K. Kato Nagoya Math. J. Vol. 69 (1978), 121-129

STOCHASTIC STABILITY OF ANOSOV DIFFEOMORPHISMS

KAZUHISA KATO

§0. Introduction

R. Bowen [1] introduced the notion of pseudo-orbit for a homeomorphism f of a metric space X as follows: A (double) sequence $\{x_i\}_{i \in \mathbb{Z}}$ of points x_i in X is called a δ -pseudo-orbit of f iff

$$d(fx_i, x_{i+1}) \leq \delta$$

for every $i \in \mathbb{Z}$, where d denotes the metric in X. We say f is stochastically stable if for every $\varepsilon > 0$ there exists $\delta > 0$ such that every δ pseudo-orbit $\{x_i\}_{i \in \mathbb{Z}}$ of f is ε -traced by some $x \in X$, i.e.,

 $d(f^i x, x_i) \leq \varepsilon$

for every $i \in \mathbb{Z}$. He proved in [1] that if a compact hyperbolic set Λ for a diffeomorphism f of a compact manifold M has local product structure then the restriction $f \mid \Lambda$ of f to Λ is stochastically stable, using stable and unstable manifolds.

In this paper we prove first that an Anosov diffeomorphism f of a compact manifold M is topologically stable, in the set of all continuous maps of M into M, in a sense (Theorem 1). Next, making use of Theorem 1 we give another proof for Bowen's result, in the case of f an Anosov diffeomorphism (Theorem 2). The idea of this paper is inspired by a result of A. Morimoto [2], which says that a topologically stable homeomorphism f of a manifold M with dim $M \geq 3$ is stochastically stable. The method of the proof follows that of P. Walters [3].

The author would like to express his gratitude to Professor A. Morimoto for several useful conversations and his advices.

§1. Preparatory lemmas

M will always denote a compact C^{∞} manifold without boundary.

Received February 18, 1977.

KAZUHISA KATO

DEFINITION 1. A C^1 diffeomorphism f of M is called an Anosov diffeomorphism if there exist a Riemannian metric $\|\cdot\|$ on M and constants C > 0, $0 < \lambda < 1$ such that the tangent bundle of M can be written as the Whitney sum of two continuous subbundles, $TM = E^s \oplus E^u$, and the following conditions are satisfied:

(1.1)
$$Tf(E^{\sigma}) = E^{\sigma} \qquad (\sigma = s, u) .$$

(1.2)
$$\begin{aligned} \|Tf^n(v)\| &\leq C\lambda^n \, \|v\| \,, \qquad v \in E^s, \ n \geq 0 \,, \\ \|Tf^{-n}(v)\| &\leq C\lambda^n \, \|v\| \,, \qquad v \in E^u, \ n \geq 0 \,. \end{aligned}$$

f will always denote an Anosov diffeomorphism of M. We can find a Riemannian metric for which we can take C = 1, and fix it (cf. [3]). Let $\mathfrak{X}(M)$ denote the Banach space of all continuous vector fields with the norm

$$||v|| = \sup_{x \in \mathcal{X}} ||v(x)||, \quad v \in \mathfrak{X}(M).$$

Let $\mathfrak{X}^{\mathfrak{s}}(M)$ denote the subspace of all $v \in \mathfrak{X}(M)$ with $v(x) \in E_x^{\mathfrak{s}}$ for every $x \in M$ ($\sigma = s, u$). Clearly $\mathfrak{X}(M) = \mathfrak{X}^{\mathfrak{s}}(M) \oplus \mathfrak{X}^{\mathfrak{u}}(M)$ (direct sum). We define a linear operator $f_*: \mathfrak{X}(M) \to \mathfrak{X}(M)$ by

$$f_{\sharp}(v) = Tf \circ v \circ f^{-1}$$
, $v \in \mathfrak{X}(M)$.

Let d(,) denote the metric on M induced by $\|\cdot\|$, and for each $x \in M \exp_x$: $TM_x \to M$ denote the exponential map with respect to $\|\cdot\|$. Let Map (M)denote the metric space of all continuous maps of M into M with the metric

$$d(\phi,\psi) = \sup_{x \in M} d(\phi x,\psi x) , \qquad \phi,\psi \in \mathrm{Map}\,(M) .$$

For $\delta > 0$ we put Map $(M, \delta) = \{\phi \in \text{Map}(M) : d(\phi, \text{id}) \le \delta\}$, and $\sum_{\delta} = \{(x, y) \in M \times M : d(x, y) \le \delta\}.$

The following lemma is due to P. Walters [3].

LEMMA 1. There exist $\delta_1 > 0$ and $\tau_1 > 0$ satisfying the following conditions:

- (1.3) For every $(x, y) \in \sum_{\delta_1}$ there exists a linear isomorphism $L_{(x,y)}$: $TM_x \to TM_y$ such that $L_{(x,y)}(E_x^{\sigma}) = E_y^{\sigma}$ ($\sigma = s, u$), and $L_{(x,y)}$ is continuous with respect to $(x, y) \in \sum_{\delta_1}$.
- (1.4) For every $(x, y) \in \sum_{\delta_1}$ there exists a continuous map $\gamma_{(x,y)} \colon TM_x(\tau_1) \to TM_y$ such that

122

$$\exp_x \left(v \right) = \exp_y \left(L_{(x,y)}(v) + \gamma_{(x,y)}(v) \right), \qquad v \in TM_x(\tau_1)$$

and $\gamma_{(x,y)}$ is continuous with respect to $(x, y) \in \sum_{i_1}$, where $TM_x(\tau_1) = \{v \in TM_x : \|v\| \le \tau_1\}.$

(1.5) $x = \exp_y (\gamma_{(x,y)}(0))$, $(x,y) \in \sum_{\delta_1} .$

(1.6)
$$||L_{(x,y)}||$$
 and $||(L_{(x,y)})^{-1}||$ converge uniformly to 1 as $d(x,y) \to 0$.

(1.7) For every $(x, y) \in \sum_{\delta_1}$ there exists $K(x, y) \ge 0$ such that

$$\|\gamma_{(x,y)}(v) - \gamma_{(x,y)}(v')\| \le K(x,y) \|v - v'\|, \quad v, v' \in TM_x(\tau_1)$$

and K(x, y) converges uniformly to 0 as $d(x, y) \rightarrow 0$.

Proof. See Lemma 1 [3].

DEFINITION 2. For $\phi \in \operatorname{Map}(M, \delta_1)$ we define continuous linear maps $J_{\phi}, R_{\phi} \colon \mathfrak{X}(M) \to \mathfrak{X}(M)$, a continuous map $\gamma_{\phi} \colon \mathfrak{X}(M)(\tau_1) \to \mathfrak{X}(M)$, and a constant $K(\phi) \geq 0$ as follows: For $v \in \mathfrak{X}(M)$ and $x \in M$

$$\begin{split} J_{\phi}(v)(x) &= L_{(\phi x, x)}(v(\phi x)) ,\\ R_{\phi}(v)(x) &= (L_{(x, \phi x)})^{-1}(v(\phi x)) . \end{split}$$

For $v \in \mathfrak{X}(M)(\tau_1)$ and $x \in M$

$$\gamma_{\phi}(v)(x) = \gamma_{(\phi x, x)}(v(\phi x))$$
,

where $\mathfrak{X}(M)(\tau_1) = \{v \in \mathfrak{X}(M) : ||v|| \leq \tau_1\}.$

$$K(\phi) = \sup_{x \in M} K(\phi x, x) .$$

By Lemma 1 we have the following lemma:

LEMMA 2. For
$$\phi \in \text{Map}(M, \delta_1)$$
, $v, v' \in \mathfrak{X}(M)(\tau_1)$ and $x \in M$

(1.8)
$$J_{\phi}(\mathfrak{X}^{\sigma}(M)) \subset \mathfrak{X}^{\sigma}(M), \ R_{\phi}(\mathfrak{X}^{\sigma}(M)) \subset \mathfrak{X}^{\sigma}(M) \qquad (\sigma = s, u),$$

(1.9)
$$\exp_{\delta x} v(\phi x) = \exp_x \left(J_{\delta}(v) + \gamma_{\delta}(v) \right)(x) ,$$

(1.10)
$$\exp_x \gamma_{\phi}(0) = \phi(x) ,$$

(1.11)
$$\begin{aligned} \|\gamma_{\phi}(v) - \gamma_{\phi}(v')\| &\leq K(\phi) \|v - v'\|, \\ K(\phi) &\longrightarrow 0 \quad as \quad d(\phi, \operatorname{id}) \longrightarrow 0, \end{aligned}$$

$$(1.12) ||J_{\phi}||, ||R_{\phi}|| \longrightarrow 1 \quad as \quad d(\phi, \operatorname{id}) \longrightarrow 0 \ .$$

LEMMA 3. If $\phi, \psi \in \text{Map}(M, \delta_1)$ and a subset S of M satisfy

 $\psi \phi(x) = x$

for every $x \in S$, then

(1.13) $R_{\psi}J_{\phi}(v)(\phi x) = v(\phi x)$,

 $(1.14) J_{\phi}R_{\psi}(v)(x) = v(x)$

for every $x \in S$ and $v \in \mathfrak{X}(M)$.

Proof. By Definition 2 we have

$$\begin{split} J_{\phi}R_{\psi}(v)(x) &= L_{(\phi x, x)}(R_{\psi}(v)(\phi x)) \\ &= L_{(\phi x, x)}(L_{(\phi x, \psi \phi x)})^{-1}(v(\psi \phi x)) \\ &= v(x) \;, \end{split}$$

which proves (1.14). Similarly, we have

$$\begin{split} R_{\psi}J_{\phi}(v)(\phi x) &= (L_{(\phi x, \psi \phi x)})^{-1}(J_{\phi}(v)(\psi \phi x)) \\ &= (L_{(\phi x, x)})^{-1}L_{(\phi x, x)}(v(\phi x)) \\ &= v(\phi x) \ , \end{split}$$

which proves (1.13).

LEMMA 4. There exists $\tau_2 > 0$ satisfying the following conditions: For every $v \in \mathfrak{X}(M)(\tau_2)$ there exists $s(v) \in \mathfrak{X}(M)$ such that

(1.15)
$$\begin{aligned} f \exp_{f^{-1}x} v(f^{-1}x) &= \exp_x \left(f_{\sharp}(v) + s(v) \right)(x) , \quad x \in M, \\ s(0) &= 0 , \end{aligned}$$

(1.16)
$$||s(v) - s(v')|| \le C(\tau_2) ||v - v'|$$

for every $v, v' \in \mathfrak{X}(M)(\tau_2)$, where $C(\tau_2) \to 0$ as $\tau_2 \to 0$.

Proof. See Lemma 2 [3].

LEMMA 5. There exist constants $0 < \delta_2 < \delta_1$ and $\alpha > 0$ satisfying the following conditions: For every $\phi, \psi \in \text{Map}(M, \delta_2)$ there exist a constant $\mu(\phi, \psi) > 0$ and a continuous linear map $P = P_{\phi,\psi} \colon \mathfrak{X}(M) \to \mathfrak{X}(M)$ such that if a subset S of M satisfies

$$\psi\phi(x) = x$$

for every $x \in S$, then

(1.17)
$$(I - R_{\psi} f_{*}) P(v)(\phi x) = v(\phi x)$$

for every $x \in S$, and

(1.18)
$$\|P\| \leq \frac{\alpha}{1 - \mu(\phi, \psi)\lambda},$$
$$\mu(\phi, \psi) \longrightarrow 1 \ as \ d(\phi, \operatorname{id}), \ d(\psi, \operatorname{id}) \longrightarrow 0.$$

Proof. There exists $\alpha > 0$ such that

$$(1.19) ||v_s|| + ||v_u|| \le \alpha ||v_s + v_u||$$

for every $v_{\sigma} \in \mathfrak{X}^{\sigma}(M)$ ($\sigma = s, u$). For $\phi, \psi \in \operatorname{Map}(M, \delta_{1})$ we put

(1.20)
$$\mu(\phi, \psi) = \max\{\|J_{\phi}\|, \|R_{\psi}\|\}$$

Then, by (1.12) there exists $0 \leq \delta_2 \leq \delta_1$ and λ_1 such that

(1.21)
$$\mu(\phi,\psi)\lambda < \lambda_1 < 1$$

for every $\phi, \psi \in \text{Map}(M, \delta_2)$.

By (1.1) and (1.8) we can define as follows: $f^{\sigma}_{\sharp} = f_{\sharp} | \mathfrak{X}^{\sigma}(M), J^{\sigma}_{\phi} = J_{\phi} | \mathfrak{X}^{\sigma}(M)$ and $R^{\sigma}_{\psi} = R_{\psi} | \mathfrak{X}^{\sigma}(M) (\sigma = s, u)$. By (1.2), (1.20) and (1.21) we have

 $||R_{\psi}^{s}f_{\#}^{s}|| \leq ||R_{\psi}^{s}|| \, ||f_{\#}^{s}|| \leq \mu(\phi,\psi)\lambda \leq 1$.

Therefore, the Neumann series $\sum_{n=0}^{\infty} (R^s_{\psi} f^s_{\sharp})^n$ is convergent. Putting $P_s = \sum_{n=0}^{\infty} (R^s_{\psi} f^s_{\sharp})^n$ we have

$$||P_s|| \leq \frac{1}{1 - \mu(\phi, \psi)\lambda} .$$

Similarly, since $\|(f^u_*)^{-1}J^u_{\phi}\| \le \mu(\phi,\psi)\lambda \le 1$ the Neumann series $\sum_{n=1}^{\infty} ((f^u_*)^{-1}J^u_{\phi})^n$ is convergent. Putting $P_u = -\sum_{n=1}^{\infty} ((f^u_*)^{-1}J^u_{\phi})^n$ we have

$$||P_u|| \le \frac{1}{1 - \mu(\phi, \psi)\lambda}$$

Now we put $P = P_s + P_u$. By (1.19), (1.22) and (1.23) we get

$$\|P\| \leq lpha \operatorname{Max} \{\|P_s\|, \|P_u\|\} \leq rac{lpha}{1 - \mu(\phi, \psi)\lambda}$$
 ,

which proves (1.18). Next, we shall prove (1.17). By (1.13) and (1.14) we have

$$\begin{aligned} (I - R^{u}_{\psi}f^{u}_{*})P_{u}(v)(\phi x) \\ &= P_{u}(v)(\phi x) + R^{u}_{\psi}f^{u}_{*}(f^{u}_{*})^{-1}J^{u}_{\phi} \Big[\sum_{n=0}^{\infty} ((f^{u}_{*})^{-1}J^{u}_{\phi})^{n}(v)\Big](\phi x) \\ &= P_{u}(v)(\phi x) + \sum_{n=0}^{\infty} ((f^{u}_{*})^{-1}J^{u}_{\phi})^{n}(v)(\phi x) \\ &= v(\phi x) \end{aligned}$$

KAZUHISA KATO

for $v \in \mathfrak{X}^{u}(M)$ and $x \in S$. Clearly, $(I - R_{\psi}^{s} f_{\sharp}^{s})P_{s} = I$. Thus, we have proved (1.17).

§2. Proof of Theorem 1

THEOREM 1. An Anosov diffeomorphism f of M is topologically stable in the following sense: For every $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon) > 0$ satisfying the following conditions: If $g, \tilde{g} \in \text{Map}(M)$ with $d(f, g), d(f\tilde{g}, \text{id}) \leq \delta$ and a subset S of M satisfy

$$\tilde{g}g(x) = x$$

for every $x \in S$, then there exists $h \in Map(M)$ such that

$$hg(x) = fh(x)$$

for every $x \in S$, and

$$(2.2) d(h, id) \le \varepsilon .$$

Proof. First, take $\varepsilon_0 \leq \min \{\tau_1, \tau_2, \varepsilon\}$ so small that for every ϕ , $\psi \in \operatorname{Map}(M, \delta_2)$

(2.3)
$$\frac{\alpha\mu(\phi,\psi)}{1-\mu(\phi,\psi)\lambda}C(\varepsilon_0) \le \frac{1}{4} \ .$$

This is possible since $C(\varepsilon_0) \to 0$ as $\varepsilon_0 \to 0$. Next, take $0 \le \delta \le \delta_2$ so small that for every $\phi, \psi \in \text{Map}(M, \delta)$

(2.4)
$$\frac{\alpha\mu(\phi,\psi)}{1-\mu(\phi,\psi)\lambda}\delta \leq \frac{1}{2}\varepsilon_0$$

and

(2.5)
$$\frac{\alpha\mu(\phi,\psi)}{1-\mu(\phi,\psi)\lambda}K(\phi) \le \frac{1}{4} \ .$$

This is possible since $K(\phi) \to 0$ as $d(\phi, id) \to 0$.

For $\phi, \psi \in \operatorname{Map}(M, \delta)$ we define a continuous map $\Phi : \mathfrak{X}(M)(\varepsilon_0) \to \mathfrak{X}(M)$ by

$$arPhi(v) = P_{\phi,\psi} R_{\psi}(s(v) - \gamma_{\phi}(v)) \;, \qquad v \in \mathfrak{X}(M)(arepsilon_0) \;.$$

To find a fixed point of Φ we shall first show that the Lipschitz constant of $\Phi \leq \frac{1}{2}$. Take two elements $v, v' \in \mathfrak{X}(M)(\varepsilon_0)$. By (1.11), (1.16), (1.18), (1.20), (2.3) and (2.5) we have

126

ANOSOV DIFFEOMORPHISMS

$$\begin{split} \| \varPhi(v) - \varPhi(v') \| \\ &\leq \| P \| \, \| R_{\psi} \| \, (\| s(v) - s(v') \| + \| \gamma_{\phi}(v) - \gamma_{\phi}(v') \|) \\ &\leq \frac{\alpha \mu(\phi, \psi)}{1 - \mu(\phi, \psi) \lambda} (C(\varepsilon_{0}) \, \| v - v' \| + K(\phi) \, \| v - v' \|) \\ &\leq (\frac{1}{4} + \frac{1}{4}) \, \| v - v' \| = \frac{1}{2} \, \| v - v' \| \; . \end{split}$$

Next, we shall show $\Phi(\mathfrak{X}(M)(\varepsilon_0)) \subset \mathfrak{X}(M)(\varepsilon_0)$. By (1.10), (1.15), (1.18), (1.20) and (2.4) we have

$$egin{aligned} &\| arPhi(v) \| \leq \| arPhi(0) \| + \| arPhi(v) - arPhi(0) \| \ & \leq \| P \| \, \| R_{\psi} \| \, \delta + rac{1}{2} \| v \| \ & \leq rac{lpha \mu(\phi, \psi)}{1 - \mu(\phi, \psi) \lambda} \, \delta + rac{1}{2} arepsilon_0 \ & \leq rac{1}{2} arepsilon_0 + rac{1}{2} arepsilon_0 = arepsilon_0 \end{aligned}$$

for $v \in \mathfrak{X}(M)(\varepsilon_0)$. Thus, Φ is a contraction of a complete metric space $\mathfrak{X}(M)(\varepsilon_0)$. Therefore, Φ has a unique fixed point $v_0 = v_0(\phi, \psi) \in \mathfrak{X}(M)(\varepsilon_0)$, i.e.

(2.6)
$$v_0 = P_{\phi,\psi} R_{\psi}(s(v_0) - \gamma_{\phi}(v_0)) \; .$$

We put $h (= h_{\phi,\psi}) = \exp v_0$.

Now assume that $g, \tilde{g} \in \text{Map}(M)$ with $d(f, g), d(f\tilde{g}, \text{id}) \leq \delta$ and a subset S of M satisfy that $\tilde{g}g(x) = x$ for every $x \in S$. Putting $\phi = gf^{-1}$ and $\psi = f\tilde{g}$ we see that $\phi, \psi \in \text{Map}(M, \delta)$ and $\psi \phi(fx) = f(x)$ for every $x \in S$. By Definition 2, (1.14), (1.17) and (2.6) we obtain

$$\begin{split} J_{\phi}(v_{0})(fx) &- f_{\sharp}(v_{0})(fx) \\ &= J_{\phi}(v_{0})(fx) - J_{\phi}R_{\psi}f_{\sharp}(v_{0})(fx) \\ &= J_{\phi}(I - R_{\psi}f_{\sharp})(v_{0})(fx) \\ &= J_{\phi}(I - R_{\psi}f_{\sharp})PR_{\psi}(s(v_{0}) - \gamma_{\phi}(v_{0}))(fx) \\ &= L_{(\phi f x, f x)}[(I - R_{\psi}f_{\sharp})PR_{\psi}(s(v_{0}) - \gamma_{\phi}(v_{0}))(\phi f x)] \\ &= L_{(\phi f x, f x)}[R_{\psi}(s(v_{0}) - \gamma_{\phi}(v_{0}))(\phi f x)] \\ &= L_{(\phi f x, f x)}(L_{(\phi f x, \psi \phi f x)})^{-1}((s(v_{0}) - \gamma_{\phi}(v_{0}))(\psi \phi f x)) \\ &= s(v_{0})(fx) - \gamma_{\phi}(v_{0})(fx) \end{split}$$

for every $x \in S$. Thus we have

(2.7)
$$(J_{\phi}(v_0) + \gamma_{\phi}(v_0))(fx) = (f_{*}(v_0) + s(v_0))(fx)$$

for every $x \in S$. By (1.9), (1.15) and (2.7), for every $x \in S$ we have

KAZUHISA KATO

$$\begin{split} hg(x) &= \exp_{\phi fx} v_0(\phi fx) \\ &= \exp_{fx} \left(J_{\phi}(v_0) + \gamma_{\phi}(v_0) \right)(fx) \\ &= \exp_{fx} \left(f_{*}(v_0) + s(v_0) \right)(fx) \\ &= f \exp_{f^{-1}fx} v_0(f^{-1}fx) \\ &= fh(x) , \end{split}$$

which proves (2.1). Clearly, $d(h, id) = ||v_0|| \le \varepsilon_0 \le \varepsilon$, which proves (2.2). This completes the proof of Theorem 1.

Remark. Let $g \in \text{Map}(M)$ be a homeomorphism of M with $d(f,g) \leq \delta$. Clearly, we see that $d(fg^{-1}, \text{id}) \leq \delta$ and $g^{-1}g(x) = x$ for every $x \in M$. By Theorem 1 there exists $h \in \text{Map}(M, \varepsilon)$ such that

$$hg(x) = fh(x)$$

for every $x \in M$. Thus, Theorem 1 is a generalization of P. Walters' result (Theorem 1 [3]), except the uniqueness of the semiconjugacy h with $d(h, id) \leq \varepsilon$.

§3. Proof of Theorem 2

THEOREM 2. An Anosov diffeomorphism f of M is stochastically stable.

Proof. For $\varepsilon > 0$ we put $\delta_0 = \delta(\varepsilon/2)$, where $\delta(\varepsilon/2)$ is as in Theorem 1, and $\delta = \delta_0/3$. For every δ -pseudo-orbit $\{x_i\}_{i \in \mathbb{Z}}$ of f, we shall find $x \in M$ such that

$$(3.1) d(f^i x, x_i) \leq \varepsilon , i \in \mathbb{Z} .$$

CLAIM 1. For every positive integer k and δ -pseudo-orbit $\{x_i\}_{i \in \mathbb{Z}}$ of f, there exists $z \in M$ such that

$$(3.2) d(f^i z, x_i) \le \varepsilon , i = 0, 1, \cdots, k$$

Proof. There exists a $(\frac{2}{3}\delta_0)$ -pseudo-orbit $\{x'_i\}_{i \in \mathbb{Z}}$ such that

(3.3)
$$d(x'_i, x_i) \le \varepsilon/2, \qquad i = 0, 1, \cdots, k,$$
$$x'_i \ne x'_j, \qquad 0 \le i \ne j \le k+1$$

Since $f(x'_i) \neq f(x'_j)$ $(0 \le i \ne j \le k+1)$ and $d(fx'_i, x'_{i+1}) \le \frac{2}{3}\delta_0$, we can find $\phi, \psi \in \text{Map}(M, \delta_0)$ such that

$$\phi f(x'_i) = x'_{i+1}, \ \psi(x'_{i+1}) = f(x'_i), \qquad i = 0, 1, \dots, k.$$

Put $S = \{x'_0, \dots, x'_k\}$, $g = \phi f$ and $\tilde{g} = f^{-1}\psi$. Then we see that $d(f, g) = d(\phi, \mathrm{id})$, $d(f\tilde{g}, \mathrm{id}) = d(\psi, \mathrm{id}) \leq \delta_0$, and $\tilde{g}g(x'_i) = f^{-1}\psi\phi f(x'_i) = x'_i$, $i = 0, 1, \dots, k$. By Theorem 1, there exists $h \in \mathrm{Map}(M, \varepsilon/2)$ such that $hg(x'_i) = fh(x'_i)$, for $i = 0, 1, \dots, k$. Therefore, we have

(3.4)
$$f^i h(x'_0) = h(x'_i)$$
, $i = 0, 1, \dots, k$.

Putting $z = h(x'_0)$, by (3.3) and (3.4) we obtain

$$\begin{split} d(f^i z, x_i) &\leq d(f^i h(x_0'), x_i') + d(x_i', x_i) \\ &\leq d(h(x_i'), x_i') + \varepsilon/2 \\ &\leq d(h, \operatorname{id}) + \varepsilon/2 \\ &\leq \varepsilon/2 + \varepsilon/2 = \varepsilon \;, \end{split}$$

which proves (3.2).

CLAIM 2. Let $\{x_i\}_{i \in \mathbb{Z}}$ be a δ -pseudo-orbit of f. For every positive integer k there exists $z = z_k \in M$ such that

$$(3.5) d(f^i z, x_i) \le \varepsilon , |i| \le k .$$

Proof. Take a positive integer k and fix it. Putting $y_i = x_{-k+i}$ we see that $\{y_i\}_{i \in \mathbb{Z}}$ is a δ -pseudo-orbit. By Claim 1 there exists $z' \in M$ such that $d(f^i z', y_i) \leq \varepsilon$, for $i = 0, 1, \dots, 2k$. Putting $z = f^k(z')$ we get $d(f^i z, x_i) = d(f^{i+k} z', y_{i+k}) \leq \varepsilon$, $|i| \leq k$, which proves (3.5).

By the compactness of M we can find a subsequence $\{z_{k\nu}\}$ of $\{z_k\}$ such that $\lim_{\nu\to\infty} z_{k\nu} = x$ for some $x \in M$. Take $i \in \mathbb{Z}$ and fix it. By (3.5) we have that $d(f^i z_{k\nu}, x_i) \leq \varepsilon$ for every ν with $|i| \leq k_{\nu}$. Therefore we obtain $d(f^i x, x_i) = \lim_{\nu\to\infty} d(f^i z_{k\nu}, x_i) \leq \varepsilon$, which proves (3.1).

This completes the proof of Theorem 2.

REFERENCES

- [1] R. Bowen, ω -limit sets for Axiom A diffeomorphisms, J. Diff. Eq. 18 (1975), 333-339.
- [2] A. Morimoto, Stochastically stable diffeomorphisms and Takens conjecture, to appear.
- [3] P. Walters, Anosov diffeomorphisms are topologically stable, Topology 9 (1970), 71-78.

Kochi University