REPRESENTATIONS OF QUADRATIC FORMS

YOSHIYUKI KITAOKA

0. We have shown in [1]

THEOREM A. Let L be a lattice in a regular quadratic space U over Q; then L has a submodule M satisfying the following conditions 1), 2):

- 1) $dM \neq 0$, rank $M = \operatorname{rank} L 1$, and M is a direct summand of L as a module.
- 2) Let L' be a lattice in some regular quadratic space U' over Q satisfying dL' = dL, rank $L' = \operatorname{rank} L$, $t_p(L') \geq t_p(L)$ for any prime p. If there is an isometry α from M into L' such that $\alpha(M)$ is a direct summand of L' as a module, then L' is isometric to L.

Our aim is to remove such a restriction in 2) that $\alpha(M)$ is a direct summand of L' as a module:

THEOREM B. Let L be a lattice in a regular quadratic space U over Q; then L has a submodule M with rank $M=\operatorname{rank} L-1,\,dM\neq 0$ which is a direct summand of L as a module and satisfies

(*) let L' be a lattice in some regular quadratic space U' over Q satisfying dL' = dL, rank $L' = \operatorname{rank} L$, $t_p(L') \ge t_p(L)$ for any prime p; if there is an isometry α from M into L', then L' is isometric to L.

1. Notations and some lemmas

We denote by Q, Z, Q_p and Z_p the rational number field, the ring of rational integers, the p-adic completion of Q, and the p-adic completion of Z, respectively. For a quadratic space U we denote Q(x), B(x, y) the quadratic form and the bilinear form associated with U (2B(x, y) = Q(x + y) - Q(x) - Q(y)), and for a lattice L in U dL stands for the discriminant of L. For two ordered sets $(a_1, a_2, \dots, a_n), (b_1, b_2, \dots, b_n)$, we define the order $(a_1, a_2, \dots, a_n) \leq (b_1, b_2, \dots, b_n)$ by either $a_i = b_i$ for i < k and $a_k < b_k$ for some $k \leq n$ or $a_i = b_i$ for any i.

Received February 18, 1977.

Let L be a lattice in a regular quadratic space over Q_p ; then L has a Jordan splitting $L = L_1 \perp L_2 \perp \cdots \perp L_k$, where L_i is a p^{a_i} -modular lattice and $a_1 < a_2 < \cdots < a_k$. We denote by $t_p(L)$ the ordered set $\underbrace{(a_1, \cdots a_1, \dots a_n)}_{\text{rank } L_1}$

 \cdots , a_k , \cdots , a_k). For a lattice L in a regular quadratic space over Q we abbreviate $t_p(Z_pL)$ to $t_p(L)$.

LEMMA 1. Let L be a lattice in a regular quadratic space U over Q_p ; then L has a submodule M satisfying the following conditions:

- 1) $dM \neq 0$, rank $M = \operatorname{rank} L 1$, and M is a direct summand of L as a module.
- 2) Let L' be a lattice in U containing M; then L' = L if dL' = dL and $t_p(L') \ge t_p(L)$.

This was proven in [1], and we called M a characteristic submodule of L.

LEMMA 2. Let L be a lattice with the scale $\subset \mathbb{Z}$ in a regular quadratic space U over \mathbb{Q} with dim $U \geq 3$. If a direct summand M of L satisfies

- 1) M_p is a characteristic submodule of L_p if p|2dL,
- 2) $dM = q^r m$ where q is a prime with $q \nmid 2dL$ and $r \geq 0$, and $p \mid 2dL$ if $p \mid m$,

then M satisfies the conditions 1), 2) in Theorem A.

This is a remark in §1 in [1].

LEMMA 3. Let L be a lattice in a regular quadratic space U over Q with dim U > 2, and let S be a finite set of finite primes such that $2 \in S$, and L_p is unimodular for $p \notin S$. For a given $u_p \in L_p(p \in S)$ there is a prime $q \notin S$ and a vector $u \in L$ such that u and u_p are sufficiently near for $p \in S$, and $Q(u) \in Z_p^{\times}$ for $p \neq q$, $p \notin S$, and $Q(u) \in Q_q^{\times}$.

Proof. We can take a vector v_1 in L such that v_1 is sufficiently near to u_p for $p \in S$ and $Q(v_1) \neq 0$, and put $T = \{p \; ; \; p \notin S, Q(v_1) \notin \mathbf{Z}_p^{\times}\}$. Then there is a vector $v_2 \in L$ such that $Q(v_2) \in \mathbf{Z}_p^{\times}$ for $p \in T$ and $\pm d\mathbf{Z}[v_1, v_2]$ is not in $\mathbf{Q}^{\times 2}$ since L_p is unimodular for $p \notin S$. Put $\tilde{L} = \mathbf{Z}[v_1, v_2] \subset L$, and take a vector v in \tilde{L} such that v and v_1 (resp. v_2) are sufficiently near for $p \in S$ (resp. $p \in T$). There is a basis $\{e_1, e_2\}$ of \tilde{L} such that $(B(e_i, e_j)) = d\binom{a & b/2}{b/2}$ where $a, b, c \in \mathbf{Z}, d \in \mathbf{Q}^{\times}$, and (a, b, c) = 1. Since

 $Q(\tilde{L}_p) \cap \mathbf{Z}_p^{\times} \neq \phi$ for $p \notin S$, a prime p with $d \notin \mathbf{Z}_p^{\times}$ is contained in S. Noting $Q(v) \in \mathbb{Z}_p^{\times}$ for $p \in T$, we have only to prove Lemma in case that $L \cong \begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}$, by scaling of 1/d, and $u_p = v$ for $p \in S \cup T$. Thus we may assume that $L=\mathbf{Z}[e_{\scriptscriptstyle 1},e_{\scriptscriptstyle 2}], (B(e_{\scriptscriptstyle i},e_{\scriptscriptstyle j}))=\begin{pmatrix}a&b/2\\b/2&c\end{pmatrix}(a,b,c)=1, D=b^2$ -4ac is not a square in Q, and $p \nmid D$ if $p \notin S$. Moreover $v \in L$ is given. By a classical theory we may suppose that α is a prime number $\notin S$ by scaling of ± 1 if necessary. Put $k = \mathbf{Q}(\sqrt{D})$ and $\tilde{A} = \mathbf{Z}[a, (b + \sqrt{D})/2]$, $A=(a,(b+\sqrt{D})/2)$ (= the ideal generated by a and $(b+\sqrt{D})/2$); then the norm of A is a and for $\alpha = ax + (b + \sqrt{D})y/2$ $(x, y \in \mathbb{Q}), N(\alpha) = a(ax^2)$ $+bxy+cy^2$). Hence $Q(xe_1+ye_2)=N(\alpha)/\alpha$. Thus we may consider \tilde{A} , $N(\alpha)/a$ as L, $Q(\alpha)$ respectively, and are given an element v in \tilde{A} . Put $J = (\prod_{p \in S} p)^t$; then to complete the proof we need only show that there is an element u in \tilde{A} and a prime number $q \notin S$ such that $u \equiv v \mod J$, and $Q(u) \in \mathbb{Z}_p^{\times}$ for any prime $p \notin S$, $p \neq q$, and $Q(u) \in q\mathbb{Z}_q^{\times}$. Put (v) = BCwhere B, C are integral ideals and for a prime ideal E|J, E|(v) if and only if $E \mid B$. Hence (I, C) = 1. Take a prime ideal I with a prime norm $q \notin S$ such that $I = \tilde{u}CA^{-1}$, $\tilde{u} \equiv 1 \mod^{\times} J$. Put $u = \tilde{u}v$; then u = IAB $\subset A$. Hence $u \in A$, and $u \equiv v \mod J$. Moreover $Q(u) = N(u)/a = \pm NI$. NB, where NI=q is a prime $\not\in S$ and $NB\in \mathbb{Z}_p^{\times}(p\not\in S)$. We must show $u \in \tilde{A}$. Put $D = f^2d$ where d is the discriminant of $Q(\sqrt{D})$; Since $p \mid J$ for $p|f, u-v = (\tilde{u}-1)v \in fA$. $v \in \tilde{A}$ and $NA \nmid f$ imply $u \in \tilde{A}$. completes a proof.

2. Proof of Theorem B

Without loss of generality we may assume that the scale of L is contained in Z. If rank L=2, then the proof of Theorem A in [1] shows that Theorem B is true. Assume rank $L\geq 3$. Then take an element u_p in L_p for p|2dL such that u_p^\perp is a characteristic submodule of L_p . From Lemma 3 follows that there is an element u in L and a prime $q \nmid 2dL$ such that u and u_p are sufficiently near in L_p for p|2dL and $Q(u) \in Z_p^\times$ for $p \notin S$, $p \neq q$, and $Q(u) \in qZ_q^\times$. Since u and u_p are sufficiently near, there is a unit $\varepsilon_p \in Z_p$ such that $Q(u) = \varepsilon_p^2 Q(u_p)$. Hence there is an isometry $\beta_p \in O(L_p)$ such that $\beta_p(u) = \varepsilon_p u_p$. Put $M = u^\perp$ in L; then M_p is a characteristic submodule of $L_p(p|2dL)$, and $dM_q \in qZ_q^\times$, and $dM_p \in Z_p^\times$ for $p \notin S$, $p \neq q$. Therefore M satisfies the conditions 1),

2) in Theorem A by Lemma 2. Thus we have only to prove that $\alpha(M)$ is a direct summand of L' for an isometry α from M into a lattice L' in 2) in Theorem B. Extend α to an isometry from U to U', and put $L'' = \alpha^{-1}(L')$. Since M_p is a characteristic submodule of $L_p, L''_p = L_p$ for $p \mid 2dL$. If $p \nmid 2dL$, L''_q is unimodular. Hence M_p is a direct summand of L''_p since $dM_p \in \mathbf{Z}_p^{\times}$ or $p\mathbf{Z}_p^{\times}$. Therefore M is a direct summand of $\alpha^{-1}(L') = L''$. This completes a proof of Theorem B.

REFERENCES

- [1] Y. Kitaoka, Representations of quadratic forms and their application to Selberg's zeta functions, Nagoya Math. J. vol. 63 (1976), 153-162.
- [2] O. T. O'Meara, Introduction to quadratic forms, Springer-Verlag, 1963.

Department of Mathematics Nagoya University