogeneous. Let E^{\prime} be an irreducible component of $\Lambda^{s} E$. The first Chern class $c_{1}\left(E^{\prime}\right)$ is given by Lemma (2.1) and equal to $\frac{s}{r} \operatorname{rank} E^{\prime} \cdot c_{1}(E)$. Hence $c_{1}\left(E^{\prime} \otimes L^{-1}\right)=\frac{s}{r} \operatorname{rank} E^{\prime} \cdot c_{1}(E)$ $-\operatorname{rank} E^{\prime} \cdot c_{1}(F)=\operatorname{rank} E^{\prime}\left(\frac{s}{r} c_{1}(E)-c_{1}(F)\right) . \quad$ It follows $\left(c_{1}\left(E^{\prime} \otimes L^{-1}\right) \circ H^{n-1}\right)$ ≤ 0. By Lemma (2.2) $H^{0}\left(X, E^{\prime} \otimes L^{-1}\right)=0$ if rank $E^{\prime} \geq 2$. Hence the generic injection $\mathcal{O} \rightarrow \Lambda^{s} E \otimes L^{-1}$ is trivial onto the irreducible component E^{\prime} if rank $E^{\prime} \geq 2$. Therefore there exist line bundles $M_{i} 1 \leq i \leq \ell$ such that $\oplus_{i=1}^{l} M_{i}$ is a direct summand of $\Lambda^{s} E \otimes L^{-1}$ and the map above factors through $\mathcal{O} \rightarrow \oplus_{i=1}^{\ell} M_{i} \rightarrow \Lambda^{s} E \otimes L^{-1}$. We choose M_{i} so that ℓ is minimum. The calculation above shows that $\left(M_{i} \cdot H^{n-1}\right) \leq 0$. On the other hand we have a generic injection $\mathcal{O} \rightarrow M_{i}$ for any $1 \leq i \leq \ell$. Hence $M_{i}=\mathcal{O}$ and the morphism $\mathcal{O} \rightarrow \oplus_{i=1}^{\ell} M_{i}=\oplus_{i=1}^{e} \mathcal{O}$ is given by a constant matrix. Tensoring L, we get $L \xrightarrow{f} \oplus_{i=1}^{\ell} L \stackrel{j}{\longrightarrow} \Lambda^{s} E$. Let $-\xi_{2}$ be the weight of the representation of degree 1 of G_{1} defining L. Since f is given by the constant matrix, f is induced by the homomorphism of G_{1}-modules $V^{-\xi_{2}} \rightarrow \oplus_{i=1}^{\ell} V^{-\xi_{2}}$. The homomorphism j of vector bundles is induced by the decomposition of the G_{1}-module $\Lambda^{s} V^{-\xi_{1}}$ where $\xi \in D_{1}$ and E is defined by G_{1}-module $V^{-\xi_{1}}$. We have proved that the homomorphism $j \circ f$ of the vector bundle L to the vector bundle $\Lambda^{s} E$ is induced by the homomorphism of the G_{1}-module $V^{-\xi_{2}}$ to the G_{1}-module $\Lambda^{s} V^{-\xi_{1}}$.

Now we notice the following; let ρ and ρ^{\prime} be representations of G_{1} we are given a homomorphism φ of G_{1}-module V^{ρ} to G_{1}-module $V^{\rho^{\prime}}$. It induces a homomorphism Φ of vector bundle E^{ρ} to vector bundle $E^{\rho^{\rho}}$. If we know Φ, by looking at Φ on a fibre we can recover φ.

By the remark above, we can recover the homomorphism of $V^{-\xi_{2}}$ to $\Lambda^{s} V^{\xi_{1}}$ from the homomorphism $L \rightarrow \Lambda^{s} E$ hence from the homomorphism $\Lambda^{s} F \rightarrow \Lambda^{s} E$ by looking at the homomorphism on a general fibre since these two homomorphism coincide on an open set of X. This shows that the image of $V^{-\xi_{2}}$ in $\Lambda^{s} V^{-\xi_{1}}$ is reduced i.e., written in the form $x_{1} \wedge x_{2}$ $\wedge \cdots \wedge x_{s}$. The subspace generated by $x_{1}, x_{2}, \cdots, x_{s}$ in $V^{-\xi_{1}}$ is G_{1}-invari-
ant. This contradicts the irreducibility of $V^{-\xi_{1}}$.
Examples (2.4). The universal bundle and the tangent bundle of the Grassmannian are H-stable. In particular the tangent bundle of the projective space P^{n} is H-stable.

References

[1] Kostant, B. Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. of Math. Vol. 74, 1961.
[2] Ramanan, S. Holomorphic vector bundles on homogeneous spaces, Topology vol. 5, 1966.

Departrnent of Mathematics
Nagoya University

