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STOCHASTIC STABILITY OF ANOSOV DIFFEOMORPHISMS

KAZUHISA KATO

§ 0. Introduction

R. Bowen [1] introduced the notion of pseudo-orbit for a homeomor-
phism / of a metric space X as follows: A (double) sequence {Xt}tez of
points Xi in X is called a ^-pseudo-orbit of / iff

for every ί e Z, where d denotes the metric in X. We say / is stoch-
astically stable if for every ε > 0 there exists δ > 0 such that every δ-
pseudo-orbit {xt}iez of / is ε-traced by some xeX, i.e.,

d(px, Xi) < ε

for every ieZ. He proved in [1] that if a compact hyperbolic set Λ for
a diίfeomorphism / of a compact manifold M has local product structure
then the restriction f\Λ of / to A is stochastically stable, using stable
and unstable manifolds.

In this paper we prove first that an Anosov diffeomorphism /
of a compact manifold M is topologically stable, in the set of all con-
tinuous maps of M into M, in a sense (Theorem 1). Next, making use
of Theorem 1 we give another proof for Bowen's result, in the case of
/ an Anosov diffeomorphism (Theorem 2). The idea of this paper is
inspired by a result of A. Morimoto [2], which says that a topologically
stable homeomorphism / of a manifold M with dim M > 3 is stochastically
stable. The method of the proof follows that of P. Walters [3],

The author would like to express his gratitude to Professor A. Mori-
moto for several useful conversations and his advices.

§ 1 . Preparatory lemmas

M will always denote a compact C°° manifold without boundary.
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DEFINITION 1. A C 1 diffeomorphism / of M is called an Anosov
diffeomorphism if there exist a Riemannian metric || || on M and con-
stants 0 0, 0 <Λ < 1 such that the tangent bundle of M can be written
as the Whitney sum of two continuous subbundles, TM — Es 0 Eu, and
the following conditions are satisfied:

(1

(1

•1)

.2)

Tf(E°) =

\\Tfn(v)\\<Cλn\

\\Tf-n(y)\\<Cλn

E'

\\v\\ ,

\\v\\ ,

(σ — s,u).

v e Es, n>

veEu, n>
0,

0 .

/ will always denote an Anosov diffeomorphism of M. We can find
a, Riemannian metric for which we can take C = 1, and fix it (cf. [3]).
Let dί(M) denote the Banach space of all continuous vector fields with
the norm

\\v\\ = sup IKaOH, veX(M) .
xeM

Let %σ(M) denote the subspace of all v e 9£(M) with v(x) e E% for every
x e M (σ = s, u). Clearly 3£(M) = 3£S(M) Θ £W(M) (direct sum). We define
a linear operator / t : 3£(M) —> 3£(M) by

f£v) = Γ/ovo/"1, vedί(M) .

Let d(,) denote the metric on M induced by || ||, and for each x e M expx:
TMX—>M denote the exponential map with respect to || ||. Let Map (M)
denote the metric space of all continuous maps of M into M with the
metric

d{φ, ψ) = sup d(φx, ψx) , φ, ψ e Map (M) .
xeM

For δ > 0 we put Map (M, 8) = {φ e Map (M): d(^, id) < δ}, and Σ δ =
{(α;,y)eM xM: d(x,y) < δ}.

The following lemma is due to P. Walters [3].

LEMMA 1. There exist δλ > 0 and τλ > 0 satisfying the following con-
dίtions:

(1.3) For every (x, y) e J]δί there exists a linear isomorphism L{XiV): TMX

—> TMV such that L{x>y){Ex) — Ea

y (σ = s, u), and L{x>v) is continuous
with respect to (x, y) e Σδl.

(1.4) For every {x, y) e J] δ l there exists a continuous map γ{XtV): TMx(τd
—> TMΉ such that
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exp* (v) = exp^ (LίXtV)(v) + γiXiV)(v)) , v e TMx(τx)

and γ{x,v) is continuous with respect to (x, y) e Σδi> where TMx(τ^) =

{v eTMx: WvWKτ,}.

(1.5) x = expy (γix,y)(0)) , (x, y) e ΣH

(1.6) ||L(a. fV) | | and \\(L{Xty)Y
ι\\ converge uniformly to 1 as d(x,y)-*0 .

(1.7) For every (x, y) e 2] δ l there exists K(x9 y) > 0 ŝ c/z, that

\\rι*.v>(!») - hχ,yW)\\ < K(x, y)\\v- v'\\ , v, vf e TMx{τd

and K(x, y) converges uniformly to 0 as d{x, y) -> 0.

Proof. See Lemma 1 [3].

DEFINITION 2. For φ e Map (M, dj we define continuous linear maps

Jφ, Rφ: dί(M) —> 36(M), a continuous map ^ : XiMXτJ -> 36(ilf), and a con-

stant K{φ) > 0 as follows: For v e 3£(M) and x e M

For v e %(M)(τd and a? e M

γΦ(v)(x) = r ( ^

where 3e(M)(rx) = {VG 3£(M): | |^ || < τ j .

K(φ) = sup Z(^^, α;) .
xeM

By Lemma 1 we have the following lemma:

LEMMA 2. For φ e Map (M, d^, v, 'y/ e 3£(M)(rx)

(1.8) Jφ(Xσ(M)) C 3£'(ilf), Λ/Ϊ'ίilf)) c Xσ(M) (σ = 8,u) ,

(1.9) exp^ v(φx) = expx ( J /

(1.10) expβ r/0) =

( 1 u ) \\Φ) - r,(vθ|| < K(φ) \\v-v'\\,
( 1 u )

K(φ) > 0 as d{φ, id) • 0 ,

(1.12) I|/,IUI^II >1 as d(φ,id) >0 .

LEMMA 3. // φ,ψ e Map (M, δj and a subset S of M satisfy
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ΛJrφ(x) = X

for every x e S, then

(1.13) R+Jφ(v)(φx) = v(φx) ,

(1.14) JΦRΨ(v)(x) = v(x)

for every xeS and vedi(M).

Proof. By Definition 2 we have

JφRΨ(v)(x) = L{φx>x)(Rψ(v)(φx))

which proves (1.14). Similarly, we have

RΨJφ(v)(φx) = ( L ( ^ , ^

= (L(φX}X))~ιL(φx>x)(v(φx))

which proves (1.13).

LEMMA 4. There exists τ2 > 0 satisfying the following conditions:

For every v e 3£(M)(r2) ίfeere exists s(v) e 36(M)

/ exp^^α^ ̂ ( Z ^ ) exp^ (f$(v) + s(v))W , xeM,
(1.15)

s(0) - 0 ,

(1.16) \\s(v) - sίi OII < C(τ2) ||ι; - ^ | |

/o?a ever?/ v, v' e 3£(M)(τ2), where C(τ2) -> 0 as τ2 ~* 0.

Proo/. See Lemma 2 [3],

LEMMA 5. There exist constants 0 < δ2 < δλ and a > 0 satisfying the

following conditions: For ever?/ ^, ̂  6 Map (M, <52) ίfeere exist a constant

μ(φ, \\r) > 0 and a continuous linear map P = P M : 36(M) -» 3£(M) ŝ cfe that

if a subset S of M satisfies

for every

(1.17)

X Q S, then

ψφ(x)

(I -R,fJP(v)

— x

(φx) — v{φx)
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for every xeS, and

\\P\\< ,

(1.18) l-μ(φ,ψ)λ

μ(φ, ψ) > 1 as d(φ, id), d(ψ, id) > 0 .

Proof. There exists a > 0 such that

(1.19) \\vs\\ + \\vu\\<a\\vs + vu\\

for every vσ e %σ(M) (σ = s, u). For φ,ψe Map (M, δj we put

(1.20) ^ , ψ ) = Max{||J,||,||i?Ψ | |}.

Then, by (1.12) there exists 0 < d2 < δ, and λ1 such that

(1.21) μ(φ, ψ)λ <λ,<l

for every φ,ψe Map (M, δ2).

By (1.1) and (1.8) we can define as follows: / | =/#|3eσ(M), J; =

Jφ I Xσ(M) and R% = Rf \ Xσ(M) (σ = 5, ̂ ). By (1.2), (1.20) and (1.21) we have

Therefore, the Neumann series 2 " = 0 (.RψfΌ71 is convergent. Putting Ps

= ΣΓ=o (R%fl)n we have

(1.22) HP.II < ί—— .
1 — μ(0, ψ)^

Similarly, since ||(/?) V?II < /^( ,̂ ψ)Λ < 1 the Neumann series Σ«=i(C/T)~Vpw

is convergent. Putting Pu = - Σ ^ = 1 ((Λ")"1/?)71 we have

(1.23) |
1 — μ(φ,

Now we put P = PS + Pu. By (1.19), (1.22) and (1.23) we get

,||Pβ | |} < ^ ,
1 — μ(φ, ψ)λ

which proves (1.18). Next, we shall prove (1.17). By (1.13) and (1.14)

we have
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for v e XU(M) and xeS. Clearly, (/ - Rs

Ψff)Ps = /.

Thus, we have proved (1.17).

§ 2 . Proof o£ Theorem 1

THEOREM 1. An Anosov diffeomorphism f of M is topologically stable

in the following sense: For every ε > 0 there exists δ = δ(ε) > 0 satis-

fying the following conditions: If g,g e Map (M) loith d(f, g)y d(fg, id)

< δ and a subset S of M satisfy

gg(x) = x

for every x e S, then there exists h e Map (M) such that

(2.1) hg(x) - fh{x)

for every x e S, and

(2.2) d(h, id) < e .

Proof. First, take ε0 < Min {τ1? r2, ε} so small that for every φ,

ψ e Map (M9 δ2)

(2.3) _ ^ ^ i i ^ _ C ( e 0 ) < A .
1 - μ(φ, ψ)λ 4

This is possible since C(ε0) —> 0 as e0 —» 0. Next, take 0 < δ < δ2 so small

that for every φ,ψ e Map (M, 5)

(2.4)

and

(2.5) ^Ά^K{ψ) < 1
1 (0 ψ)^ 4

This is possible since K(^) —> 0 as d(φ, id) —> 0.

For ^,ψeMap (M, δ) we define a continuous map Φ : 3£(M)(eo)->3£(M) by

Φ(v) - P,, tβψ(s(^) - ^(v)) , v e 3c(M)(ε0) .

To find a fixed point of Φ we shall first show that the Lipschitz constant

of Φ<j>. Take two elements v,v'eX(M)(e0). By (1.11), (1.16), (1.18),

(1.20), (2.3) and (2.5) we have
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\\Φ(v)-Φ(y')\\

< \\P\\ ||J2+|| (\\s{v) - s(v>)\\ + \\φ) - n(v')\\)

< Λ ^ ( y — ( C ( e 0 ) \\v-v'\\ + K(φ) \\v - v'\
1 - μ(φ, f)λ

Next, we shall show Φ(3e(M)(ε0)) c 3e(M)(ε0). By (1.10), (1.15), (1.18), (1.20)

and (2.4) we have

<\\p\\\\Rf\\δ + \\\v\\

δ i
2

δ

- 1 - μ(φ, ψ)λ 2
< | ε 0 + jε0 = ε0

for v 6 dc(M)(ε0). Thus, Φ is a contraction of a complete metric space

3£(M)(e0). Therefore, Φ has a unique fixed point v0 = vo(φ, ψ) e 3£(M)(e0), i.e.

(2.6) v0 = P^ψRMvύ - n(v0)) .

We put h ( = /j,i,ψ) = exp v0.

Now assume that g, g e Map (M) with d(f, g), d(fg, id) < δ and a sub-

set S of M satisfy that gg(x) = ί» for every xeS. Putting φ = gf~ι and

ψ = fg we see that j5,ψeMap (M,δ) and ψφ(fx) = f(x) for every a eS.

By Definition 2, (1.14), (1.17) and (2.6) we obtain

- JφRΨft(v0)(fx)

= JΦ(I -

= JΦ(I -

for every »eS . Thus we have

(2.7) (Jφ(v0) + ΐφ(vMfx) = (M%) + s(vo))(fx)

for every xeS. By (1.9), (1.15) and (2.7), for every a e S w e have
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hg(x) = exp,/Λ vo(φfx)

(Jφ(v0)

= / exp/-i/a.

= fh(x) ,

which proves (2.1). Clearly, d(fo, id) = ||i?0|| < ε0 < ε, which proves (2.2).

This completes the proof of Theorem 1.

Remark. Let g e Map (M) be a homeomorphism of M with d(/, g) < δ.

Clearly, we see that d(fg~\ id) < δ and g~ιg(x) = x for every xeM. By

Theorem 1 there exists h e Map (M, ε) such that

hg(x) = /fc(aθ

for every x e M . Thus, Theorem 1 is a generalization of P. Walters'

result (Theorem 1 [3]), except the uniqueness of the semiconjugacy h with

d(h, id) < e.

§3. Proof of Theorem 2

THEOREM 2. An Anosov diffeomorphism f of M is stochastically

stable.

Proof. For ε > 0 we put <50 = 5(ε/2), where 5(ε/2) is as in Theorem

1, and δ — 3o/3. For every ^-pseudo-orbit {Xi}iez of / , we shall find

x e M such that

(3.1) d ( / % ^ ) < ε , ieZ.

CLAIM 1. For every positive integer k and δ-pseudo-orbίt {Xi}iez of

f, there exists z e M such that

(3.2) d(f% xd < ε , i = 0,1, , k .

Proof. There exists a (-§d0)-pseudo-orbit {Xijiez such that

d(x'i9 xd < ε/2 , i = 0,1, , k ,

x'iΦtfj , 0<iφj<k + l .

Since /(aφ 9̂  / ( ^ ) (0 < i Φ j < k + 1) and dίfx\, a?{+1) < jί0, we can find

φ, ψ e Map (M, δ0) such that

) = xUi, Ψ(»ί+i) = /(»tθ , i = 0,1, - , fc .
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Put S = {x'o, , <}, g = 0/ and £ = / - > . Then we see that d(J, g) =

d(0, id), d(/flf, id) = <Z(ψ, id) < δ0, and M < > = f-'ψφfixd = a?J, i = 0,1,

• , fc. By Theorem 1, there exists h e Map (M, ε/2) such that hg(x$ =

fh(x'i)9 for ί = 0,1, , fc. Therefore, we have

(3.4) /*&(<$ = Λ(a?{) , i = 0,1, . . , k .

Putting z = fe(a?ί), by (3.3) and (3.4) we obtain

d(f% xd < d(ph(x'o), xθ + d(x't, Xi)

< d(h(xd, xθ + ε/2

< d(h, id) + ε/2

< ε/2 + ε/2 = ε ,

which proves (3.2).

CLAIM 2. Let {α?ί}t6Z &e α δ-pseudo-orbit of /. For et er̂ / positive

integer k there exists z — zk&M such that

(3.5) d{f%xd<e, \i\<k.

Proof. Take a positive integer fc and fix it. Putting yt — x^k+i we

see that {yi}iez is a ^-pseudo-orbit. By Claim 1 there exists z' e M such

that <Z(/V, 2/ί) < ε, for i = 0,1, , 2fc. Putting « = /*(«0 we get d(f% xd

= d(fί+kz', yi+k) < ε, | i | < fc, which proves (3.5).

By the compactness of M we can find a subsequence {zkv} of {2;̂ } such

that lim^oo2Λj, = a? for some α eΛί. Take i e Z and fix it. By (3.5) we

have that d(fιzkv,Xi) < ε for every v with \i\< kv. Therefore we obtain

di/HyXi) — l im v ^ d(flzkv, x€) < ε, which proves (3.1).

This completes the proof of Theorem 2.
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