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THE THEORY OF HECKE INTEGRALS

LARRY JOEL GOLDSTEINυ AND MICHAEL RAZAR2)

§ l Introduction

Let H denote the complex upper half-plane and let η(z) denote
Dedekind's η-ίunction

η(z) = e'ίz/u Π (1 - e2Hnz) , z e H .

It is clear that η(z) Φ 0 for z e H and therefore, we may speak of log 9(2),
where the logarithm is taken to be the principal branch. If we set f(z) =
log 37(2), then f(z) is analytic in the upper half-plane, and satisfies the
following properties:

f(z + 1) = /(«) + jL (1)

( 2 )

f(z) = ^ - + Σ α-β w " , an=-Σ~- (3)
12 -1 £- d

A slightly more technical property of /(z) is that

/(z) = O(y~κ) for some K > 0, 2 = x + iy, y -> 0,
(4)

uniformly for x in any finite interval.

Properties (1) and (2) together imply that if σ = ί * ,] is an integral,

unimodular matrix, then

l ( ^ ± A ) (α J) (5)
cz + d / " 2
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for suitable s(® Λ. Property (5) is the classical law of transformation

of log η(z) and many proofs of it have been given by (among others)
Dedekind [1], Rademacher [9, 10], Siegel [11], Weil [13] and the first

author [4]. In particular, the function s(a λ can be explicitly calculated

in terms of Dedekind sums.
The starting point for the present paper is the work [13] of Weil,

in which a very simple proof of (2) is given by appealing to the functional
equation of the Riemann zeta function and the Mellin inversion formula,
which allows one to pass from the Fourier series development (3) to an
appropriate zeta function (namely ζ(s)ζ(s + 1)). The principle of associat-
ing a Dirichlet series to an automorphic form and, conversely, an auto-
morphic form to an appropriate type of Dirichlet series is a timehonored
procedure going back to Hecke [5]. Of course, the function f(z) is not an
automorphic form, but rather the logarithm of an automorphic form, so
the correspondence implicit in WeiPs paper [13] does not quite fit into
Hecke's theory. However, this suggests that there is a correspondence
between functions "similar to" log η(z) on the one hand, and certain
Dirichlet series with analytic continuation and functional equation on the
other. It is the purpose of this paper to construct such a correspondence,
and to study some of the analogues of log η(z) so derived as well as
their associated Dirichlet series.

It should be noted that there are many other classically known func-
tions satisfying properties similar to (l)-(4). For example, if

θ(z) = f ] e~Hn2z

7 i = — oo

is the usual elliptic 0-function, then log 0(2) satisfies analogues of (l)-(4).
(See Section 3 for details.) In this paper, we will construct several new
classes of functions of this sort.

One of the chief interests of functions such as log η(z) is their deep
connection with arithmetic. The transformation properties of log 37(2)
and log θ(z) have been used by Hecke [6], Meyer [7], and Siegel [12] to
study the class numbers of certain abelian extensions of real quadratic
fields. In the last section of this paper, we will derive, as a consequence
of our theory, a curious class number formula which seems to have a
fundamental connection with the problem of determining all imaginary
quadratic fields having a given class number.
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§2. The correspondence theorem

Let us begin by axiomatizing the properties (l)-(4) of f(z) = logη(z).

DEFINITION 2.1. Let λ > 0, A, B, C, γ be given complex numbers. A
function f(z) on H is said to be a Hecke integral of signature {λ, A,B,C, γ]
provided that:

(HI) f(z + X) = f(z) + 2πiA
(H2) /(-1/z) = γf(z) + B log (z/i) + C
(H3) By (HI), f(z) — 2πίAz/λ is periodic with period λ. Let us suppose

that it is regular in the local uniformizing variable e2πίz/λ. That
is, we assume that f(z) can be written in a convergent expansion
of the form

f(z) = φ
λ n = 0

In particular, f(z) is holomorphic in H.
(H4) fix + iy) = O(y~κ) for some K > 0, as y —• 0, uniformly for x in

a finite interval.

If we apply (H2) to f(z) and /(—I/z), we easily see that

If γ = —1, then B = 0 by the second equation. If γ = + 1 , then C = 0
by the first equation. If γ Φ ±1, then

i - r i + r

so that by (HI), we have A = B = 0 and thus /(;?) is constant. Thus,
we may restrict ourselves to γ = ±1. If p = +1, then β = 0 and if
γ = — 1, then C = 0. Throughout this paper, we shall always assume
that γ = ± 1 .
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Note that if f(z) is a Hecke integral of signature {λ, A,B, C, +1}
then so is f(z) + a for any constant a. Thus, we may normalize our
Hecke integrals in case γ — +1 so that a0 = 0. Throughout this paper
we shall always assume that Hecke integrals are so normalized. Note
that we make no corresponding normalization in case γ = — 1.

It is our purpose in this section to show that there is a 1 — 1 cor-
respondence between (normalized) Hecke integrals having given signature
and certain Dirichlet series having analytic continuation and functional
equation. Namely, let us associate to the Hecke integral

the Dirichlet series

f(z) = ̂ ± + f;
λ

f;
i

n-i ns

By using (H4) and the argument of [8, p. 1-4], we see that an = 0(nc)
for some c > 0 and therefore that φf(s) converges in some half-plane.
Let us define the function

Φf(s) =

THEOREM 2.2. Let f satisfy (H1)-(H4). The function Φf(s) can be
analytically continued to a meromorphic function in the entire s-plane.
Moreover,

φ (s) — -iL — -^- — 2πA 1 i 2πAy 1
1 s2 s λ s + 1 λ s-1

is an entire function of finite genus and Φf(s) satisfies the functional
equation

Φf(—s) — γΦf(s) .

Proof. For σ — Re (s) large enough the Dirichlet series φf(s) is
absolutely and uniformly convergent in the half-plane Re (s) > σ (we have
used (H4), see [8, p. 1-48]). Therefore, for Re (s) > σ, we have

( 6 )
= J~ \f{iy)
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However,

* \f(w) + *ψL]y-idy = J" \fiiy-1

= Γ f{iy-ι)y-s-ιdy + - M - Γ y-*-*dy
h λ Ji

f{iy-ι)y-°-ιdy + -
s + l

= I Irfttv) + Blogy + C}y-S~ιdy +

s2 s λ s — 1

Combining equations (6) and (9), we see that

Φf(s) =

A + _2_ « 2ττAr 1 2ττA

V /

s + 1

By integration by parts, we have (assuming Re (s) > 0)

Γ dogy)y-*-xdy = - L . (8)
Ji S2

Thus, by (7) and (8), we have

= Ϊ \f(iv) + —-——\y s ιdy + —-— + —
JiL ^ J A s + 1 s2

+ C y~s~ιdy — γ — — y-'dy (9)

~~ Ji L ^ J

+

+
52 5 ^ 5 - 1 λ 8 + 1 '

Trivial estimates show that the integrals on the right hand side of (10)
are entire functions of finite genus. This completes the proof of the
analytic continuation assertion concerning Φf(s). Using the fact that
either γ = 1, C = 0 or γ = — 1, B = 0, we see that (10) immediately im-
plies that
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Φf(-s) = γΦf{s) .

This completes the proof of Theorem 2.2.
Let φ(s) = 2Γ=i an/ns be a somewhere convergent Dirichlet series,

and let λ > 0, β > 0, A,C, γ = ±1 be given. We shall say that 0(s) is
o/ signature {λ,A,B, C, γ} provided that:

I. The function Φ(s) = (2π/X)~sΓ(s)φ(s) can be analytically continued
to a meromorphic function such that

B C , arAr 1 2ττA 1

s2 s Λs-1 ^ s + 1

is an entire function of finite genus.
II. Φ(s) = γΦ(-s).

Note that as before, the conditions guarantee that either γ = +1 and
C = 0 or γ = - 1 and 5 = 0.

THEOREM 2.3. Tfcβ mapping

f{z) -»Φ/(s)

induces a bisection from the set of Hecke integrals of signature
{λ, A,B, C, γ) to the set of Dirichlet series of the same signature.

Proof. It is clear that from Φf(s) we can recover f(z). [Recall that
all Hecke integrals are assumed normalized. In case γ = — 1, we can
recover a0 since C = 2f(ϊ).] Thus, the map is injective. To prove sur-
jectivity, let us consider a Dirichlet series φ(s) of signature {λ, A,B, C, γ).
If

n=i ns

let us set

f(z) =

It is clear that Φf(s) = (2π/λ)~sΓ(s)φ(s), so that it suffices to show that
/(z) is a Hecke integral of signature {λ, A,B, C, γ}. Properties (HI) and
(H3) are clear. Using customary arguments involving the Phragmen-
Lindelδf theorem and Stirling's formula, we find that φ(σ + it) = O(\t\Λ),
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| ί | —> oo, uniformly for a in any finite interval. Moreover, for σ sufficiently
large, the Mellin inversion formula implies that

Using the above estimate for φ(σ + it) and Stirling's formula, we see
immediately that f(z) satifies (H4). Thus it suffices to show that (H2)
holds. Moreover, the same estimate for the integrand allows us to justify
shifting the line of integration from Re(s) = a to Re(s) — —σ, yielding

Γ Φf(8)(4)d8 + Σ
2πi J-^-ioo \ ι / s=o,±i

Σ ΈLesΦA8)(4)ds (11)

= rf(-λ)
\ z J λ

Trivial calculations yield that

(12)
__ _ 2πiAγz~ι

At s = 0, we have

Φf{s) = A + — +

(4-) = e~slog W i ) = 1 - s log («/0 +

so that

Ress=0 Φ/(s)(γ) = - δ log (j) + C . (14)

From equations (11)-(14), we have
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f(z) = rf(--) - B l0£ (4) + C . (15)

Now, using the fact that either γ = 1, C == 0 or p = — 1, 2? = 0, we see
that (H2) holds. Thus, Theorem 2.3 is completely proved.

§ 3. Examples

Let us now use the correspondence embodied in Theorems 2.2 and
2.3 to construct examples of Hecke integrals. It should be noted that our
procedure in this section is precisely the reverse of the procedure in-
troduced by Hecke in his germinal paper [5]. Hecke sought to investigate,
by using the theory of automorphic functions, the properties of Dirichlet
series or, more exactly, the phenomenon that certain Dirichlet series are
uniquely determined by their functional equation. In this section, we
will use information about various Dirichlet series to construct Hecke
integrals of various signatures.

EXAMPLE 3.1. Let /(s) = log^(s). Then f(z) is of signature
{1,1/24,1/2,0,1}. The corresponding Dirichlet series is computed in [13]
to be φ(s) = — ζ(β)ζ(s + 1), where ζ(s) denotes the Riemann zeta function.

EXAMPLE 3.2 (Ogg). Let f(z) = log 00). Then f(z) is of signature
{2,0,1/2,0,1}. The corresponding Dirichlet series is computed in [8,
p. 1-45] to be

φ(s) = -2-{-5 + 2(2* + 2- )}CG0C(« + 1) .

Example 3.2 suggests a general procedure for constructing Hecke
integrals from known ones, as the following example shows.

EXAMPLE 3.3. Let f(z) be a Hecke integral of signature {λ, A, B, C, γ}.
Let N, M be integers such that n \ M for 1 < n < N. Further, let α0,
• , aN be any N complex numbers. The function

N

p(s) = a0 + Σ n
s

satisfies p(s) = p(—s) and M~sp(s) is a Dirichlet polynomial. Since f(z)
is a Hecke integral of signature {λ,A,B,C,γ}, we know that the function

Φ(β) =
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where φ(s) is the Dirichlet series corresponding to f(z), satisfies

φ(s) = γΦ(—s) .

Let us set φPtM(s) = M~sp(s)φ(s). Then φPtM(β) is a Dirichlet series which
converges (at least) in the half-plane of convergence of φ(s). Moreover,
if we set

then

Moreover, it is clear that

ώ «\ _ P(°) g _ P(0)C , 2τrArp(l) _ 2ττAp(-l)
P ' M ; 2 + ^ ( 1 ) Λ( 1)

is entire of finite genus. Therefore, φPtM(β) is of signature {λM, p(l)A,
V(0)B,p(0)C,r} (note p(ΐ) = 2?(-l)). If /PfJf(«) is the Fourier series de-
velopment corresponding to φp,M(s)j then fPtM(z) is a Hecke integral
of signature {λM9p(l)A,p(0)B,p(0)C, γ). Example 3.2 corresponds to the
case φ{s) = -ζ(s)ζ(s + 1), p(s) - - 5 + 2(2* + 2-), M = 2.

EXAMPLE 3.4. Let χ be a non-trivial primitive Dirichlet character
defined modulo its conductor / and let L(s, χ) denote the usual L-series:

Re (s) > 1 .

Let

β = e(x) = {t i f χ(_1) = _ j _

It is well-known (for example, see [2, p. 67]) that L{s, χ) can be analytically
continued to an entire function which satisfies the functional equation

where
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χ = the complex conjugate of χ, and τ(χ) is the Gaussian sum defined by

= Σ χ(m)e2πim/f

m (mod /)

For reference, let us record a well-known fact about τ(χ) [1, p. 350]:

Kχ)τ(χ) = χ(-D/ . (16)

Let us set

Then

Φ1{-s) = R(-s,χ)Ra-s,χ)

Using the duplication formula for the Γ-function, we readily see that

Therefore, we see that

2V7(-y-)~V(s)L(s, χ)L(s + 1, χ) (ε = 0) ,

^"V(s)L(s, χ)L(s + 1, χ) (ε = 1) .

By combining equations (17) and (18), we see that the function

φ(s) = (2*yaΓ(8)L(8,χ)L(s + 1, χ) (19)

satisfies

φ(-s) = rφ(s) , r = (-l) = χ(- l) . (20)

Moreover, Φ(s) is entire if ε = 0 and has a simple pole at s = 0 if e = 1.
Thus, we see that φ(s) = L(s, χ)L(s + 1, χ) has signature {/, 0,0,0,1} if
ε = 0, and {/,0,0,C, -1} if e = 1, where
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C = lim sΦ(s)

= L(0,χ)L(l,χ)

if1'2 (by the functional equation for

T ω Uβ, X»

Thus we have established the following result:

THEOREM 3.1. The Dirίchlet series φ(s) = L(s,χ)L(s + l,χ) has

signature {/,0,0,0,l} if χ(-l) = 1 and {/,0,0,iL(l,χ)7/τrτ(χ),-1} if

χ(-D - - 1 .

A simple calculation shows that

L(s, χ)L{s . Σ
d\n

d>0

Therefore, the Hecke integral fχ(z) corresponding to L(s, χ)L(s + 1, χ) is

just

d\n d
d>0

Thus, by Theorem 2.3, we have

THEOREM 3.2. Let χ be a non-trivial Dirίchlet character defined
modulo its conductor /. Then the function

= Σ (x(n) Σ
l \ d\

d\n
d>0

πinz/f

is a Hecke integral of signature {/, 0,0,0,1} if χ(—1) = 1 and signature
{/,O,O,iL(l,χ)2//τrr(χ), -1} if χ(- l) = - 1 .

COROLLARY 3.3. If χ(—1) = 1, then

for all substitutions (a λ e G(/), where G(f) is the Hecke

generated by the substitutions ί̂  I) and L ~Λ)
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Proof. By Theorem 3.2, fχ{z) is invariant under each of the two

generating substitutions for G(/).

COROLLARY 3.4. // χ(—1) = — 1, then

fz(~) = -ΛG0 + -^\ z I πτ(χ)

Moreover, if σ — ί ̂  , j e G(/), then

where C(σ) depends only on σ and not on z.

The functions fχ(z) seem to have some arithmetic significance, which

will be discussed in Section 6.

§ 4 . Existence and uniqueness theorems

In this section, we shall give a survey of all possible Hecke integrals.

Throughout, let G(X) denotes the Hecke group generated by the sub-

stitutions

(1 λ\ (0 - 1 \

Vo if' \i o r

Let us denote by Jf U, γ; A,B,C) the set of all Hecke integrals of signature

{λ, Ay By C, γ], except that we will not require that hypothesis (H4) be

satisfied. Unfortunately, the set £ί?(λ, γ; A,B,C) has very little structure.

It will be a consequence of what we shall prove that if 0 < λ < 2, then

34?(λ, γ; A, By C) is either empty or consists of a single element. In order

to introduce some structure, we define

^ « , r ) = U jr(λ,r;A,BfC).
A,B,CeC

It is clear that if f€ e tf (λ, γ Ai9 Bi9 Ct) (i = 1,2), and if at e C (i = 1,2),

then

«i/i + oc2f2 e Jfiλy γ aιA1 + a2A2, aβ, + a2B2> axCx + a2C2) . (21)

Therefore, we see that 3P(jL,γ) is a vector space over C.

An important linear subspace of Jf(λ9γ) is the one defined by
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i) = X{X,y\ 0,0,0).

The functions belonging to <3fo(λr) satisfy the relations

f{z + λ) = /(«)

and can be written in a convergent Fourier series of the form

f(z) = XI ane
2πtnz/λ .

n=l

In particular, if feJP0(λfγ)f then f2 is an automorphic function for G(λ)

which is zero at oo and regular for all z e H. Thus,

#11, γ) = {0} if 0 < λ < 2 , (22)

since there are no non-constant automorphic functions regular at oo in

this case. In what follows, we shall describe the subspace J^0(λ9 γ) more

closely.

The importance of the subspace Jfo(λ9 γ) derives from the relationship

^otf, γ) + JT(λ, γ A, β, C) = 2f(λ, γ;A,B,C) , (23)

which follows immediately from (21). Therefore, to describe 3f(λ, γ A,

By C), it suffices to describe #?0U, γ) and then to describe the elements of

jf(λ,γ; A,B,C) modulo J^0(λ9γ). To do this in the context of a vector

space, we will instead describe 3^0(λ, γ) and the factor space

We shall see that this quotient space has complex dimension at most 2.

We shall compute this dimension as a function of λ, γ. In each case,

we will give an explicit basis for JF(λ, γ).

It is important to recall at this point that all Hecke integrals are

assumed normalized. In case γ = — 1, the constant function C/2 is a

(normalized) Hecke integral of signature {λ, 0, 0, C, — 1}. Further, recall

that if γ = +1, then C = 0 and if γ = - 1 , then B = 0.

PROPOSITION 4.1. Tfβ

dimc jίf (Λ, γ) < 2 .

Proo/. Follows immediately from (21) and the fact that if γ = 1,
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then C = 0 and if γ = - 1 , then B = 0.
Let us henceforth consider the cases p = +1 and γ = — 1 separately.

Case I: ?- = +1.
The basic principle in our analysis of this case is an exponential-

logarithmic correspondence which reduces considerations to the study of
automorphic forms for Hecke's group G(X). Therefore, let us review
the basic definitions about such automorphic forms and set up some
notation.

Let λ > 0, k be real and let Jt{l, k) denote the space of all holomorphic
automorphic forms of weight k and multiplier ik for G(X). In other
words, / e Jί(l, k) if and only if

( i ) f(z + λ) = f(z)
(ii) /(-1/2) - (z/i)*f(z)
(iii) / is holomorphic on H (j {ioo}, where the holomorphy condi-

tion at ΐoo is interpreted to be with respect to the local parameter
e2πίz/λ, so that f(z) possesses a convergent expansion of the form

f(z) = ± ane*'~" . (24)
n=0

It will be necessary to consider slightly more general automorphic
forms, namely those which are meromorphic at ioo. The definition is
the same as above, except instead of (24), we require that / have an
expansion about ioo of the form

f(z) =

for some integer JV. If aN Φ 0, we say that / has order N at ioo. Let
ôo(Λ, k) denotes the space of all automorphic forms which are mero-

morphic at ioo.
Finally, since the automorphic forms we consider will arise from

exponentiation, they will have no zeros in H. Therefore, let us write
Jl*{λ,k) (resp. Jl*(λ9k)) for the set of all / in J((λ,k) (resp. JίShk))
which have no zeros in H.

If feJF(λ, +1 A, B, 0), then the function

F(z) = e^z)

clearly satisfies the conditions
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F{z + λ) = e"iAF(z)

Moreover, if f{z) has an expansion

f(z) =

then we see that

F(z) = exp (2τdAz/λ + axe^izlx + •)

Therefore, we have the following result.

LEMMA 4.2. Let A be an integer, B be real and let fe^f(λ9 + 1 ;
A, B9 0). Then F(z) = exp (f(z)) belongs to J(*(λ,B) and has order A at
ioo.

Lemma 4.2 has a converse. For if F(z) e Jίtiλ, B) has order A at
ioo, then F(z) can be written in the form

F(z) = e™Aziψx(z) ,

where Fλ{z) is holomorphic in H U {ioo} and has no zeros there. We may
certainly write

where g(z) is analytic for zeH. The function g(z) is determined only
up to an additive factor 2kπί (keZ). Since Fλ(z) has an expansion of
the form

F,(z) = 1 + b^'*"* + - ,

we see that g(z) can be written

g(z) = 2fori + Σ cne2 ί r ί^ , k e Z .

Let us choose fc = 0. Then

log F(z) = - ^ ^ + Σ cwe 2 π ί^ ,
λ n = l

where the logarithm denotes the principal branch. Let us set f(z) =
). Then we clearly have
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X) =

Thus, we see that f(z) = log F(z e Jf(λ, + 1; A,Z?,0). To summarize:

LEMMA 4.3. Let A be an integer, B real and let FeJί*{λ,B) have
order A at ίoo. Then f(z) = logF(s) belongs to jf(λ, + 1 ; A,B, 0).

Let us set

It is clear that under the operation of multiplication of functions,
is an abelian group. From Lemma 4.3, we have a homomorphism

F ^ log F

from ^f*U) into the additive group of the vector space jf(λ, 1). A func-
tion F is mapped into ^f 0Q, 1) if and only if F has weight 0 and order 0 at
ioo. That is, the preimage of jfo(λ,ΐ) is Jί*{l, 0). Thus, we have an
induced injective homomorphism of abelian groups

/λ, o) i

THEOREM 4.4. The image of the injection

spans JF(λ,ΐ).

Proof. The image clearly contains all images modulo J^0(λ, 1) of
functions / belonging to jf(λ, 1; A, B, 0), A,B integral. These functions
form a full lattice in JF(λ, 1) and thus they span iFCϊ, 1).

Let us now describe JF(λ, 1). We consider separately the cases 0 <
λ < 2 and λ > 2.

THEOREM 4.5. Assume that 0 < ^ < 2. Tftβw ^ 0 U , 1) = {0} and

jf(λ,ΐ) — Jf(λ,T). Furthermore, we have:
(a) // λ is not of the form 2 cos (π/q), q an integer > 3, then
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(b) If λ = 2 cos (π/q), q an integer > 3, then dimc Jf(λ, 1) = 1.

Proof. If feJfo(2,1), then / is an automorphic function for G(X),
which is regular everywhere, including ίoo. Since 0 < λ < 2, this implies
that / is constant. However, since / is a normalized Hecke integral,
we see that / = 0. Thus jP0(λ, 1) = {0} and JF(λ, 1) = 3f(λ, 1).

(a) If λ Φ 2 cos (π/q), q > 3, then it is well-known [8, p. 1-23] that
ί, k) = {0} for all k > 0, uTtf, 0) = C. Thus, Jt*(λ, k) = 0 for kφ 0,
ί, 0) = C. Therefore JίVJ) = C* and jptf, 1) = Jt?(λ, 1) is spanned by

constants. But since Hecke integrals are assumed normalized, this im-
plies that J ^ , 1) = {0}.

(b) Assume that λ = 2 cos (π/q), q an integer > 3. If k > 0, then
it was proved by Hecke [8, p. 1-23] that dimc Jί{λ, k) = 0 unless k =
4m/(g — 2) for some positive integer m. In this case

(25)
g — 2 g

Moreover, if feJ£(λ,£m/(q — 2)) is not identically zero, then / has m/q
zeros in a fundamental domain for G(λ) (including any zero at ioo and
counting zeros with proper multiplicities). Therefore, since the forms
in Jϊ*(λ) have no zeros in H, we see that if fe JC*(ΐ)> then fe Jί*(λ> 0) =
Cx. Hecke showed [8, p. 1-20] that there exists a function f^eJKQy

— 2)) with a simple zero at ioo and no other zeros. Now if
then either fe Jlf(λ,4m/(q - 2)) or f~ι e ^(λ94m/(q - 2)) for

some positive integer m, so that / has order ±m/q at ioo. In particular,
g|m and

flftm/q e Jί(λ, 0) = C

Thus, we see that /«, generates u?*U), so that by Theorem 4.4, we see
that {log/4 i s a b a s i s o f ^W4) = ^W,l).

As a consequence of the proof, we obtain:

COROLLARY 4.6. Let λ = 2 cos (ττ/g), <z an integer > 3.

and log/,,, is a Hecke integral of signature {λ, l9Aq/(q — 2),0, + 1}.
Thus, if 0 < λ < 2, ίfeerβ exists a Hecke integral of signature {λ, A,B,C, +1}
i/ and only if λ = 2 cos (τr/g) /or some integer q>3, B = 4Ag/(g — 2),
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C = 0. In this case there is a unique Hecke integral and it equals

A log/...

For the sake of completeness, let us review the construction of /«,:

Let &*(X) denote the domain defined by the inequalities — λ/2 < Re (2) < 0,

\z\ > 1, Im(2)>0. Let τ0 denote the left hand corner of this region.

By the Riemann mapping theorem, there exists a function gλ(z) mapping

the interior of &*(λ) conformally onto the open upper half-plane and such

that gλ(τQ) = 0, gλ(i) = 1, gλ(oo) = oo. (If λ = 1, then gλ{z) = J(z), the

elliptic modular invariant.) Then

g(zy«-χg(z) - Dq

(For details, see [8, pp. 1-20-22].)

Let us now proceed to the case λ > 2.

PROPOSITION 4.7. // λ > 2, ίfeβn dim Jί?0(λ, 1) = oo.

Proof, If λ > 2, then we can construct / n e ̂ 0 U , 1) for each n > 0

such that / w has a pole at 2 = —£. (See [8, p. 1-11] for details.) The

functions /„ are clearly linearly independent over C

If λ = 2, then the fundamental domain for G(2) has two independent

cusps whose representatives can be taken as ioo and 1. Moreover, the

Riemann surface for G(2) has genus 0 so that there exists a function

fn e ̂ o(2,1) with a pole of order n at z = 1 (in the appropriate uni-

formizing parameter). The functions fn are linearly independent over C.

THEOREM 4.8. // ^ > 2, then dimc iPU, 1) = 2.

Proof. If A = 2, let us observe that log 37(2) and log 0(2) have signa-

tures {2,£, | , 0,1} and {2,0, | , 0,1}, so that it is clear that {log η(z), log θ(z)}

forms a basis of if U, 1). Thus, assume Λ > 2. Hecke (see [5, p. 673]

or [8, p. 1-11]) constructs an automorphic form Fγ(z) belonging to JHJk, k)

for arbitrary k > 0. An inspection of Hecke's construction shows that

Fx(z) does not vanish for zeH, F^ioo) = 0. If

Fx(z) = e2πiaz + , a > 0 ,

we see that fx(z) = logF^z) has signature {λ, a, k, 0, +1}. If F2(z) is a

similar automorphic form giving rise to a Hecke integral of signature

{λ,a,2k, 0, +1}, we see that f2(z) = log F2(z) — log Fλ(z) has signature
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{λ, 0, k, 0, +1}. It is immediate that fλ(z) and f2(z) are linearly independent
modulo jPQ(λ,l). Thus, dimcJ%J, 1) = 2.

The interpretation of the fact that dimc jF(λ, 1) = 2 is that there
exist Hecke integrals corresponding to every possible pair of values
(A,B). By Proposition 4.7 and Eq. (23), we conclude

COROLLARY 4.9. Let λ>2, A,B arbitrary. Then there exist in-
finitely many Hecke integrals of signature {λ, A,B, 0, +1}.

Case II : γ= - 1 .
First, let us observe that in this case, all the constant functions

belong to $?(λ, —1). Therefore, if we set

<*/p (5 Λ\ I I 'ypί'i 1 . A C\ (W
e^SΓι\λ9 — ± ) — \^_J t?F \λy —JL , / I , U, \j) ,

AβC

then we see that

, - l ) = ce JF.a, - l ) , jF1a; - l ) = j r α -i)/^foα - l ) .

Thus, we may proceed in this case by describing JfQ(λ, —1) and JFλ(λ, —1),
By Proposition 4.1, we know that

dime^α-D^l (26)

Let us begin our analysis by describing our replacement for the
exponential-logarithmic correspondence. Suppose that/6 f̂iW, —1). Then

λ, A,0,0, —1) for some A, so that / satisfies

f(z + X) = f(z) + A

/(-I) - -/„.
Therefore, the function F(z) = f'(z) must satisfy

FQs + λ) = F(z)

Moreover, F(^) has a Fourier expansion of the form

F(z) =
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In other words, F(ioo) = 2πίA/λ. Therefore, we see that F(z) is an
automorphic form belonging to ^(λ,2) for which F(ioo) = 2πίA/λ.

Conversely, if we are given F e Jέ(λ, 2) such that F(ioo) = 2πiA/λ,
we see that

is a Hecke integral of signature {λ, A,0,0, —1}. Thus, we have proved:

LEMMA 4.10. The mapping

is a bίjection from j4?(λ,A,0,0, — 1) to the set of all automorphic forms
F(z) in Jl(λ,2) for which F(ioo) = 2πAjλ.

Letting A vary over C, we have

PROPOSITION 4.11. The mapping

is a bisection from Jf^X, —1) to
Let

S(X, fc) = {/ e u r α fc) I /«oo) = 0} .

Then Lemma 4.10 implies that the mapping f*->f carries ^ΊU, — 1)
into S(λ,2). Therefore, we have

THEOREM 4.12. The mapping f*-+f induces a surjective isomor-
phism of complex vector spaces:

In particular, dim Jf^λ, — 1) = 1 if and only if there exists an automor-
phic form in Jέ(λ,2) which does not vanish at ioo.

As with the case γ = +1, let us consider the cases 0 < λ < 2 and
λ > 2 separately.

Let us first assume that 0 < λ < 2. Then (22) implies that tf 0(λ, -1)

= {0}, so that

Λ Ά -1) = JPA -1) , (27)

X9 -1) = C Θ Jf^λ, -1) , (28)
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THEOREM 4.13. Assume that 0 < λ < 2.
(a) // λ is not of the form 2 cos (π/q) for some integer q > 3, then
, _1) = c.
(b) If λ = 2 cos (π/q) for some integer q > 3,

if q is odd.

Proof, (a) As in the case γ = +1, we deduce that if λ Φ 2cos(ττ/g),
then Jί(λ,2) = {0}, so that by Theorem 4.12, we see that jF^λ, -1) = {0}.
Thus, by (27) and (28), we see that tf(λ, -1) = C.

(b) If λ — 2 cos (π/q), then dimc Jt(l, k) — 0 unless k = 4m/(g — 2)
for some positive integer m [8, p. 1-23]. In this case, we have

- 2)) = H

- 2)) = [ ^ ] .

Thus, we see that JMJL,2) Φ {0} if and only if 2 = 4m/(q - 2) for some
m, i.e. g is even. But then, by the above formulas, we see that
dim c ^U, 2) = dimcSU, 2) + 1, so that by Theorem 4.12, we see that

dimc JF^λ, -1) = 1 ,

so we are done by (27) and (28).
In case dimc ^fΊU, — 1) = 1, we can arrive at an explicit basis as

follows: Hecke [8, p. 1-20] constructs a function f0 belonging to
Jt(l, 4/(g — 2)) having a simple zero at z = eπί/q and no others in H U {ioo}.
Assume that q is even. Then, since f(

0

q~2)/2 e Jί(λ, 2), we see that

belongs to jf^λ, —1). Therefore, we have

COROLLARY 4.14. Assume that 0 < λ < 2. Then jf(λ, — 1) = C unless
λ — 2 cos (π/q) for some even integer q>3, in which case

Next, let us assume that λ > 2. Parallel to Proposition 4.7, we
have:
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PROPOSITION 4.15. // X > 2, then dimcj$r0(X, - 1 ) = oo.

Proof. See [8, p. 1-13] and the proof of Proposition 4.7.

PROPOSITION 4.16. // X > 2, then dimc j f Ά - 1 ) = 1.

Proof. If X = 2, then 0(X)4 e ^(2,2), 0(ΐoo)4 φ 0. Therefore, if we
set

f(z) = Γ\θ\u)duy

then ^ ( 2 , -1) = C/.
Assume X > 2. If JFO) e ^(Λ, 2), F(ioo) = 1 (for the existence of such

an F, see [8, p. 1-12]), then

belongs to sf^X, -1) and jf^X, -1) = C/.
Let us summarize the case γ = — 1 in terms of signatures of Hecke

integrals. The interpretation of the fact dimc J^U, — 1) = 1 is that there
exist Hecke integrals corresponding to every pair (A,C). By Proposition
4.15 and (22), we see that if X > 2, then there always exist infinitely
many Hecke integrals of each signature {X,A,Q9C,—1}. Thus, we may
summarize our results:

THEOREM 4.17. (a) If 0 < X < 2, then there exists at most one
Hecke integral of signature {X, A,0, C, — 1}. The signatures for which
Hecke integrals exist are {X, 0,0, C, —1}, except in the case X = 2cos(τr/<7),
q an even integer > 3, in which case all signatures {λ,A,0, C, — 1} have
corresponding integrals, (b) // X > 2, then there exist infinitely many
Hecke integrals of signature {X> A,0, C, — 1}.

§ 5. A curious class number formula

Let us now derive a curious formula involving fx(z). This formula
will lead to a previously-unobserved formula for L(l,χ) in terms of
\ogη(z). Throughout this section, let χ be a real, odd character defined
modulo its conductor /.

From the definition of fx(z), we have



HECKE INTEGRALS 115

= Σ Z ( ™ ) ( Σ -U<7m > Q = β*
m = l \<Z|m (X /

d>0

Σ χ(r) Σ ( Σ
r(mod/) m=l \<Z|m

m=r (mod /) d>0

Σ β™<*->
lΣ χ Σ Σ

J r (mod /) ί(mod/) m=l

= \ Σ χ(r)e Σ (Σ
f r (mod /) m = l \d\m

1 t (mod /)

= i Σ x(r)e-2'« '̂ Σ Σ —i Σ x(r)e Σ Σ
f r (mod/) m=l w=l

y t (mod /)

1

r (mod /)

Σ χ(r)e-« ί r / 'Σ log (1 - 9?)
f ί (mod/) w=l

= - 4 Σ χWe-2'"^' log ( ft (1 - «?))
f f (mod/) \w = l /

y r (mod /)

= - 4 Σ lofif(πd-9?)) Σ
/ ί(mod/) \n = l / r (mod

Σ
od /)

Σ %(-*) log (Π (i - β?
ί(mod/) \ l

= ̂  Σ
/ /(mod/)

Let us set zt = (t + z)/f. Then

log f π d - «?)) = log flte) -

= \0gη{zt)- ^ " ^ 2 >
6/

Therefore

χ(ί){log!jfe)

Σ x® log ̂  - 4 z ^
/ 0 6/

However, [1, p. 336] it is well-known that
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Therefore, we finally have

THEOREM 5.1. Let zt = (z + t)/f. Then

Λ(z) - ^ψ Σ χ(t) log fa) - | L ( 1 , χ) .
/ ί=o b

To see the utility of this formula, let us recall from Theorem 3.3
that

4
πτi

Setting z — i in this formula, and using the fact that χ is real, we see
that

Therefore, from Theorem 5.1, we deduce that

if -±L(l,x)- (30)
2τrτ(χ)

Since χ is a primitive, odd character, we have [1, p. 350] that

T(χ) = iVJ .

Therefore, we may rewrite equation (30) as

,*)\_ A g χ ( ί ) l o g /_i+i\ = 0 .
/ 7 Γ ί 0 \ / /

We rewrite the last term in a slightly more enlightening from by re-
placing t by / — t and averaging the two sums to get

H 12
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= - - Σ lit) Im log
π ί=o

Thus, (31) can be rewritten as

_ i / Λ LOtfN + 1 I m ( g χ ( ί ) log , ( 1 + 1 ) ) = o . (32)

Let K/ be the quadratic field corresponding to χ via class field theory.
Since χ is odd of conductor /, we know that K = Q(V—/). Let fe denote
the class number of Kf. Let us assume that |/| > 4. Then it is well-
known [2, p. 51] that

π

Therefore, we deduce that hf is a zero of the quadratic equation

x2-\x + ~lm (Σ lit) log vi1^1)) = 0

Let us set

Then

2

However, since hf > 1, the plus sign must prevail and we have

h, = m + V l-36S)

THEOREM 5.2. Le£ / δβ ίfcβ discriminant of an imaginary quadratic

field, / > 4, fe; ί/te class number of Q(V~f). Then

Theorem 5.2 is something of a curiosity. However, let us conclude
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this paper with a few comments concerning what seems to us the deeper

significance of the function fχ(z). From the transformation properties

of fχ{z), we have

^ ) 2 . (35)2/z(i) ^
πτ(χ)

Let us assume that χ is real. Then SiegeΓs theorem [2, p. 130] asserts

that for any e > 0, there exists a constant c = c(ε) such that

- /.

Therefore, since τ(χ) = i/1/2, we see that for any ε > 0, there exists a

constant cx such that

fβ) > cjw- . (36)

Unfortunately, the constant in SiegeΓs theorem cannot be determined

effectively. Suppose, however, that instead of (36), we are able to prove

the much weaker assertion

fβ) > c2

for some absolute, effectively determined positive constant c2. Then the

relation (35) implies that

> > ~ τ - (37)

the Dirichlet formula for L(l,χ) asserts that if hf is the class number

of the imaginary quadratic field Q(V—/), then

where w{ = 4 if / = 4, = 6 if / = 3, = 2 otherwise. The inequality (37)

would then imply that

an inequality which suffices to determine all imaginary quadratic fields

having a given class number. Thus, it would seem that it is of major

significance to determine an effectively computable lower bound for fβ).

Let us state this formally:
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PROBLEM. Determine an effectively computable absolute lower bound
for the series

Σ
d\n

To get a more concrete idea of what is involved in this problem,
let us convert the above series into a series with positive terms.

First note that

= l \d\m
imz/l πiz

12/

so that

fx(z) - log ,(4) = Σ (1 + χ(m))(Σ i)e*"""' - -^
12/

χ(m)
Σ
d|m

/ Y1 J^λpϊximz/f π l Z

i \k d) 12/ '
> l J

Setting z = ί, we find that

r,-2πm/f

χ(m) =

+ Σ Σ4K*m// +
12/

Σ
ra = l

where

e(m) =

2 Σ 4 if
d\m a

0 otherwise .

However, from the transformation law for log^O), we see that
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Moreover,

\d\m

Therefore, we see that

% Σ (Σ ^Λ(0 = % Σ (Σ ^ V + i log / + Σ *(m)β + ^ .
12 m=l \i|m (1/ 2 m-1 12/

Therefore, as /—>oo, we deduce the following asymptotic formula for

Λ(i) = Σ ε(m)e-2'm// - J^. + i log / + 0(1) , / - oo . (38)
m=l 1 2 Z

The infinite series on the right hand side has only positive terms.
By using the Siegel theorem, as well as the Polya-Vinogradov theorem,

which asserts that

L(l,χ)<21og/,

we see that for any ε > 0,

c(ε)/ 1 / 2 </ χ (i)<-/ 1 / 2 log 2 /.
π

Therefore, we deduce the following estimate from (38):

φ)fw- < ± ε(m)e-^f - J?L < CJ^log2/ , (39)
m-l 1 2

where c2 is effective, but cx(ε) is not. Conversely, if it were possible to
establish (39) effectively, then this would immediately lead to an effective
proof of SiegeΓs theorem. In fact, insofar as it is desired only to de-
termine effectively all imaginary quadratic fields having given class
number, it suffices to establish any bound of form

Σ
i

12

where λ(f) —> oo as /-> oo.
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