ON AREA INTEGRALS AND RADIAL VARIATIONS OF ANALYTIC FUNGTIONS IN THE UNIT DISK

TAKAFUMI MURAI

1. Introduction

We are concerned with the behaviour of analytic functions near the boundary. Let \boldsymbol{T} and \boldsymbol{D} be the unit circle $|z|=1$ and the unit disk $|z|<1$, respectively. The element of T is denoted by $\theta(0 \leq \theta<2 \pi)$. Let $f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$ be analytic in D. The area integral $A(f, \theta)$ of f at θ is defined by

$$
A(f, \theta)=\iint_{\Gamma(\theta)}\left|f^{\prime}\left(r e^{i \varphi}\right)\right|^{2} r d r d \varphi
$$

where $\Gamma(\theta)=\left\{z ;|z|>\frac{1}{2},\left|\arg \left(z-e^{i \theta}\right)\right|<1\right\}$. It represents the area of the image of $\Gamma(\theta)$. We know the following two relations:
(1) The finiteness of $A(f, \theta)$ reflects the existence of $\lim _{r \rightarrow 1} f\left(r e^{i \theta}\right)$.
(2) The infiniteness of $A(f, \theta)$ reflects the totality of $f(\Gamma(\theta))$, that is, $f(\Gamma(\theta))=\{z ;|z|<+\infty\}$.

So it is interesting to know whether $A(f, \theta)$ is finite or not. Our problems are to characterize the finiteness of $A(f, \theta)$ and to study these relations (1) and (2). But it is complicated to examine them for given f and $\theta \in \boldsymbol{T}$. So some authors studied them for a given f occasionally neglecting a small subset of T. (cf. Theorem (1.1) in [4] p. 199) The author also took the same line at first. But, in this paper, we shall study them neglecting a class of functions. To define a negligible class of functions, we need a probability space.

Let $(\Omega, \mathfrak{B}, p)$ be a probability space, where Ω is a space, \mathfrak{B} events and p a probability. Let $X=\left(X_{n}\right)_{n=1}^{\infty}$ be a sequence of independent random variables. Consider a class of analytic functions, so-called a random Taylor series by $X, f_{X}(z)=\sum_{n=1}^{\infty} X_{n} a_{n} z^{n}$. For a random Taylor series f_{X}, we shall neglect a class of functions in f_{X} with probability 0.

[^0]From the point of view of random Taylor series, we shall consider the above problems. First, we remark the following fact. The property of the finiteness of $A\left(f_{X}, \theta\right)$ is an event and independent on the values of a finite number of $X_{n} a_{n} z^{n}$. By the zero-one law, we obtain that $A\left(f_{X}, \theta\right)$ $<+\infty$ holds with probability 1 or 0 .

We shall also treat by the same manner the generalized area integrals and the radial variations which are defined in the section 2.

2. Definitions

Let C be the complex plane. The element of C is denoted by $z=$ $r e^{i \varphi}, \zeta, \cdots$ etc. Let \boldsymbol{T} and D be the unit circle and the unit open disk with center zero, respectively. The element of T is denoted by θ ($0 \leq$ $\theta<2 \pi)$. Let $f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$ be analytic in D.

The area integral $A(f, \theta, \beta)$ of f at θ is defined by

$$
A(f, \theta, \beta)=\iint_{\Gamma_{\beta}(\theta)}\left|f^{\prime}\left(r e^{i \varphi}\right)\right|^{2} r d r d \varphi
$$

where $\Gamma_{\beta}(\theta)=\left\{z ;|z|>\frac{1}{2},\left|\arg \left(z-e^{i \theta}\right)\right|<\beta\right\}(0<\beta<\pi / 2)$. We denote $A(f, \theta)=A(f, \theta, 1)$. We have two generalizations of $A(f, \theta)$.

The area integral $A_{\alpha}(f, \theta)$ of f of order $\alpha(-1<\alpha<1)$ is defined by

$$
A_{\alpha}(f, \theta)=\int_{0}^{1} r(1-r)^{-\alpha} d r \int_{\theta-(1-r)}^{\theta+(1-r)}\left|f^{\prime}\left(r e^{i \varphi}\right)\right|^{2} d \varphi
$$

We know that $A_{0}(f, \theta)$ and $A(f, \theta)$ are equivalent in the following sense: There exist $\gamma_{1}, \gamma_{2}\left(0<\gamma_{1}, \gamma_{2}<\pi / 2\right)$ such that $c_{1} A_{0}(f, \theta, \gamma) \leq A(f, \theta) \leq$ $c_{2} A_{0}\left(f, \theta, \gamma_{2}\right)$ for some positive constants c_{1}, c_{2}.

The area integral $\tilde{A}_{\alpha}(f, \theta)$ of f of tangency $\alpha\left(0 \leq \alpha \leq \frac{1}{2}\right)$ is defined by

$$
\tilde{A}_{\alpha}(f, \theta)=\int_{0}^{1} r d r \int_{\theta-(1-r)^{1-\alpha}}^{\theta+(1-r)^{1-\alpha}}\left|f^{\prime}\left(r e^{i \varphi}\right)\right|^{2} d \varphi
$$

The radial variation $V(f, \theta)$ of f is defined by

$$
V(f, \theta)=\int_{0}^{1}\left|f^{\prime}\left(r e^{i \theta}\right)\right| d r
$$

For convenience sake, we write the following notation:

$$
A_{\alpha}^{t}(f, \theta)=\int_{0}^{t} r(1-r)^{-\alpha} d r \int_{\theta-(1-r)}^{\theta+(1-r)}\left|f^{\prime}\left(r e^{i \varphi}\right)\right|^{2} d \varphi \quad(0<t<1)
$$

$$
c_{\alpha}(n, m ; t)=n m \int_{0}^{t} r^{n+m-1}(1-r)^{-\alpha} \int_{-1+r}^{1-r} \cos (n-m) \varphi d \varphi,
$$

where n, m are integers. We denote $c_{\alpha}(n, m)=c_{\alpha}(n, m ; 1)$. Let $f(z)$ $=\sum_{n=1}^{\infty} a_{n} z^{n}$ be analytic in D. We have

$$
\begin{aligned}
A_{\alpha}^{t}(f, \theta) & =\int_{0}^{t} r(1-r)^{-\alpha} d r \int_{\theta-(1-r)}^{\theta+(1-r)}\left|\sum_{n=1}^{\infty} n a_{n} r^{n-1} e^{i(n-1) \varphi}\right|^{2} d \varphi \\
& =\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} c_{\alpha}(n, m ; t) a_{n} e^{i n \theta} \overline{a_{m} e^{i m \theta}}
\end{aligned}
$$

In this paper, we use the following notation: If the inequality $0 \leq f(z) \leq c g(z)$ holds for some positive constant c, we denote $f(z) \leq g(z)$. If the inequality $c_{1} f(z) \leq g(z) \leq c_{2} f(z)$ holds for some positive constants c_{1}, c_{2}, we denote $f(z) \approx g(z)$.

Next, we define the probability space $(\Omega, \mathfrak{R}, p)$ which is fixed throughout this paper. Let I be the interval $[0,1)$ and let $\left(I, \mathfrak{B}_{I}, p_{I}\right)$ be the usual probability space. Set $\Omega=\prod_{n=1}^{\infty} I_{n}$, where $I_{n}=I$ for all n. Then the product space (Ω, \mathfrak{B}, p) is usually defined. The element of Ω is denoted by ω. The expectation is denoted by $\mathscr{E}[\cdot]$. We consider a sequence $X=\left(X_{n}\right)_{n=1}^{\infty}$ of independent random variables which satisfies the following conditions:
(i) X_{n} is real-valued.
(ii) X_{n} is a random variable on I_{n}.
(iii) X_{n} is symmetric, that is, $p\left(X_{n}>c\right)=p\left(-X_{n}>c\right)$ for all $c \geq 0$.
(iv) $\sup _{n} \mathscr{E}\left[X_{n}^{2}\right]<+\infty$.
(v) $\sup _{n} \mathscr{E}\left[X_{n}^{4}\right] \mathscr{E}\left[X_{n}^{2}\right]^{-2}<+\infty$.
As a technique, we shall use a Rademacher series which is defined as follows. Let J be two points $\{-1,1\}$. Set $\tilde{\Omega}=\prod_{n=1}^{\infty} J_{n}$, where J_{n} $=J$ for all n. Then the usual probability space ($\tilde{\Omega}, \tilde{B}, \tilde{p})$ is defined. The element of $\tilde{\Omega}$ is denoted by x. A Rademacher series $\varepsilon=\left(\varepsilon_{n}\right)_{n=1}^{\infty}$ is defined by
(a) ε_{n} is a random variable on J_{n}
(b) $\varepsilon_{n}(-1)=-1, \varepsilon_{n}(1)=1$.

Then $\varepsilon=\left(\varepsilon_{n}\right)_{n=1}^{\infty}$ is a sequence of independent random variables with $\tilde{p}\left(\varepsilon_{n}=1\right)=\tilde{p}\left(\varepsilon_{n}=-1\right)=\frac{1}{2}(n=1,2, \cdots)$.

If some property \boldsymbol{P}_{1} on Ω hold with probability 1 , we say that \boldsymbol{P}_{1}
holds almost surely (a.s.). If some property \boldsymbol{P}_{2} on \boldsymbol{T} holds with Lebesgue measure 2π, we say that \boldsymbol{P}_{2} holds almost everywhere (a.e.).

3. Immediate consequences and constructions of examples

We first show the following
Proposition 1. Let $|\alpha|<1$ and let $f_{X}(z)=\sum_{n=1}^{\infty} X_{n} a_{n} z^{n}$ be a random Taylor series defined by $X=\left(X_{n}\right)_{n=1}^{\infty}$. Then $A_{\alpha}\left(f_{X}, 0\right)<+\infty$ a.s. if and only if $\sum_{n=1}^{\infty} \mathscr{E}\left[\left|X_{n}\right|^{2}\right] n^{\alpha}\left|a_{n}\right|^{2}<+\infty \cdots(*)_{\alpha}$.

For the proof, we prepare the following
Lemma 1 ([1] p. 6). Let Y be a positive random variable. Then for $0<\lambda<1$, we have

$$
p(Y \geq \lambda \mathscr{E}[Y]) \geq(1-\lambda)^{2} \mathscr{E}[Y]^{2} \mathscr{E}\left[Y^{2}\right]^{-1}
$$

Proof of Proposition 1. First we remark $\int_{0}^{1} r^{2 n-1}(1-r)^{1-\alpha} d r \approx n^{\alpha-2}$. Assume that $(*)_{\alpha}$ holds. From the hypothesis (v), we have, with some constant $c, \mathscr{E}\left[X_{n}^{4}\right] \leq c \mathscr{E}\left[X_{n}^{2}\right]^{2}$. Since

$$
A_{\alpha}^{t}\left(f_{X}, 0\right)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} X_{n} X_{m} c_{\alpha}(n, m ; t) a_{n} \bar{a}_{m}
$$

it follows from (iii) that

$$
\begin{aligned}
\mathscr{E}\left[A_{\alpha}^{t}\left(f_{X}, 0\right)\right] & =\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \mathscr{E}\left[X_{n} X_{m}\right] c_{\alpha}(n, m ; t) a_{n} \bar{a}_{m} \\
& =\sum_{n=1}^{\infty} \mathscr{E}\left[X_{n}^{2}\right] c_{\alpha}(n, n ; t)\left|a_{n}\right|^{2}
\end{aligned}
$$

Letting t tend to 1 , we have

$$
\mathscr{E}\left[A_{\alpha}\left(f_{X}, 0\right)\right]=\sum_{n=1}^{\infty} \mathscr{E}\left[X_{n}^{2}\right] c_{\alpha}(n, n)\left|a_{n}\right|^{2} \approx \sum_{n=1}^{\infty} \mathscr{E}\left[X_{n}^{2}\right] n^{\alpha}\left|a_{n}\right|^{2}<+\infty
$$

Hence $A_{\alpha}\left(f_{X}, 0\right)<+\infty$ a.s..
Conversely, assume that $A_{\alpha}\left(f_{X}, 0\right)<+\infty$ hold a.s.. We shall apply the above lemma to the random variable $A_{\alpha}^{t}\left(f_{X}, 0\right)$. We have

$$
\mathscr{E}\left[A_{\alpha}^{t}\left(f_{x}, 0\right)\right]^{2}=\left(\sum_{n=1}^{\infty} \mathscr{E}\left[X_{n}^{2}\right] c_{\alpha}(n, n ; t)\left|a_{n}\right|^{2}\right)^{2}
$$

and
$\mathscr{E}\left[A_{\alpha}^{t}\left(f_{X}, 0\right)^{2}\right]=\mathscr{E}\left[\left(\sum_{n, m} X_{n} X_{m} c_{\alpha}(n, m ; t) a_{n} \bar{a}_{m}\right)^{2}\right]$

$$
\begin{aligned}
= & \mathscr{E}\left[\sum_{n_{1} m_{1} n_{2} m_{2}} X_{n_{1}} X_{m_{1}} X_{n_{2}} X_{m_{2}} c_{\alpha}\left(n_{1}, m_{1} ; t\right) c_{\alpha}\left(n_{2}, m_{2} ; t\right) a_{n_{1}} \bar{a}_{m_{1}} a_{n_{2}} \bar{a}_{m_{2}}\right] \\
= & \sum_{n_{1} m_{1} n_{2} m_{2}} \mathscr{E}\left[X_{n_{1}} X_{m_{1}} X_{n_{2}} X_{m_{2}}\right] c_{\alpha}\left(n_{1}, m_{1} ; t\right) c_{\alpha}\left(n_{2}, m_{2} ; t\right) a_{n_{1}} \bar{a}_{m_{1}} a_{n_{2}} \bar{a}_{m_{2}} \\
\leq & \sum_{n, m} \mathscr{E}\left[X_{n}^{2} X_{m}^{2}\right] c_{\alpha}(n, n ; t) c_{\alpha}(m, m ; t)\left|a_{n}\right|^{2}\left|a_{m}\right|^{2} \\
& +\sum_{n, m} \mathscr{E}\left[X_{n}^{2} X_{m}^{2}\right] c_{\alpha}(n, m ; t)^{2}\left|a_{n}\right|^{2}\left|a_{m}\right|^{2} .
\end{aligned}
$$

Since we have

$$
\left.\mathscr{E}\left[X_{n}^{2} X_{m}^{2}\right] \leq \sqrt{\overline{\mathscr{E}}\left[X_{n}^{4}\right]} \sqrt{\mathscr{E}\left[X_{m}^{4}\right.}\right] \leq c \mathscr{E}\left[X_{n}^{2}\right] \mathscr{E}\left[X_{m}^{2}\right]
$$

and

$$
c_{\alpha}(n, m ; t) \leq n m \int_{0}^{1} r^{m+m-1}(1-r)^{-\alpha} d r \int_{-1+r}^{1-r} d \varphi \leq \sqrt{c_{\alpha}(n, n ; t)} \sqrt{c_{\alpha}(m, m ; t)}
$$

we obtain

$$
\mathscr{E}\left[A_{\alpha}^{t}\left(f_{X}, 0\right)^{2}\right] \leq 2 c\left(\sum_{n=1}^{\infty} \mathscr{E}\left[X_{n}^{2}\right] c_{\alpha}(n, n ; t)\left|a_{n}\right|^{2}\right)^{2}
$$

Therefore

$$
\mathscr{E}\left[A_{\alpha}^{t}\left(f_{X}, 0\right)\right]^{2} \mathscr{E}\left[A_{\alpha}^{t}\left(f_{X}, 0\right)^{2}\right]^{-2} \geq \frac{1}{2 c}
$$

By Lemma 1, we have

$$
p\left(A_{\alpha}^{t}\left(f_{X}, 0\right) \geq \frac{1}{2} \mathscr{E}\left[A_{\alpha}^{t}\left(f_{X}, 0\right)\right]\right) \geq\left(1-\left(\frac{1}{2}\right)\right) \frac{1}{2 c}(=\eta)>0 .
$$

Choose a sequence $\left(t_{n}\right)_{n=1}^{\infty}$ such that $0<t_{n}<1$ and $t_{n} \uparrow 1$. Set

$$
E_{n}=\left\{A_{\alpha}^{t_{n}}\left(f_{X}, 0\right) \geq \frac{1}{2} \mathscr{E}\left[A_{\alpha}^{t_{n}}\left(f_{X}, 0\right)\right]\right\}
$$

Since $p\left(E_{n}\right) \geq \eta$ for all n, we have $p\left(\lim \sup _{n \rightarrow \infty} E_{n}\right) \geq \eta$. By the assumption, there exists $\omega \in \lim \sup _{n \rightarrow \infty} E_{n}$ such that $A_{\alpha}\left(f_{X(\omega)}, 0\right)<+\infty$. Then we have

$$
\begin{gathered}
\sum_{n=1}^{\infty} \mathscr{E}\left[X_{n}^{2}\right] n^{\alpha}\left|a_{n}\right|^{2} \approx \mathscr{E}\left[A_{\alpha}\left(f_{X}, 0\right)\right]=\lim _{n \rightarrow \infty} \mathscr{E}\left[A_{\alpha}^{t_{n}}\left(f_{X}, 0\right)\right] \\
\leq \lim _{n \rightarrow \infty} A_{\alpha}^{t_{n}}\left(f_{X(\omega)}, 0\right)=A_{\alpha}\left(f_{X(\omega)}, 0\right)<+\infty
\end{gathered}
$$

This completes the proof.

Corollary 1. Let $|\alpha|<1$ and f_{X} be the same as in Proposition 1. Then $A_{\alpha}\left(f_{X}, \theta\right)<+\infty$ a.e. holds a.s. if and only if $(*)_{\alpha}$ holds.

Proof. Consider the product space $\left(\Omega \times T, \mathfrak{B} \times \mathfrak{B}_{\boldsymbol{T}}, p \times d \theta\right)$. We denote by $\tilde{\mathscr{E}}[\cdot]$ the expectation. Define a sequence $Y=\left(Y_{n}\right)_{n=1}^{\infty}$ of random variables on $\Omega \times \boldsymbol{T}$ by $Y_{n}(\omega, \theta)=\dot{X}_{n}(\omega) e^{i n \theta}$. Then we have

$$
\sup _{n} \widetilde{\mathscr{E}}\left[\left|Y_{n}\right|^{4}\right] \widetilde{\mathscr{E}}\left[\left|Y_{n}\right|^{2}\right]^{-2}=\sup _{n} \mathscr{E}\left[X_{n}^{4}\right] \mathscr{E}\left[X_{n}^{2}\right]^{-2}<+\infty
$$

and

$$
\widetilde{\mathscr{E}}\left[Y_{n_{1}} Y_{m_{1}} \bar{Y}_{n_{2}} \bar{Y}_{m_{2}}\right]=2 \pi \mathscr{E}\left[X_{n_{1}} X_{m_{1}} X_{n_{2}} X_{m_{2}}\right] \delta_{n_{1}+m_{1}, n_{2}+m_{2}}
$$

where $\delta_{n, m}$ means Kronecker's. By the same method as in Proposition 1, we know that $A_{\alpha}\left(f_{Y}, 0\right)<+\infty$ a.s. $(p \times d \theta)$ if and only if ($)_{\alpha}$ holds. Since $A_{\alpha}\left(f_{Y(\omega, \theta)}, 0\right)=A_{\alpha}\left(f_{X(\omega)}, \theta\right)$, we know that $A_{\alpha}\left(f_{X}, \theta\right)<+\infty$ a.e. holds a.s. if and only if $(*)_{\alpha}$ holds, this completes the proof.

Proposition 1'. Let $f_{X}(z)=\sum_{n=1}^{\infty} X_{n} a_{n} z^{n}$ be a random Taylor series. Set $s_{j}=\left(\sum_{2 j \leq n<2^{j+1}} \mathscr{E}\left[X_{n}^{2}\right]\left|a_{n}\right|^{2}\right)^{1 / 2}$. If $\sum_{j=0}^{\infty} s_{j}<+\infty$, then $V\left(f_{X}, 0\right)<+\infty$ a.s..

Proof. We have

$$
V\left(f_{X}, 0\right)=\int_{0}^{1}\left|f_{X}^{\prime}(r)\right| d r \leq\left.\sum_{j=0}^{\infty} \int_{0}^{1}\right|_{2 t \leq n<2 J+1} n X_{n} a_{n} r^{n-1} \mid d r .
$$

Since we have

$$
\begin{aligned}
\mathscr{E}\left[\left.\right|_{2 j \leq n<2 j+1} X_{n} n a_{n} r^{n-1}\right] & \leq \mathscr{E}\left[\sum_{2 j \leq n, m<2 j+1} X_{n} X_{m} n m a_{n} \bar{a}_{m} r^{n+m-2}\right]^{1 / 2} \\
& \leq\left(\sum_{2 j \leq n<2 j+1} \mathscr{E}\left[X_{n}^{2}\right] n^{2}\left|a_{n}\right|^{2} r^{2 n-2}\right)^{1 / 2} \leq 2^{j+1} r^{2 j-1} s_{j}
\end{aligned}
$$

we obtain

$$
\mathscr{E}\left[V\left(f_{X}, 0\right)\right] \leq \sum_{j=0}^{\infty} s_{j} 2^{j+1} \int_{0}^{1} r^{2 j-1} d r \approx \sum_{j=0}^{\infty} s_{j}<+\infty
$$

Therefore we have $V\left(f_{X}, 0\right)<+\infty$ a.s.. This completes the proof.
Corollary 1^{\prime}. If $\sum_{j=0}^{\infty} s_{j}<+\infty$, then $V\left(f_{X}, \theta\right)<+\infty$ a.e. holds a.s..
This is easily proved by the same method as in Proposition 1^{\prime}. Hence we omit the proof.

Remark 1. The similar assertion as in Proposition 1 for $\tilde{A}_{\alpha}(0<\alpha$
$\leq \frac{1}{2}$) holds. Now, choose a sequence $\left(a_{n}\right)_{n=1}^{\infty}$ such that $\sum_{n=1}^{\infty} n^{\alpha}\left|a_{n}\right|^{2}<+\infty$ and $\sum_{n=1}^{\infty} n^{\beta}\left|a_{n}\right|^{2}=+\infty \quad\left(0 \leq \alpha<\beta \leq \frac{1}{2}\right)$. Consider a random Taylor series $f_{\varepsilon}(z)=\sum_{n=1}^{\infty} \varepsilon_{n} a_{n} z^{n}$. Then we have almost surely $A_{\alpha}\left(f_{\varepsilon}, \theta\right)<+\infty$, $A_{\beta}\left(f_{\iota}, \theta\right)=+\infty, \tilde{A}_{\alpha}\left(f_{s}, \theta\right)<+\infty$ and $\tilde{A}_{\alpha}\left(f_{c}, \theta\right)=+\infty$ a.e..

Proposition 2. Let $X=\left(X_{n}\right)_{n=1}^{\infty}$ be a sequence of independent realvalued normal Gaussian variables (i.e. $p\left(X_{n}<t\right)=1 / \sqrt{2 \pi} \int_{-\infty}^{t} e^{-s z / 2} d s$) and let $f_{X}(z)=\sum_{n=1}^{\infty} X_{n} a_{n} z^{n}$ be a random Taylor series. Then $V\left(f_{X}, 0\right)<+\infty$ a.s. if and only if $\int_{0}^{1} \sqrt{\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n-2}} d r<+\infty$.

Proof. We can assume that a_{n} 's are real. We have

$$
\mathscr{E}\left[V\left(f_{X}, 0\right)\right]=\int_{0}^{1} \mathscr{E}\left[\left|\sum_{n=1}^{\infty} X_{n} n a_{n} r^{n-1}\right|\right] d r=\sqrt{\frac{2}{\pi}} \int_{0}^{1} \sqrt{\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n-2}} d r .
$$

Hence 'if' part holds. Set $V^{t}\left(f_{X}, 0\right)=\int_{0}^{t}\left|f_{X}^{\prime}\right| d r$. We shall show that $\mathscr{E}\left[V^{t}\left(f_{X}, 0\right)^{2}\right] \mathscr{E}\left[V^{t}\left(f_{X}, 0\right)\right]^{-2} \leq 4$ for all $0<t<1$. We have

$$
\mathscr{E}\left[V^{t}\left(f_{X}, 0\right)\right]^{2}=\frac{2}{\pi}\left(\int_{0}^{t} \sqrt{\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n-2}} d r\right)^{2}
$$

and

$$
\begin{aligned}
& \mathscr{E}\left[V^{t}\left(f_{X}, 0\right)^{2}\right] \\
& \quad=\int_{0}^{t} \int_{0}^{t} \mathscr{E}\left[\left|\sum_{n=1}^{\infty} X_{n} n a_{n} r^{n-1}\right|\left|\sum_{n=1}^{\infty} X_{n} n a_{n} s^{n-1}\right|\right] d r d s \\
& \quad=\int_{0}^{t} \int_{0}^{t} d r d s \frac{1}{\sqrt{A B-C^{2}}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|x||y| \exp \left(-\pi \frac{B x^{2}+A y^{2}-2 C x y}{A B-C^{2}}\right) d x d y
\end{aligned}
$$

where

$$
A=\mathscr{E}\left[\left|\sum_{n=1}^{\infty} X_{n} n a_{n} r^{n-1}\right|^{2}\right]=\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n-2}, \quad B=\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} s^{2 n-2}
$$

and

$$
C=\mathscr{E}\left[\sum_{n=1}^{\infty} X_{n} n a_{n} r^{n-1} \sum_{n=1}^{\infty} X_{n} n a_{n} s^{n-1}\right]=\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{n-1} s^{n-1} .
$$

Since

$$
\begin{aligned}
& \frac{1}{\sqrt{A B-C^{2}}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|x||y| \exp \left(-\pi \frac{B x^{2}+A y^{2}-2 C x y}{A B-C^{2}}\right) d x d y \\
& \quad \leq 4 \sqrt{A B-C^{2}} \leq 4 \sqrt{A B}
\end{aligned}
$$

we have

$$
\mathscr{E}\left[V^{t}\left(f_{X}, 0\right)^{2}\right] \leq 4\left(\int_{0}^{t} \sqrt{\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n-2}} d r\right)^{2}
$$

Therefore $\mathscr{E}\left[V^{t}\left(f_{X}, 0\right)^{2}\right] \mathscr{E}\left[V^{t}\left(f_{X}, 0\right)\right]^{-2} \leq 4$. Hence the zest of the proof follows in the same manner as in Proposition 1. This completes the proof.

To discuss the sure properties, we consider lacunary series. Let $\left(\ell_{\alpha}(k)\right)_{k=0}^{\infty}(0<\alpha<1)$ be a sequence of positive integers such that ($1-$ $\alpha) \ell_{\alpha}(k+1) \geq 2 \ell_{\alpha}(k)$. We denote by $N_{\alpha}(k)=2^{\ell \alpha(k)}$ and $N(k)=2^{2 k}$ throughout this paper.

Proposition 5. Let $0<\alpha<1$ and let $\left(a_{n}\right)_{n=1}^{\infty}$ be a bounded sequence such that $a_{n}=0$ for $n \neq N_{\alpha}(k) \quad(k=0,1, \cdots)$. Set $f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$. Then $A_{\alpha}(f, \theta)<+\infty$ for all θ or $A_{\alpha}(f, \theta)=+\infty$ for all θ according to $\sum_{n=1}^{\infty} n^{\alpha}\left|a_{n}\right|^{2}<+\infty$ or $=+\infty$.

Proof. We can assume $\left|a_{n}\right| \leq 1$ for all n. We have

$$
\begin{aligned}
A_{\alpha}^{t}(f, \theta)= & \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} c_{\alpha}(n, m ; t) a_{n} e^{i n \theta} \overline{a_{m} e^{i m \theta}} \\
= & \sum_{k=0}^{\infty} c_{\alpha}\left(N_{\alpha}(k), N_{\alpha}(k) ; t\right)\left|a_{N_{\alpha}(k)}\right|^{2} \\
& +2 \operatorname{Re}\left(\sum_{k=1}^{\infty} \sum_{k^{\prime}=0}^{k-1} c_{\alpha}\left(N_{\alpha}(k), N_{\alpha}\left(k^{\prime}\right) ; t\right) a_{N_{\alpha}(k)} \bar{a}_{N_{\alpha}\left(k^{\prime}\right)} e^{i\left(N_{\alpha}(k)-N_{\alpha}\left(k^{\prime}\right)\right) \theta}\right) .
\end{aligned}
$$

We have the following estimation:

$$
\begin{aligned}
\mid(\text { The second term }) \mid & \lesssim \sum_{k=1}^{\infty} \sum_{k^{\prime}=0}^{k-1} N_{\alpha}(k) N_{\alpha}\left(k^{\prime}\right)\left(N_{\alpha}(k)+N_{\alpha}\left(k^{\prime}\right)\right)^{\alpha-2} \\
& \leq \sum_{k=1}^{\infty} N_{\alpha}(k)^{\alpha-1} \cdot k \cdot N_{\alpha}(k-1)<+\infty .
\end{aligned}
$$

Letting t tend to 1 , we have $A_{\alpha}(f, \theta) \approx \sum_{n=1}^{\infty} n^{\alpha}\left|a_{n}\right|^{2}+0(1)$. This completes the proof.

Proposition 5'. Let $0<\alpha<1$ and let $\left(a_{n}\right)_{n=1}^{\infty}$ be an absolutely convergent sequence such that $a_{n}=0$ for $n \neq N(k)(k=0,1, \cdots)$. Set $f(z)$ $=\sum_{n=1}^{\infty} a_{n} z^{n}$. Then $A_{\alpha}(f, \theta)<+\infty$ for all θ or $A_{\alpha}(f, \theta)=+\infty$ for all θ according to $\sum_{n=1}^{\infty} n^{\alpha}\left|a_{n}\right|^{2}<+\infty$ or $=+\infty$.

By using the following estimation, we have $A_{\alpha}(f, \theta) \approx \sum_{n=1}^{\infty} n^{\alpha}\left|a_{n}\right|^{2}$ $+0(1)$.

$$
\begin{aligned}
& \left|\sum_{k=1}^{\infty} \sum_{k^{\prime}=0}^{\infty} c_{\alpha}\left(N(k), N\left(k^{\prime}\right) ; t\right) a_{N(k)} \bar{a}_{N\left(k^{\prime}\right)} e^{i\left(N(k)-N\left(k^{\prime}\right)\right) \theta}\right| \\
& \quad \leq \sum_{k=1}^{\infty}\left|a_{N(k)}\right| \sum_{k^{\prime}=0}^{k-1}\left|a_{N\left(k^{\prime}\right)}\right| N(k) N\left(k^{\prime}\right)\left(N(k)+N\left(k^{\prime}\right)\right)^{\alpha-2} \\
& \quad \leq\left(\sum_{k=1}^{\infty}\left|a_{N(k)}\right|\right)^{2}<+\infty .
\end{aligned}
$$

COROLLARY 2. There exists an absolutely convergent Taylor series $f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$ such that $A_{\alpha}(f, \theta)=+\infty$ for all θ and all $0<\alpha<1$.

Proof. Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence such that $a_{N(k)}=(k+1)^{-2}(k=0,1, \cdots)$ $a_{n}=0 n \neq N(k)$. Then $\sum_{n=0}^{\infty} n^{\alpha}\left|a_{n}\right|^{2}=+\infty$ for all $0<\alpha<1$. By Proposition $2^{\prime}, A_{\alpha}(f, \theta)=+\infty$ for all θ and $0<\alpha<1$. This completes the proof.

Remark 2. By [2], $\theta \in \boldsymbol{T}$ is called a Lusin point of f if $\tilde{A}_{1 / 2}(f, \theta, t)$ $=\iint_{\mid z-t e^{i \theta} \theta_{1}<1-t}\left|f^{\prime}(z)\right|^{2} r d r d \varphi$ diverges for all $0<t<1$. We know that there exists a bounded function such that every point $\theta \in \boldsymbol{T}$ is a Lusin point of it ([2]). Let f be the function in Corollary 2. Then every point $\theta \in \boldsymbol{T}$ is a Lusin point of f. We shall show it. We have $\tilde{A}_{1 / 2}(f, \theta)$ $=+\infty$ for each θ. We can assume $t>\frac{1}{2}$. If we choose suitable constants $\beta_{t}, \gamma_{t, f}$, we have, for each θ,

$$
\begin{aligned}
\tilde{A}_{1 / 2}(f, \theta, t)= & \iint_{\substack{\mid z-t t^{t} \theta_{\mid<1-t} \\
r<t}}\left|f^{\prime}(z)\right|^{2} r d r d \varphi \\
& +\int_{t}^{1} r d r \int_{|\varphi-\theta|<\operatorname{arc} \cos \left(2 t-1+r^{2}\right)(2 r t)-1}\left|f^{\prime}\right|^{2} d \varphi \\
\geq & \int_{t}^{1} r d r \int_{|\varphi-\theta|<\beta_{t} \sqrt{1-r}}\left|f^{\prime}\right|^{2} d \varphi \approx A_{1 / 2}(f, \theta)+\gamma_{t, f}=+\infty
\end{aligned}
$$

Therefore $\tilde{A}_{1 / 2}(f, \theta, t)=+\infty$ for all $\theta \in \boldsymbol{T}$ and all $0<t<1$. But there exists $g(z)=\sum_{n=1}^{\infty} b_{n} z^{n}$ such that each $\theta \in \boldsymbol{T}$ is not a Lusin point of g and $A_{\alpha}(g, \theta)=+\infty$ for all θ and all $\alpha>\frac{1}{2}$. For example, put $b_{N(k)}=$ $k^{-1 / 2} N(k)^{-1 / 4}(k=1,2, \cdots)$ and $b_{n}=0$ for $n \neq N(k)$.

Example. There exists an analytic function f such that $V(f, \theta)$ $=+\infty$ and $A_{0}(f, \theta)<+\infty$ for all θ.

Put $b_{N(k)}=k^{-1 / 2} N(k)^{1 / 2}(k=1,2, \cdots)$ and $b_{n}=0$ for $n \neq N(k)(k=$ $1,2, \cdots)$. Consider $f(z)=\int_{0}^{z}\left(\sum_{n=0}^{\infty} b_{n} \zeta^{n}\right)^{2} d \zeta$. We show that f satisfies the required conditions. We have

$$
\begin{aligned}
V(f, \theta)= & \int_{0}^{1}\left|\sum_{n=1}^{\infty} b_{n} r^{n} e^{i n \theta}\right|^{2} d r \\
= & \sum_{k=1}^{\infty} \sum_{k^{\prime}=1}^{\infty} b_{N(k)} b_{N\left(k^{\prime}\right)}\left(N(k)+N\left(k^{\prime}\right)+1\right)^{-1} e^{i\left(N(k)-N\left(k^{\prime}\right)\right) \theta} \\
= & \sum_{k=1}^{\infty} b_{N(k)}^{2}(2 N(k)+1)^{-1} \\
& +\sum_{k=1}^{\infty} \sum_{k^{\prime} \neq k}^{\infty} b_{N(k)} b_{N\left(k^{\prime}\right)}\left(N(k)+N\left(k^{\prime}\right)+1\right)^{-1} e^{i\left(N(k)-N\left(k^{\prime}\right)\right)} \theta .
\end{aligned}
$$

We have the following estimation:

$$
\begin{aligned}
& \text { (The first term) } \approx \sum_{k=1}^{\infty} k^{-1}=+\infty \\
& \mid(\text { The second term }) \mid \lesssim \sum_{k=1}^{\infty} b_{N(k)} N(k)^{-1} \sum_{k^{\prime}=1}^{k-1} b_{N\left(k^{\prime}\right)} \leq \sum_{k=2}^{\infty} N(k-2)^{-1}<+\infty
\end{aligned}
$$

Therefore we have $V(f, \theta)=+\infty$ for all θ. On the other hand, we have

$$
\begin{aligned}
A_{0}(f, \theta)= & \int_{0}^{1} d r \int_{\theta-(1-r)}^{\theta+(1-r)}\left|\sum_{n=1}^{\infty} b_{n} r^{n} e^{i n \varphi}\right|^{4} d \varphi \\
= & \int_{0}^{1} d r \int_{\theta-(1-r)}^{\theta+(1-r)} \sum_{k_{1}, k_{2}, k_{3}, k_{4}=1}^{\infty} b_{N\left(k_{1}\right)} b_{N\left(k_{2}\right)} b_{N\left(k_{3}\right)} b_{N\left(k_{4}\right)} r^{N\left(k_{1}\right)+N\left(k_{2}\right)+N\left(k_{3}\right)+N\left(k_{4}\right)} \\
& \quad \times e^{i\left(N\left(k_{1}\right)+N\left(k_{2}\right)-N\left(k_{3}\right)-N\left(k_{4}\right)\right) \varphi} d \varphi \\
\approx & \sum_{k_{1}, k_{2}, k_{3}, k_{k}=1}^{\infty} b_{N\left(k_{1}\right)} b_{N\left(k_{2}\right)} b_{N\left(k_{3}\right)} b_{N\left(k_{k}\right)}\left(N\left(k_{1}\right)+N\left(k_{2}\right)+N\left(k_{3}\right)+N\left(k_{4}\right)\right)^{-2} \\
\leq & \sum_{k=1}^{\infty} b_{N(k)}^{4} N(k)^{-2}+\sum_{k=1}^{\infty} b_{N(k)}^{3} N(k)^{-2} \sum_{k^{\prime}=1}^{k-1} b_{N\left(k^{\prime}\right)}+\sum_{k=1}^{\infty} b_{N(k)}^{2} N(k)^{-2}\left(\sum_{k^{\prime}=1}^{k-1} b_{N\left(k^{\prime}\right)}\right)^{2} \\
& +\sum_{k=1}^{\infty} b_{N(k)} N(k)^{-2}\left(\sum_{k^{\prime}=1}^{k-1} b_{N\left(k^{\prime}\right)}\right)^{3} \\
\leq & \sum_{k=1}^{\infty} k^{-2}+\sum_{k=2}^{\infty} k^{-1} N(k-2)^{-1}+\sum_{k=1}^{\infty} N(k-1)^{-1}+\sum_{k=2}^{\infty} k^{2} N(k-2)^{-2} \\
& +O(1)<+\infty .
\end{aligned}
$$

Therefore we have $A_{0}(f, \theta)<+\infty$ for all θ.

4. Almost sure property for all θ

Theorem 1. Let $|\alpha|<1$ and $f_{X}(z)=\sum_{n=1}^{\infty} X_{n} a_{n} z^{n}$ be a random Taylor series. Set $s_{j}=\sqrt{\sum_{2^{j} \leq n<2^{j+1}}} \mathscr{E}\left[X_{n}^{2}\right] n^{\alpha}\left|a_{n}\right|^{2}(j=0,1, \cdots)$. If $s_{j} \downarrow 0$ and $\sum_{j=0}^{\infty} s_{j}<+\infty$, then $A_{\alpha}\left(f_{X}, \theta\right)$ is bounded ((as a function of θ) a.s..

We denote by $\|P\|_{\infty}=\sup _{\theta \in T}|P(\theta)|$ for a continuous function P on T. We use the following

Lemma 2. ([1] p. 55) Let $\left(P_{n}\right)_{n=1}^{e}$ be a sequence of trigonometric polynomials of degree $\leq N$. Set $P_{s}=\sum_{n=1}^{b} \varepsilon_{n} P_{n}$. Then we have, with positive constants c_{1}, c_{2},

$$
\tilde{p}\left(\left(\left\|P_{t}\right\|_{\infty} \geq c_{1}(\log N)^{1 / 2}\left(\sum_{n=1}^{\ell}\left\|P_{n}\right\|_{\infty}^{2}\right)^{1 / 2}\right) \leq c_{2} N^{-2} .\right.
$$

Proof of Theorem 1. First we consider the case of a Rademacher series. We denote $R_{s k}(z)=\sum_{N(k) \leq n<N(k+1)} \varepsilon_{n} a_{n} z^{n}(k=0,1, \cdots)$. We have

$$
\sqrt{A_{\alpha}\left(f_{s}, \theta\right)} \leq \sqrt{A_{\alpha}\left(a_{1} z, \theta\right)}+\sum_{k=0}^{\infty} \sqrt{A_{\alpha}\left(R_{s k}, \theta\right)} .
$$

We show

$$
\begin{aligned}
& \tilde{p}\left(\sqrt{ }\left\|A_{\alpha}\left(R_{s k}, \cdot\right)\right\|_{\infty} \geq c_{1}(\log N(k+1))^{1 / 2}\left(\sum_{N(k) \leq n<N(k+1)} c_{\alpha}(n, n)\left|a_{n}\right|^{2}\right)^{1 / 2}\right) \\
& \quad \leq c_{2} N(k+1)^{-1}
\end{aligned}
$$

Set $\quad \ell(k)=N(k+1)-N(k), \quad \tilde{\varepsilon}_{\mu}=\varepsilon_{N(k)-1+\mu}, \quad b_{\mu}=a_{N(k)-1+\mu} \quad$ and $\quad b_{\mu}(\theta)=$ $a_{N(k)-1+\mu} e^{i(N(k)-1+\mu) \theta}(\mu=1, \cdots, \ell(k))$. We denote by $b_{s}(\theta)=\left(\tilde{\varepsilon}_{1} b_{1}(\theta), \cdots\right.$, $\left.\tilde{\varepsilon}_{\ell(k)} b_{\ell(k)}(\theta)\right)$ and

$$
\begin{aligned}
C & =\left(c_{\mu \nu}\right)_{\mu, \nu=1, \cdots, \ell(k)} \\
& =\binom{c_{\alpha}(N(k), N(k)), \cdots c_{\alpha}(N(k), N(k+1)-1)}{c_{\alpha}(N(k+1)-1, N(k)), \cdots c_{\alpha}(N(k+1)-1, N(k+1)-1)} .
\end{aligned}
$$

Since C is positive definite, there exists a unitary matrix $U=\left(u_{\mu \nu}\right)_{\mu \nu=1}$, $\cdots, \ell(k)$ such that $U^{*} C U=\left(\begin{array}{lll}\lambda_{1} & & 0 \\ & \ddots & \\ 0 & & \lambda_{\ell(k)}\end{array}\right)$, where $\left\{\lambda_{\mu}\right\}_{\mu=1}^{\ell(k)}$ are eigen values of C. Set $d_{\tilde{z \nu}}(\theta)=\sum_{\mu=1}^{\ell(k)} \tilde{\varepsilon}_{\mu} b_{\mu}(\theta) u_{\mu \nu}(\nu=1, \cdots, \ell(k))$. Then we have

$$
A_{\alpha}\left(R_{s k}, \theta\right)=\boldsymbol{b}_{s}(\theta) C b_{\varepsilon}^{*}(\theta)=\sum_{\nu=1}^{\ell(k)} \lambda_{\nu}\left|d_{\nu}(\theta)\right|^{2} .
$$

Since $\operatorname{deg} b_{\nu}(\theta) \leq N(k+1)$, we have

$$
\tilde{p}\left(\left\|d_{\tilde{\partial v}}\right\|_{\infty} \geq c_{1}(\log N(k+1))^{1 / 2}\left(\sum_{\mu=1}^{\ell(k)}\left|b_{\mu}\right|^{2}\left|u_{\mu \nu}\right|^{2}\right)^{1 / 2}\right) \leq c_{2}(N(k+1))^{-2} .
$$

Therefore we have

$$
\begin{aligned}
\tilde{p}\left(\left\|d_{\Delta \nu}\right\|_{\infty} \geq c_{1}(\log N(k+1))^{1 / 2}\left(\sum_{\mu=1}^{\ell(k)}\left|b_{\mu}\right|^{2}\left|u_{\mu \nu}\right|^{2}\right)^{1 / 2} \quad \text { for some } \nu\right. & (1 \leq \nu \leq \ell(k))) \\
& \leq c_{2} N(k+1)^{-1}
\end{aligned}
$$

Since

$$
\left\|A_{\alpha}\left(R_{\star k}, \cdot\right)\right\|_{\infty} \leq \sum_{\nu=1}^{\ell(k)} \lambda_{\mu}\left\|d_{\tau_{\nu}}\right\|_{\infty}
$$

and

$$
\begin{aligned}
\sum_{\nu=1}^{\ell(k)} \lambda_{\mu} \sum_{\mu=1}^{\ell(k)}\left|b_{\mu}\right|^{2}\left|u_{\mu \nu}\right|^{2} & =\sum_{\mu=1}^{\ell(k)}\left|b_{\mu}\right|^{\ell} \sum_{\mu=1}^{\ell(k)} \lambda_{\mu}\left|u_{\mu \nu}\right|^{2}=\sum_{\mu=1}^{\ell(k)}\left|b_{\mu}\right|^{2} c_{\mu \mu} \\
& =\sum_{N(k) \leq n<N(k+1)} c_{\alpha}(n, n)\left|a_{n}\right|^{2},
\end{aligned}
$$

we have

$$
\begin{gathered}
\tilde{p}\left(\sqrt{\left\|A_{\alpha}\left(R_{s k}, \cdot\right)\right\|_{\infty} \geq} \geq c_{1}(\log N(k+1))^{1 / 2}\left(\sum_{N(k) \leq n<N(k+1)} c_{\alpha}(n, n)\left|a_{n}\right|^{2}\right)^{1 / 2}\right) \\
\leq c_{2} N(k+1)^{-1} .
\end{gathered}
$$

By the Borel-Cantelli lemma, we have

$$
\begin{equation*}
\sqrt{\left\|A_{\alpha}\left(R_{s k}, \cdot\right)\right\|_{\infty}}=O\left((\log N(k+1))^{1 / 2}\left(\sum_{N(k) \leq n<N(k+1)} c_{\alpha}(n, n)\left|a_{n}\right|^{1 / 2}\right)\right. \tag{p}
\end{equation*}
$$

Since

$$
\begin{aligned}
& \sum_{k=0}^{\infty}(\log N(k+1))^{1 / 2}\left(\sum_{N(k) \leq n<N(k+1)} c_{a}(n, n)\left|a_{n}\right|^{1 / 2}\right)^{1 / 2} \approx \sum_{k=0}^{\infty} 2^{k / 2}\left(\sum_{2 k \leq j<2^{k+1}} s_{j}^{2}\right)^{1 / 2} \\
& \quad \leq \sum_{k=0}^{\infty} 2^{k} s_{2^{k}} \leq \sum_{j=0}^{\infty} s_{j}+s_{0}<+\infty
\end{aligned}
$$

we have $\left\|A_{\alpha}\left(f_{s}, \cdot\right)\right\|_{\infty}<+\infty$ a.s. ($\left.\tilde{p}\right)$. We show this in the general case. Consider a random Taylor series $f_{c x}(z)=\sum_{n=1}^{\infty} \varepsilon_{n} X_{n} a_{n} z^{n}$. Set

$$
T_{k}(\omega)=2^{k / 2}\left(\sum_{N(k) \leq n<N(k+1)} X_{n}(\omega)^{2} c_{\alpha}(n, n)\left|a_{n}\right|^{2}\right)^{1 / 2}
$$

Then we have

$$
\begin{aligned}
\mathscr{E}\left[\sum_{k=0}^{\infty} T_{k}(\omega)\right] & \leq \mathscr{E}\left[\sqrt{\sum_{k=0}^{\infty} T_{k}(\omega)^{2}\left(\mathscr{E}\left[T_{k}(\omega)^{2}\right]\right)^{-1 / 2}} \sqrt{\sum_{k=0}^{\infty}\left(\mathscr{E}\left[T_{k}(\omega)^{2}\right]\right)^{1 / 2}}\right. \\
& \leq \sum_{k=0}^{\infty}\left(\mathscr{E}\left[T_{k}(\omega)^{2}\right]\right)^{1 / 2} \approx \sum_{k=0}^{\infty} 2^{k / 2}\left(\sum_{2^{k} \leq j<\sum^{k+1}} s_{j}^{2}\right)^{1 / 2} \\
& \leq \sum_{j=0}^{\infty} s_{j}+s_{0}<+\infty .
\end{aligned}
$$

Consequently $\sum_{k=0}^{\infty} T_{k}(\omega)<+\infty$ a.s. (p). Therefore we have $\left\|A_{\alpha}\left(f_{c X}, \cdot\right)\right\|_{\infty}$ $<+\infty$ a.s. ($\tilde{p})$ for each ω such that $\sum_{k=0}^{\infty} T_{k}(\omega)<+\infty$. Hence $\left\|A_{\alpha}\left(f_{X}, \cdot\right)\right\|_{\infty}$
$<+\infty$ a.s. $(\tilde{p} \times p)$. There exists a sequence ${ }^{*}{ }_{\varepsilon}^{*}=\left(\varepsilon_{\varepsilon}^{*}\right)_{n=1}^{\infty}$ of numbers 1 or -1 such that $\left\|A_{\alpha}\left(f_{\text {* }}, \cdot\right)\right\|_{\infty}<+\infty$ a.s. (p). For positive integers N, ℓ and k,

$$
\begin{gathered}
F_{\ell, k}^{N}=\left\{\left(x_{1}, \cdots, x_{N}\right) ; \sup _{\theta}\left|\sum_{n=1}^{N} x_{n} x_{m} a_{n} \bar{a}_{m} e^{i(n-m) \theta} c_{\alpha}\left(n, m ; 1-\frac{1}{k}\right)\right|<\ell\right\} \\
E_{\ell, k}^{N}=\left\{\omega \in \Omega ;\left(X_{1}(\omega), \cdots, X_{N}(\omega)\right) \in F_{\ell, k}^{N}\right\}
\end{gathered}
$$

and

$$
\stackrel{*}{E}_{\ell, k}^{N}=\left\{\omega \in \Omega ;\left(\stackrel{*}{\varepsilon}_{1}^{*} X_{1}(\omega), \cdots, \stackrel{*}{\varepsilon}_{N} X_{N}(\omega)\right) \in F_{\ell, k}^{N}\right\} .
$$

If $F_{\ell, k}^{N}$ is a cylinder set, $p\left(E_{\ell, k}^{N}\right)=p\left(E_{\ell, k}^{N}\right)$ (since $X_{n}^{\prime} s$ are symmetric). In the general case, using a limit process, we have $p\left(E_{\ell, k}^{N}\right)=p\left(\stackrel{*}{E}_{\ell, k}^{N}\right)$. Since $\lim _{\ell \rightarrow \infty} \lim _{k \rightarrow \infty} \lim _{N \rightarrow \infty} p\left(E_{\ell, k}^{N}\right)=\lim _{\ell \rightarrow \infty} \lim _{k \rightarrow \infty} \lim _{N \rightarrow \infty} p\left(\stackrel{*}{E}_{\ell, k}^{N}\right)=1$, we have $\left\|A_{\alpha}\left(f_{X}, \cdot\right)\right\|_{\infty}<+\infty$ a.s.. This completes the proof.

Corollary 3. Let $f_{X}(z)=\sum_{n=1}^{\infty} X_{n} a_{n} z^{n}$ be a random Taylor series. Set $s_{j}=\left(\sum_{2^{j} \leq n<2 j+1} \mathscr{E}\left(X_{n}^{2}\right)\left|a_{m}\right|^{2}\right)^{1 / 2}(j=0,1, \cdots)$. If $\left(s_{j}\right)_{j=0}^{\infty}$ is a decreasing sequence and f_{X} is bounded a.s., then $A_{0}\left(f_{X}, \cdot\right)$ is also bounded a.s..

Proof. It is known that if f_{X} is bounded a.s., then $\sum_{j=0}^{\infty} s_{j}<+\infty$ ([1] p. 72). By Theorem 1, we have $\left\|A_{0}\left(f_{X}, \cdot\right)\right\|_{\infty}<+\infty$ a.s.. This completes the proof.

THEOREM 1^{\prime}. Let f_{X} and $\left(s_{j}\right)_{j=0}^{\infty}$ be the same as in Corollary 3. If $\sum_{j=0}^{\infty} j^{1 / 2} s_{j}<+\infty$, then $V\left(f_{X}, \cdot\right)$ is bounded a.s..

Proof. First, we consider the case of Rademacher series. We denote by $Q_{s k}(z)=\sum_{2^{k} \leq n<2^{k+1}} \varepsilon_{n} n a_{n} z^{n-2^{k}}$ and $\tilde{Q}_{s k}(\theta)=Q_{e k}\left(e^{i \theta}\right)(k=0,1, \cdots)$. Since

$$
V\left(f_{c}, \theta\right) \leq \sum_{k=0}^{\infty} \int_{0}^{1} r^{2^{k-1}}\left|Q_{c k}(z)\right| d r \leq \sum_{k=0}^{\infty} 2^{-k}\left\|\tilde{Q}_{t k}\right\|_{\infty},
$$

it is sufficient to show that $\sum_{k=0}^{\infty} 2^{-k}\left\|\tilde{Q}_{s k}\right\|_{\infty}<+\infty$ a.s. (\tilde{p}). By Lemma 2, we have

$$
\tilde{p}\left(\left\|\tilde{Q}_{s k}\right\|_{\infty} \geq c_{1} k^{1 / 2}\left(\sum_{2 k \leq n<2^{k+1}} n^{2}\left|a_{n}\right|^{2}\right)^{1 / 2}\right) \leq c_{2} 2^{-2 k}
$$

By the Borel-Cantelli lemma, we have

$$
\left\|\tilde{Q}_{s k}\right\|_{\infty}=O\left(k^{1 / 2}\left(\sum_{2 k \leq n<2^{k+1}} n^{2}\left|a_{n}\right|^{2}\right)^{1 / 2}\right) \quad \text { a.s.. }
$$

Since

$$
\sum_{k=0}^{\infty} 2^{-k} k^{1 / 2}\left(\sum_{2^{k} \leq n<2^{k+1}} n^{2}\left|a_{n}\right|^{2}\right)^{1 / 2} \leq \sum_{k=0}^{\infty} k^{1 / 2} s_{k}<+\infty
$$

we have $\sum_{k=0}^{\infty} 2^{-k}\left\|\tilde{Q}_{s k}\right\|_{\infty}<+\infty$ a.s.. In the general case, using the same method as in Theorem 1, we obtain the proof. Hence we omit the rest of the proof.

Next, we prove the following:
Theorem 2. Let $|\alpha|<1$. Let $X=\left(X_{n}\right)_{n=1}^{\infty}$ be a sequence of real valued normal Gaussian variables and $f_{X}(z)=\sum_{n=1}^{\infty} X_{n} a_{n} z^{n}$ a random Taylor series by X. If $\sum_{n=1}^{\infty} n^{\alpha}(\log n)\left|\alpha_{n}\right|^{2}<+\infty$, then $A_{0}\left(f_{X}, \cdot\right)$ is bounded a.s..

Lemma 3. Let Y be a real valued Gaussian variable such that $\mathscr{E}[Y]$ $=0$ and $\mathscr{E}\left[Y^{2}\right]=\sigma$. Then for any $E \in \mathfrak{B}$, we have

$$
\int_{E}|Y|^{2} d p(\omega) \leq \sigma p(E)\left(4 \log \frac{1}{p(E)}+\frac{e^{-1 / 2}}{\sqrt{\pi}}\right) .
$$

Proof. We have $s e^{-s^{2} / 4} \leq \sqrt{2} e^{-1 / 2}$. We have

$$
\begin{gathered}
\int_{E}|Y|^{2} d p(\omega)=\int_{E ;|Y|^{2} \leq \sigma 4 \log (1 / p(E))}+\int_{E ;|Y| 2>\sigma 4 \log (1 / p(E))}=I_{1}+I_{2} \\
I_{1} \leq \sigma p(E) 4 \log \frac{1}{p(E)}
\end{gathered}
$$

and

$$
\begin{aligned}
I_{2} & \leq \frac{2}{\sqrt{2 \pi \sigma}} \int_{2 \sqrt{\sigma} \sqrt{\log (1 / p(E))}}^{\infty} s^{2} e^{-s / 2 \sigma} d s=\frac{\sqrt{2}}{\pi} \sigma \int_{2 \sqrt{\log (1 / p(E))}}^{\infty} s^{2} e^{-s^{2} / 2} d s \\
& \leq \frac{2}{\sqrt{\pi}} e^{-1 / 2} \sigma \int_{2 \sqrt{\log (1 / p(E))}}^{\infty} s e^{-s^{2} / 4} d s=\frac{e^{-1 / 2}}{\sqrt{\pi}} \sigma p(E) .
\end{aligned}
$$

Therefore we have

$$
\int_{E}|Y|^{2} d p(\omega) \leq \sigma p(E)\left(4 \log \frac{1}{p(E)}+\frac{e^{-1 / 2}}{\sqrt{\pi}}\right)
$$

Lemma 4. Set $r_{j}=1-2^{-j}$ and

$$
A_{\alpha j}\left(f_{X}, \theta\right)=\int_{r_{j}}^{r_{j+1}}(1-r)^{-\alpha} r d r \int_{\theta-(1-r)}^{\theta+(1-r)}\left|f_{X}^{\prime}\left(r e^{i \psi}\right)\right|^{2} d \psi
$$

$j=0,1, \cdots$. Then we have, for $\theta, \varphi \in T$ such that $|\theta-\varphi|<1$.

$$
\begin{aligned}
A_{\alpha j}\left(f_{X}, \theta\right) & \leq A_{\alpha j}\left(f_{X}, \varphi\right)+2^{1+\alpha}\left(|\theta-\varphi| 2^{j \alpha}\right. \\
& \left.+\frac{1}{1-\alpha}|\theta-\varphi|^{1-\alpha}\right) \sum_{n=1}^{\infty}\left|X_{n}\right|^{2} n^{2}\left|a_{n}\right|^{2} r_{j+1}^{n-1}
\end{aligned}
$$

Proof. We can assume $0<\varphi<\theta<1$. We have

$$
\begin{aligned}
& A_{\alpha j}\left(f_{X}, \theta\right)-A_{\alpha j}\left(f_{X}, \varphi\right) \\
&= \int_{r_{j}}^{r_{j+1}}(1-r)^{-\alpha} r d r\left\{\int_{\theta-(1-r)}^{\theta+(1-r)}-\int_{\varphi-(1-r)}^{\varphi+(1-r)}\right\}\left|f_{X}^{\prime}\left(r e^{i \psi}\right)\right|^{2} d \psi \\
&= \int_{r_{j}}^{r_{j+1}} \quad(1-r)^{-\alpha} r d r\left\{\int_{\varphi-(1-r)}^{\theta+(1-r)}-\int_{\varphi-(1-r)}^{\theta-(1-r)}\right\}\left|f_{X}^{\prime}\left(r e^{i \psi}\right)\right|^{2} d \psi \\
&+\int_{r_{j}(\theta-\varphi) / 2<r<1}^{r r_{j+1}} \quad(1-r)^{-\alpha} r d r\left\{\int_{\theta-(1-r)}^{\theta+(1-r)}-\int_{\varphi-(1-r)}^{\varphi+(1-r)}\right\} \mid f_{X}^{\prime}\left(\left.r e^{i \psi)}\right|^{2} d \psi=J_{1}+J_{2},\right. \\
& J_{1} \leq \int_{r_{j}}^{r_{j+1}}(1-r)^{-\alpha} r d r\left\{\int_{\varphi+(1-r)}^{\theta+(1-r)}+\int_{\varphi-(1-r)}^{\theta-(1-r)}\right\}\left(\sum_{n=1}^{\infty}\left|X_{n}\right|^{2} n^{2}\left|a_{n}\right|^{2} r^{n-1} \sum_{n=1}^{\infty} r^{n-1}\right) d \psi \\
& \leq 2(\theta-\varphi) \sum_{n=1}^{\infty}\left|X_{n}\right|^{2} n^{2}\left|a_{n}\right|^{2} r_{j+1}^{n-1} \int_{r_{j}}^{r_{j+1}}(1-r)^{-1-\alpha} d r \\
& \leq 2^{1+\alpha}(\theta-\varphi) 2^{j \alpha} \sum_{n=1}^{\infty}\left|X_{n}\right|^{2} n^{2}\left|a_{n}\right|^{2} r_{j+1}^{n-1}
\end{aligned}
$$

and

$$
\begin{aligned}
J_{2} & \leq 4 \int_{r_{j}(\theta-\varphi) / 2<r<1}^{r_{j+1}} \quad(1-r)^{1-\alpha} r \cdot \sum_{n=1}^{\infty}\left|X_{n}\right|^{2} n^{2}\left|a_{n}\right|^{2} r^{n-1} \cdot \sum_{n=1}^{\infty} r^{n-1} d r \\
& \leq 4 \sum_{n=1}^{\infty}\left|X_{n}\right|^{2} n^{2}\left|a_{n}\right|^{2} r_{j+1}^{n-1} \int_{1-(\theta-\varphi) / 2}^{1}(1-r)^{-\alpha} d r \\
& =\frac{2^{1+\alpha}}{1-\alpha}(\theta-\varphi)^{1-\alpha} \sum_{n=1}^{\infty}\left|X_{n}\right|^{2} n^{2}\left|a_{n}\right|^{2} r_{j+1}^{n-1} .
\end{aligned}
$$

This completes the proof.
Proof of Theorem 2. We may assume that a_{n} 's are real. Since $n^{\alpha}\left|a_{n}\right|^{2}=O(1)$, we can assume that $\left|a_{n}\right| \leq n$. If $\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2}<+\infty$, we have

$$
\mathscr{E}\left[\left\|A_{\alpha}\left(f_{X}, \cdot\right)\right\|_{\infty}\right] \leq \mathscr{E}\left[2 \int_{0}^{1}(1-r)^{1-\alpha} \cdot r \cdot \sum_{n=1}^{\infty}\left|X_{n}\right|^{2} n^{2}\left|a_{n}\right|^{2} r^{n-1} \cdot \sum_{n=1}^{\infty} r^{n-1} d r\right]
$$

$$
\leq \sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} \cdot 2 \int_{0}^{1}(1-r)^{-\alpha} d r=\frac{2}{1-\alpha} \sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2}<+\infty .
$$

Therefore $\left\|A_{\alpha}\left(f_{X}, \cdot\right)\right\|_{\infty}<+\infty$ a.s.. Suppose $\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2}=+\infty$. We have, for each j_{0},

$$
\left\|A_{\alpha}\left(f_{X}, \cdot\right)\right\|_{\infty} \leq \frac{2}{1-\alpha} \sum_{n=1}^{\infty}\left|X_{n}\right|^{2} n^{2}\left|a_{n}\right|^{2} r_{j_{0}}^{n-1}+\sum_{j=j_{0}}^{\infty}\left\|A_{\alpha j}\left(f_{X}, \cdot\right)\right\|_{\infty} .
$$

Since $\sum_{n=1}^{\infty}\left|X_{n}\right|^{2} n^{2}\left|a_{n}\right|^{2} r_{j_{0}}^{n-1}<+\infty$ a.s. for each j_{0}, it is sufficient to show that $\sum_{j=j_{0}}^{\infty}\left\|A_{\alpha j}\left(f_{X}, \cdot\right)\right\|_{\infty}<+\infty$ a.s. for some j_{0}. There exists j_{0} such that $\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r_{j_{0}}^{2 n-1}>1$. For a positive integer ℓ, let $E_{j}(\ell)$ be the event:

$$
\left\|A_{\alpha j}\left(f_{X}, \cdot\right)\right\|_{\infty} \geq \ell \log \frac{1}{1-r_{j}} \sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} \int_{r_{j}}^{r_{j+1}}(1-r)^{1-\alpha} r^{2 n-1} d r
$$

We shall show that $p\left(\lim \sup _{j \rightarrow \infty} E_{j}(\ell)\right)=0$ for some $\ell>0$. Choose a random variable $\theta_{j}(\omega)$ such that $A_{\alpha j}\left(X_{(\omega)}, \theta_{j}(\omega)\right)=\left\|A_{\alpha j}\left(f_{X(\omega)}, \cdot\right)\right\|_{\infty}$. Let N be an integer such that $2^{N} \geq 2^{16+4|\alpha|} \max (1,1 /(1-\alpha))$. Then $2^{-(j+1)|\alpha|} \geq$ $2^{1+\alpha} \max (1,1 /(1-\alpha)) 2^{(5+|\alpha|+N) j}$ for any $j \geq 1$. Set $K=2^{j N}$ and $\psi_{k}=$ $2 \pi(k / K)(k=0,1, \cdots, K-1)$. Let $E_{j}(\ell, k)$ be the event: E_{j} and $\theta_{j}(\omega)$ $\in\left(\psi_{k}-\pi / K, \psi_{k}+\pi / K\right)$. We prove $p\left(E_{j}(\ell, k)\right) \leq \exp \left(e^{-1 / 2} /(4 \sqrt{\pi})\right) 2^{-(\ell / 12) j}$ for $j \geq j_{0}$. Suppose $\omega \in E_{j}(\ell, k)$. By Lemma 4, we have

$$
\begin{aligned}
& A_{\alpha j}\left(f_{X(\omega)}, \theta_{j}(\omega)\right) \leq A_{\alpha j}\left(f_{X(\omega)}, \psi_{k}\right) \\
& \quad+2^{1+\alpha}\left(2^{(-N+\alpha) j}+\frac{1}{1-\alpha} 2^{-N(1-\alpha) j}\right) \sum_{n=1}^{\infty}\left|X_{n}(\omega)\right|^{2} n^{2}\left|a_{n}\right|^{2} r_{j+1}^{n-1} .
\end{aligned}
$$

We integrate each term by $\left.d p\right|_{E_{j}(\ell, k)}$ and use Lemma 3 . Then we have

$$
\begin{aligned}
\int_{E_{j}(\ell, k)} & A_{\alpha j}\left(f_{X(\omega)}, \theta_{j}(\omega)\right) d p(\omega) \\
\leq & \int_{E_{j}(\ell, k)} A_{\alpha j}\left(f_{X(\omega)}, \psi_{k}\right) d p(\omega)+2^{1+\alpha}\left(2^{(-N+\alpha) j}+\frac{1}{1-\alpha} 2^{-N(1-\alpha) j}\right) \\
& \quad \times \sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r_{j+1}^{n-1} \int_{E_{j}(\ell, k)}\left|X_{n(\omega)}\right|^{2} d p(\omega)=I_{1}+I_{2}, \\
I_{1}= & \int_{r_{j}}^{r_{j+1}}(1-r)^{-\alpha} r d r \int_{\psi_{k}-(1-r)}^{\psi_{k}+(1-r)} d \psi\left\{\int_{E_{j}(\ell, k)}\left|\sum_{n=1}^{\infty} X_{n} n a_{n} r^{n-1} \cos (n-1) \psi\right|^{2} d p(\omega)\right. \\
& \left.\quad+\int_{E_{j}(\ell, k)}\left|\sum_{n=1}^{\infty} X_{n} n a_{n} r^{n-1} \sin (n-1) \psi\right|^{2} d p(\omega)\right\} \\
\leq & 2 \int_{r_{j}}^{r_{j+1}}(1-r)^{1-\alpha} r \cdot \sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n-2} d r p\left(E_{j}(\ell, k)\right)
\end{aligned}
$$

$$
\times\left(4 \log \frac{1}{p\left(E_{j}(\ell, k)\right)}+\frac{e^{-1 / 2}}{\sqrt{\pi}}\right)
$$

and

$$
\begin{aligned}
& \begin{aligned}
& I_{2} \leq 2^{1+\alpha} \max \left(1, \frac{1}{1-\alpha}\right) 2^{(|\alpha|-N) j}\left(\sum_{n=1}^{\infty} n^{4} r_{j+1}^{n-1}\right) p\left(E_{j}(\ell, k)\right) \\
& \times\left(4 \log \frac{1}{p\left(E_{j}(\ell, k)\right)}+\frac{e^{-1 / 2}}{\sqrt{\pi}}\right) \\
& \leq 2^{11+\alpha} \max \left(1, \frac{1}{1-\alpha}\right) 2^{(5+|\alpha|-N) j} p\left(E_{j}(\ell, k)\right) \\
& \times\left(4 \log \frac{1}{p\left(E_{j}(\ell, k)\right)}+\frac{e^{-1 / 2}}{\sqrt{\pi}}\right) \\
&\text { (since } \left.\sum_{n=1}^{\infty} n^{4} r_{j+1}^{n-1} \leq \sum_{n=1}^{\infty} n(n+1)(n+2)(n+3) r_{j+1}^{n-1} \leq \frac{2^{5}}{\left(1-r_{j+1}\right)^{5}}=2^{10} \cdot 2^{5 j}\right) .
\end{aligned} .
\end{aligned}
$$

For $j \geq j_{0}$, we have

$$
\begin{aligned}
\int_{r_{j}}^{r_{j+1}}(1-r)^{1-\alpha} \sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n-1} d r & \geq \int_{r_{j}}^{r_{j+1}}(1-r)^{1-\alpha} d r \geq 2^{-(j+1)|\alpha|} \\
& \geq 2^{11+\alpha} \max \left(1, \frac{1}{1-\alpha}\right) 2^{(5+|\alpha|-N) j}
\end{aligned}
$$

Therefore we have, for $j \geq j_{0}$,

$$
\begin{aligned}
& \int_{E_{j}(\ell, k)} A_{\alpha j}\left(f_{X(\omega)}, \theta_{j}(\omega)\right) d p(\omega) \\
& \leq 3 \sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} \int_{r_{j}}^{r_{j+1}}(1-r)^{1-\alpha} r^{2 n-1} d r p\left(E_{j}(\ell, k)\right) \\
& \times\left(4 \log \frac{1}{E_{j}(\ell, k)}+\frac{e^{-1 / 2}}{\sqrt{\pi}}\right) .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
& \int_{E_{j}(\ell, k)} A_{\alpha j}\left(f_{X(\omega)}, \theta_{j}(\omega)\right) d p(\omega) \\
& \quad \geq \ell p\left(E_{j}(\ell, k)\right) \log \frac{1}{1-r_{j}} \sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} \int_{r_{j}}^{r_{j+1}}(1-r)^{1-\alpha} r^{2 n-1} d r .
\end{aligned}
$$

Therefore $p\left(E_{j}(\ell, k)\right) \leq \exp \left(e^{-1 / 2} /(4 \sqrt{\pi})\right) 2^{-(\ell / 12) j}$ for $j \geq j_{0}$. Consequently, we have $p\left(E_{j}(\ell)\right) \leq \exp \left(\left(e^{-1 / 2} /(4 \sqrt{\pi})\right) 2^{(N-(\ell / 12)) j}\right.$ for $j \geq j_{0}$. Choose $\ell_{0}=12 N$ +12 . Then $p\left(E_{j}\left(\ell_{0}\right)\right) \leq \exp \left(\left(e^{-1 / 2} /(4 \sqrt{\pi})\right) 2^{-j}\right.$ for $j \geq j_{0}$. By the BorelCantelli lemma, we have $\left(\lim \sup _{j \rightarrow \infty j>j_{0}} E_{j}\left(\ell_{0}\right)\right)=0$. So we have

$$
\begin{aligned}
\left\|A_{\alpha}\left(f_{X}, \cdot\right)\right\|_{\infty}= & O\left(\log \frac{1}{1-r_{j}} \sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} \int_{r_{j}}^{r_{j+1}}(1-r)^{1-\alpha} r^{2 n-1} d r\right) \\
= & O\left(\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} \int_{r_{j}}^{r_{j+1}}(1-r)^{1-\alpha} r^{2 n-1} \log \frac{1}{1-r} d r\right) \\
& j=j_{0}, j_{0}+1, \cdots \quad \text { a.s.. }
\end{aligned}
$$

Since

$$
\begin{aligned}
& \sum_{j=0}^{\infty} \int_{r_{j}}^{r_{j+1}}(1-r)^{1-\alpha} r^{2 n-1} \log \frac{1}{1-r} d r \\
& \quad \leq \int_{0}^{1}(1-r)^{1-\alpha} r^{2 n-1} \log \frac{1}{1-r} d r \\
& \quad=\sum_{m=1}^{\infty} \frac{1}{m} \int_{0}^{1}(1-r)^{1-\alpha} r^{2 n+m-1} d r \approx \sum_{m=1}^{\infty} \frac{1}{m(n+m)^{2-\alpha}} \\
& \quad \leq \frac{1}{n^{2-\alpha}} \sum_{m=1}^{n} \frac{1}{m}+\frac{1}{n^{1-\alpha}} \sum_{m=n}^{\infty} \frac{1}{m^{2}} \approx n^{\alpha-2} \log n
\end{aligned}
$$

we have

$$
\sum_{j=0}^{\infty} \sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} \int_{r_{j}}^{r_{j+1}}(1-r)^{1-\alpha} r^{2 n-1} \log \frac{1}{1-r} d r \lesssim \sum_{n=1}^{\infty} n^{\alpha}(\log n)\left|a_{n}\right|^{2}<+\infty
$$

Therefore $\sum_{j=j_{0}}^{\infty}\left\|A_{\alpha j}\left(f_{X}, \cdot\right)\right\|_{\infty}<+\infty$ a.s.. This completes the proof.
By Theorem 2, we can answer the converse problem to Corollary 3. That is, we can show that there exists a random Taylor series f_{X} such that $\left\|f_{x}\right\|_{\infty}=+\infty$ and $\left\|A_{0}\left(f_{X}, \cdot\right)\right\|_{\infty}<+\infty$ a.s.. For example, set $a_{2 j}=$ $1 /(j \log j)(j=2, \cdots)$ and $a_{n}=0$ for $n \neq 2^{j}(j=2, \cdots)$. Let $X=\left(X_{n}\right)_{n=1}^{\infty}$ be the same as in Theorem 2. Then $\sum_{j=0}^{\infty}\left(\sum_{2 j \leq n<2^{j+1}}\left|a_{n}\right|^{2}\right)^{1 / 2}=\sum_{j=0}^{\infty} a_{2 j}=$ $+\infty$. Therefore $f_{X}(z)=\sum_{n=1}^{\infty} X_{n} a_{n} z^{n}$ is unbounded a.s.. On the other hand, since $\sum_{n=1}^{\infty}(\log n)\left|a_{n}\right|^{2}<+\infty$, we have $\left\|A_{0}\left(f_{X}, \cdot\right)\right\|_{\infty}<+\infty$ a.s..

The method of the proof is usual. But it has many applications. Since the case of $V\left(f_{X}, \cdot\right)$ is typical, we show some applications for $V\left(f_{X}, \cdot\right)$.

Proposition 6. Let $X=\left(X_{n}\right)_{n=1}^{\infty}$ and f_{X} be the same as in Theorem 2. For any $m \geq 1$, we have with constant c_{1},

$$
p\left(V\left(f_{X}, 0\right) \geq c_{1} m \int_{0}^{1} \sqrt{\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n-2}} d r\right) \leq e^{-m^{2}}
$$

Lemma 5. Let Y be the same as in Lemma 3. Then for any $E \in \mathfrak{B}$, we have

$$
\int_{E}|Y| d p(\omega) \leq \sqrt{\sigma p} p(E)\left(\sqrt{2} \sqrt{\log \frac{1}{p(E)}}+\sqrt{\frac{2}{\pi}}\right) .
$$

Proof. We have

$$
\begin{aligned}
& \int_{E}|Y| d p(\omega) \leq \int_{E ;|Y| \leq \sqrt{\sigma} \sqrt{2 \log 1 /(p(E))}}+\int_{E ;|Y|>\sqrt{\sigma} \sqrt{2 \log 1 /(p(E))}} \\
& \leq \sqrt{\sigma p}(E) \sqrt{2 \log \frac{1}{p(E)}}+\frac{2}{\sqrt{2 \pi \sigma}} \int_{\sqrt{\sigma} \sqrt{2 \log 1 /(p /(E))}}^{\infty} s e^{-s^{2} / 2 \sigma} d s \\
& =\sqrt{\sigma} p(E)\left(\sqrt{2} \sqrt{\log \frac{1}{p(E)}}+\sqrt{\frac{2}{\pi}}\right) .
\end{aligned}
$$

Proof of Proposition 6. Let E be the event:

$$
V\left(f_{X}, 0\right) \geq 4 \sqrt{2} m \int_{0}^{1} \sqrt{\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n-2}} d r
$$

Then we have

$$
\begin{aligned}
p(E) & 4 \sqrt{2} m \int_{0}^{1} \sqrt{\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n-2}} d r \\
& \leq \int_{E} V\left(f_{X}, 0\right) d p(\omega) \\
& \leq 2 \int_{0}^{1} \sqrt{\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n-2}} d r p(E)\left(\sqrt{2} \sqrt{\log \frac{1}{p(E)}}+\sqrt{\frac{2}{\pi}}\right) .
\end{aligned}
$$

Therefore $p(E) \leq e^{-(2 m-1 / \sqrt{\pi})^{2}} \leq e^{-m^{2}}$.
Proposition 7. Under the same hypothesis of Proposition 6, for any $m<1$, we have, with constant c_{2},

$$
p\left(V\left(f_{X}, 0\right) \leq c_{2} m \int_{0}^{1} \sqrt{\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n-2}} d r\right) \geq 1-m
$$

Lemma 6. Let Y be the same as in Lamma 3. Then for any E $\in \mathfrak{B}$, we have

$$
\int_{E}|\boldsymbol{Y}| d p(\omega) \geq \sqrt{\frac{\pi}{8}} \sqrt{\sigma} p(E)^{2}
$$

Proof. Choose a such that $p(|Y| \leq a)=\frac{1}{2} p(E)$. Then we have

$$
a \geq \int_{0}^{a} e^{-s / 2} d s=\sqrt{\frac{\pi}{2}} \sqrt{\sigma} p(|Y| \leq a)=\sqrt{\frac{2 \pi}{4}} \sqrt{\sigma} p(E) .
$$

Then we have

$$
\begin{aligned}
\int_{E}|Y| d p(\omega) & \geq \int_{E:|Y| \geq a}|Y| d p(\omega) \\
& \geq a p(E ;|Y| \geq a) a \frac{1}{2} p(E) \geq \frac{\sqrt{2 \pi}}{8} \sqrt{\sigma} p(E)^{2}
\end{aligned}
$$

Proof of Proposition 7. Let E be the event:

$$
V\left(f_{X}, 0\right) \leq \frac{\sqrt{2 \pi}}{16} m \int_{0}^{1} \sqrt{\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n-2}} d r
$$

We may assume

$$
\int_{0}^{1} \sqrt{\sum_{n=1}^{\infty} n^{2}\left(\operatorname{Re} a_{n}\right)^{2} r^{2 n-2}} d r \geq \frac{1}{2} \int_{0}^{1} \sqrt{\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n-2}} d r
$$

Then we have

$$
\begin{aligned}
& p(E) \frac{\sqrt{2 \pi}}{16} m \int_{0}^{1} \sqrt{\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n-2}} d r \\
& \quad \geq \int_{E} V\left(f_{X}, 0\right) d p(\omega) \geq \int_{0}^{1} d r \int_{E}\left|\sum_{n=1}^{\infty} X_{n} n\left(\operatorname{Re} a_{n}\right) r^{n-1}\right| d p(\omega) \\
& \quad \geq \frac{\sqrt{2 \pi}}{8} \int_{0}^{1} \sqrt{\sum_{n=1}^{\infty} n^{2}\left(\operatorname{Re} a_{n}\right)^{2} r^{2 n-2} \cdot p(E)^{2}} \\
& \quad \geq \frac{\sqrt{2 \pi}}{16} \int_{0}^{1} \sqrt{\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n-2} d r} p(E)^{2} .
\end{aligned}
$$

Therefore we have $p(E) \leq m$. Consequently, we have

$$
p\left(V\left(f_{X}, 0\right) \geq \frac{\sqrt{2 \pi}}{16} m \int_{0}^{1} \sqrt{\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n-2}} d r\right) \geq 1-m
$$

THEOREM 2'. Let $X=\left(X_{n}\right)_{n=1}^{\infty}$ and f_{X} be the same as in Theorem 2. If

$$
\int_{0}^{1} \sqrt{\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n-2} \log \frac{1}{1-r} d r}<+\infty
$$

then $\left\|V\left(f_{X}, \cdot\right)\right\|_{\infty}<+\infty$ a.s.
Proof. The proof is analogous as in Theorem 2. For the sake of completeness, we give the proof. We can assume that a_{n} 's are real and $\left|a_{n}\right| \leq 1$. There is nothing to prove in the case of $\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2}<+\infty$. Suppose that $\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2}=+\infty$. Let E_{j} be the event:

$$
\max _{\theta} \int_{r_{j}}^{r_{j+1}}\left|f_{x}^{\prime}\left(r e^{i \theta}\right)\right| d r \geq 15 \sqrt{2} \sqrt{\log \frac{1}{1-r_{j}}} \int_{r_{j}}^{r_{j+1}} \sqrt{\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n-2}} d r
$$

We shall show that $p\left(E_{j}\right) \leq \exp \left(1 /(3 \sqrt{\pi}) 2^{-j}\right.$ for large j. Set $K=2^{4 j}$ and $\psi_{k}=2 \pi(k / K)(k=0,1, \cdots, K-1)$. Choose a random variable $\theta_{j}(\omega)$ such that

$$
\int_{r_{j}}^{r_{j+1}}\left|f_{X(\omega)}^{\prime}\left(r e^{i \theta_{j}(\omega)}\right)\right| d r=\max _{\theta} \int_{r_{j}}^{r_{j+1}}\left|f_{X(\omega)}^{\prime}\left(r e^{i \theta}\right)\right| d r .
$$

Let $E_{j}(k)(k=0, \cdots, K-1)$ be the event: E_{j} and $\theta_{j}(\omega) \in\left[\psi_{k}-\pi / K\right.$, $\left.\psi_{k}+\pi / K\right)$. We prove $p\left(E_{j}(k)\right) \leq \exp (1 /(3 \sqrt{\pi})) 2^{-5 j}$ for large j. Suppose $\omega \in E_{j}(k)$. Then

$$
\left|f_{X(\omega)}^{\prime}\left(r e^{i \theta_{j}(\omega)}\right)\right| \leq \left\lvert\, f_{X(\omega)}^{\prime}\left(\left.r e^{\left.i \psi_{k}\right)}\left|+\frac{\pi}{K} \sum_{n=1}^{\infty}\right| X_{n}(\omega)\left|n^{2}\right| a_{n} \right\rvert\, r^{n-2} .\right.\right.
$$

Therefore

$$
\begin{aligned}
& \int_{r_{j}}^{r_{j+1}}\left|f_{X(\omega)}^{\prime}\left(r e^{i \theta_{j}(\omega)}\right)\right| d r \\
& \quad \leq \int_{r_{j}}^{r_{j+1}}\left|f_{X(\omega)}^{\prime}\left(r e^{i \gamma_{k}}\right)\right| d r+\frac{\pi}{K} 2^{-j-1} \sum_{n=2}^{\infty}\left|X_{n}(\omega)\right| n^{2}\left|a_{n}\right| r_{j+1}^{n-2} .
\end{aligned}
$$

Integrate each term by $\left.d p\right|_{E_{j}(k)}$ and use Proposition 6. Then we have

$$
\begin{aligned}
& \int_{E_{j}(k)} d p(\omega) \int_{r_{j}}^{r_{j+1}}\left|f_{X(\omega)}^{\prime}\left(r e^{i \theta_{j}(\omega)}\right)\right| d r \\
& \leq\left(2 \int_{r_{j}}^{r_{j+1}} \sqrt{\left.\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n-2} d r+\pi 2^{-5 j-1} \sum_{n=2}^{\infty} n^{2}\left|\alpha_{n}\right| r_{j+1}^{n-2}\right)}\right. \\
& \quad \times p\left(E_{j}(k)\right)\left(\sqrt{2} \sqrt{\log \frac{1}{p\left(E_{j}(k)\right)}}+\sqrt{\frac{2}{\pi}}\right) .
\end{aligned}
$$

Since $\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2}=+\infty$, there exists j_{0} such that

$$
\int_{r_{j}}^{r_{j+1}} \sqrt{\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n-2}} d r \geq \pi 2^{-5 j-1} \sum_{n=2}^{\infty} n^{2}\left|a_{n}\right| r_{j+1}^{n-2}
$$

for all $j \geq j_{0}$. Then we have, for $j \geq j_{0}$

$$
\begin{aligned}
& p\left(E_{j}(k)\right) 15 \sqrt{2} \int_{r_{j}}^{r_{j+1}} \sqrt{\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n-2}} d r \sqrt{\log \frac{1}{1-r_{j}}} \\
& \leq 3 \int_{r_{j}}^{r_{j+1}} \sqrt{\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n-2}} d r p\left(E_{j}(k)\right) \\
& \quad \times\left(\sqrt{2} \sqrt{\log \frac{1}{p\left(E_{j}(k)\right)}}+\sqrt{\frac{2}{\pi}}\right) .
\end{aligned}
$$

Therefore $p\left(E_{j}(k)\right) \leq \exp (1 /(3 \sqrt{\pi})) 2^{-5 j}$ for $j \geq j_{0}$. Consequently, $p\left(E_{j}\right)$ $\leq \exp (1 /(3 \sqrt{\pi})) 2^{-j}$ for $j \geq j_{0}$. So we have

$$
\begin{aligned}
\max _{\theta} \int_{r_{j}}^{r_{j+1}}\left|f_{X}^{\prime}\left(r e^{i \theta}\right)\right| d r & =O\left(\sqrt{\log \frac{1}{1-r_{j}}} \int_{r_{j}}^{r_{j+1}} \sqrt{\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n-2}} d r\right) \\
= & O\left(\int_{r_{j}}^{r_{j+1}} \sqrt{\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n-2} \log \frac{1}{1-r}} d r\right) \\
& j=j_{0}, j_{0}+1, \ldots \text { a.s.. }
\end{aligned}
$$

Since $\int_{0}^{1} \sqrt{\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n-2} \log \frac{1}{1-r}} d r<+\infty$, we have

$$
\left\|V\left(f_{X}, \cdot\right)\right\|_{\infty} \leq \sum_{n=0}^{\infty}\left|X_{n}\right| n\left|a_{n}\right| r_{j_{0}}^{n-1}+\sum_{j=j_{0}}^{\infty} \max _{\theta} \int_{r_{j}}^{r_{j+1}}\left|f_{X}^{\prime}\left(r e^{i \theta}\right)\right| d r<+\infty \text { a.s.. }
$$

This completes the proof.
Next, we consider one of converse problems for Theorem 2.
THEOREM 3. Let $|\alpha|<1$ and let $f_{X}(z)=\sum_{n=1}^{\infty} X_{n} a_{n} z^{n}$ be a random Taylor series by $X=\left(X_{n}\right)_{n=1}^{\infty}$. If $\lim \sup _{N \rightarrow \infty}(\log N)^{-1} \sum_{n=1}^{N} \mathscr{E}\left[X_{n}^{2}\right] n^{\alpha}\left|a_{n}\right|^{2}=$ $+\infty$ and $n^{\alpha}\left|a_{n}\right|^{2}=O(1)$, then $\lim \sup _{N \rightarrow \infty} A_{\alpha}\left(f_{X}^{N}, \theta\right)=+\infty$ for all θ a.s..

For the proof, we use the probability space ($\tilde{\Omega} \times \Omega, \tilde{\mathfrak{B}} \times \mathfrak{B}, \tilde{p} \times p$). . We denote by $\check{\mathscr{E}}[\cdot]$ the expectation. Define a sequence $Y=\left(Y_{n}\right)_{n=1}^{\infty}$ of random variables on $\tilde{\Omega} \times \Omega$ by $Y_{n}(x, \omega)=\varepsilon_{n}(x) X_{n}(\omega)$.

Lemma 7. Let $\left(\nu_{j}\right)_{j=0}^{\infty}\left(\nu_{0}=1\right)$ be an increasing sequence of positive integers. Set $P_{Y j}(\theta)=A_{\alpha}\left(f_{Y}^{\nu j}, \theta\right)-A_{\alpha}\left(f_{Y}^{\nu j-1}, \theta\right)$ and

$$
q_{j}=\left(\sum_{\nu j-1<n \leq \nu j} \tilde{\mathscr{E}}\left(Y_{n}^{2}\right) c_{\alpha}(n, n)\left|a_{n}\right|^{2}\right)^{1 / 2} \quad(j=1,2, \cdots)
$$

Let E_{μ} be the event:
There exists θ such that $P_{Y j}(\theta) \leq \frac{1}{4} q_{j}^{2}$ for $j=1, \cdots, \mu$.
Then we have, with positive constants $B, \beta(0<\beta<1)$,

$$
\tilde{p} \times p\left(E_{\mu}\right) \leq B \mu \nu_{\mu}^{2}\left(\sum_{j=1}^{\mu} q_{j}^{2}\right)^{1 / 2} \sup \left\{q_{j}^{-1} ; j=1, \cdots, \mu\right\} \beta^{\mu} .
$$

Proof. We denote by $\left(\Omega^{\prime}, \mathfrak{B}^{\prime}, p^{\prime}\right)=(\tilde{\Omega} \times \Omega, \tilde{\mathfrak{B}} \times \mathfrak{B}, \tilde{p} \times p)$. Set $\Omega_{j}^{\prime}=$ $\prod_{\nu j-1<n \leq \nu_{j}} J_{n} \times I_{n}$. The element is denoted by $\left(x_{j}, \omega_{j}\right)$. Let $\left(\Omega_{j}^{\prime}, \mathfrak{B}_{j}^{\prime}, p_{j}^{\prime}\right)$ be the usual probability space. We consider $\left(\Omega^{\prime}, \mathfrak{B}^{\prime}, p^{\prime}\right)$ as the product space $\left(\prod_{j=1}^{\infty} \Omega_{j}^{\prime}, \prod_{j=1}^{\infty} \mathfrak{B}_{j}^{\prime}, \prod_{j=1}^{\infty} p_{j}^{\prime}\right)$. Set

$$
Q_{Y j}(\theta)=Q_{Y j}\left(x_{j}, \omega_{j}\right)(\theta)=A_{\alpha}\left(f_{Y}^{\nu j}-f_{Y}^{\nu j-1}, \theta\right)
$$

and

$$
\left.\begin{array}{rl}
R_{Y j}(\theta) & =R_{Y j}\left[\left(x_{1}, \omega_{1}\right), \cdots,\left(x_{j}, \omega_{j}\right)\right](\theta) \\
& =2 \operatorname{Re}\left(\sum_{\nu j-1<n \leq \nu j} Y_{n} a_{n} e^{i n \theta} \sum_{m \leq \nu j-1} Y_{m} a_{m} c_{\alpha}(n, m) e^{i m \theta}\right.
\end{array}\right) .
$$

Then we have $P_{Y j}(\theta)=Q_{Y j}(\theta)+R_{Y j}(\theta)$. Let $E(\theta, j)$ be the event: $Q_{Y j}(\theta)$ $<\frac{1}{2} q_{j}^{2}$ or $R_{Y j}(\theta)<0$. We show $p^{\prime}\left(\bigcap_{j=1}^{\mu} E(\theta, j)\right) \leq \gamma^{\mu}$ for some $\gamma(0<\gamma<1)$. For any $\left\{\left(x_{k}^{*}, \omega_{k}^{*}\right)\right\}_{k=1}^{j-1}$, let $E\left[\left(x_{k}^{*}, \omega_{k}^{*}\right) ; k=1, \cdots, j-1\right](\theta)$ be the event:

$$
Q_{Y j}\left(x_{j}, \omega_{j}\right)(\theta)<\frac{1}{2} q_{j}^{2} \quad \text { or } \quad R_{Y j}\left[\left(x_{1}^{*}, \omega_{1}^{*}\right), \cdots,\left(x_{j-1}^{*}, \omega_{j-1}^{*}\right),\left(x_{j}, \omega_{j}\right)\right](\theta)<0 .
$$

By the Lemma 1, we have, with constant $\eta(0<\eta<1)$,

$$
p_{j}^{\prime}\left(Q_{Y j}(\theta) \geq \frac{1}{2} q_{j}^{2}\right) \geq \eta
$$

Suppose $Q_{Y j}\left(\tilde{x}_{j}, \tilde{\omega}_{j}\right)(\theta) \geq \frac{1}{2} q_{j}^{2}$ and $R_{Y j}\left[\left(x_{1}^{*}, \omega_{1}^{*}\right), \cdots,\left(x_{j-1}^{*}, \omega_{j-1}^{*}\right),\left(\tilde{x}_{j}, \tilde{\omega}_{j}\right)\right](\theta)<0$ for some $\left(\tilde{x}_{j}, \tilde{\omega}_{j}\right)$. Then we have $Q_{Y j}\left(-\tilde{x}_{j}, \tilde{\omega}_{j}\right)(\theta) \geq \frac{1}{2} q_{j}^{2}$ and

$$
R_{Y j}\left[\left(x_{1}^{*}, \omega_{1}^{*}\right), \cdots,\left(x_{j-1}^{*}, \omega_{j-1}^{*}\right),\left(-\tilde{x}_{j}, \tilde{\omega}_{j}\right)\right](\theta)>0 .
$$

Therefore we have

$$
\begin{aligned}
& p_{j}^{\prime}\left(Q_{Y j}(\theta) \geq \frac{1}{2} q_{j}^{2} \quad\right. \text { and } \\
& \left.R_{Y j}\left[\left(x_{1}^{*}, \omega_{1}^{*}\right), \cdots,\left(x_{j-1}^{*}, \omega_{j-1}^{*}\right),\left(x_{j}, \omega_{j}\right)\right](\theta) \geq 0\right) \geq \frac{1}{2} \eta .
\end{aligned}
$$

That is, $p_{j}^{\prime}\left(E\left[\left(x_{k}^{*}, \omega_{k}^{*}\right) ; k=1, \cdots, j-1\right](\theta)\right) \leq 1-\frac{1}{2} \eta(=\gamma)$. We have

$$
\begin{aligned}
& p^{\prime}\left(\bigcap_{j=1}^{\mu} E(\theta, j)\right)=p_{1}^{\prime} \times \cdots \times p_{j}^{\prime}\left(\bigcap_{j=1}^{\mu} E(\theta, j)\right) \\
& \quad=\int_{\substack{\mu-1 \\
j=1 \\
j=1, j)}} p_{\mu}^{\prime}\left(E\left[\left(x_{k}, \omega_{k}\right) ; k=1, \cdots, \mu-1\right]\right) d\left(p_{1}^{\prime} \times \cdots \times p_{\mu-1}^{\prime}\right) \\
& \quad \leq \gamma p_{1}^{\prime} \times \cdots \times p_{\mu-1}^{\prime}\left(\bigcap_{j=1}^{\mu-1} E(\theta, j)\right) \leq \cdots \leq \gamma^{\mu} .
\end{aligned}
$$

Let $F(\theta, j)$ be the event: $P_{Y j}(\theta)<\frac{1}{2} q_{j}^{2}$. Then $F(\theta, j) \subset E(\theta, j)$. Therefore $\bigcap_{j=1}^{\mu} F(\theta, j) \subset \bigcap_{j=1}^{\mu} E(\theta, j)$. We write $\psi_{k}=2 \pi(k / K)(k=0, \cdots, K-1)$, where K is an integer which will be determined later. Then we have $p^{\prime}\left(\bigcup_{k=0}^{K-1} \bigcap_{j=1}^{\mu} F\left(\psi_{k}, j\right)\right) \leq K \gamma^{\mu}$. Next, we estimate $\left\|P_{Y j}^{\prime}\right\|_{\infty}$. We have

$$
\begin{aligned}
P_{Y j}(\theta)= & \sum_{\nu_{j-1}<n \leq \nu j} Y_{n} a_{n} e^{i n \theta} \overline{\sum_{m \leq \nu j} Y_{m} c_{\alpha}(n, m) a_{m} e^{i m \theta}} \\
& +\sum_{n \leq \nu j-1} Y_{n} a_{n} e^{i n \theta} \frac{\sum_{\nu j-1<m \leq \nu j} Y_{m} c_{a}(n, m) a_{m} e^{i m \theta}}{} .
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
\left\|P_{Y j}^{\prime}\right\|_{\infty} & \leq 4 \nu_{j} \sum_{n \leq \nu j}\left|Y_{n}\right|\left|a_{n}\right| \sum_{\nu j, 1<m \leq \nu_{j}}\left|Y_{m}\right|\left|a_{m}\right| c_{\alpha}(n, m) \\
& \leq 4 \nu_{j} \sum_{n \leq \nu j}\left|Y_{n}\right|\left|a_{n}\right| \sqrt{c_{\alpha}(n, n)} \\
& \leq 4 \nu_{j}^{2} \sqrt{\sum_{n \leq \nu_{j}} \sum_{n}^{2}\left|a_{n}\right|^{2} c_{\alpha}(n, n)} \sqrt{\sum_{\nu_{j-1}<m \leq \nu_{j}}\left|Y_{m}\right|\left|a_{m}\right| \sqrt{c_{\alpha}(m, m)}} Y_{m}^{2}\left|a_{m}\right|^{2} c_{\alpha}(m, m)
\end{aligned} .
$$

We have $\mathscr{E}\left[\left\|P_{Y j}^{\prime}\right\|_{\infty}\right] \leq 4 \nu_{j}^{2}\left(\sum_{k=1}^{j} q_{k}^{2}\right)^{1 / 2} q_{j}$. Consequently, we have

$$
p^{\prime}\left(\left\|P_{Y j}^{\prime}\right\|_{\infty} \geq(4 \pi)^{-1} K q_{j}^{2}\right) \leq 16 \pi K^{-1} \nu_{j}^{2}\left(\sum_{k=1}^{j} q_{k}^{2}\right)^{1 / 2} q_{j}^{-1} .
$$

Let F_{μ} be the event: $\left\|P_{Y j}^{\prime}\right\|_{\infty} \leq(4 \pi)^{-1} K q_{j}^{2}$ for $j=1, \cdots, \mu$. Then

$$
p^{\prime}\left(F_{\mu}^{c}\right) \leq 16 \pi K^{-1} \mu \nu_{\mu}^{2}\left(\sum_{k=1}^{\mu} q_{k}^{2}\right)^{1 / 2} \sup \left\{q_{j}^{-1} ; j=1, \cdots, \mu\right\}
$$

For any θ, there exists k such that $\left|P_{Y j}(\theta)-P_{Y j}\left(\psi_{k}\right)\right| \leq \pi K^{-1}\left\|P_{Y j}^{\prime}\right\|_{\infty}$. Therefore $P_{Y j}\left(\psi_{k}\right) \leq \pi K^{-1}\left\|P_{Y j}^{\prime}\right\|_{\infty}+P_{Y j}(\theta)$. If $(x, \omega) \in E_{\mu} \cap F_{\mu}$, then we have $\pi K^{-1}\left\|P_{Y(x, \omega) j}^{\prime}\right\|_{\infty} \leq \frac{1}{4} q_{j}^{2}$ and $P_{Y j}(\theta) \leq \frac{1}{4} q_{j}^{2}$ for some θ and $j=1, \cdots, \mu$. Therefore we have for some $k, P_{Y(x, \omega) j}\left(\psi_{k}\right) \leq \frac{1}{2} q_{j}^{2}(j=1, \cdots, \mu)$. Hence we have $E_{\mu} \cap F_{\mu} \subset \bigcup_{k=0}^{k-1} \bigcap_{j=1}^{\mu} F\left(\psi_{k}, j\right)$. That is, $E_{\mu} \subset F_{\mu}^{c} \cup \bigcup_{k=1}^{k-1} \bigcap_{j=1}^{\mu} F\left(\psi_{k}, j\right)$. Consequently, we have

$$
p^{\prime}\left(E_{\mu}\right) \leq K \gamma^{\mu}+16 \pi K^{-1} \mu \nu_{\mu}^{2}\left(\sum_{j=1}^{\mu} q_{j}^{2}\right)^{1 / 2} \sup \left\{q_{j}^{-1} ; j=1, \cdots, \mu\right\} .
$$

Let K be the integer part of $\gamma^{-\mu / 2}$. Then we have, with positive constant B,

$$
\left.p^{\prime}\left(E_{\mu}\right) \leq B \mu \nu_{\mu}^{2}\left(\sum_{j=1}^{\mu} q_{j}^{2}\right)^{1 / 2} \sup \left\{q_{j}^{-1} ; j=1, \cdots, \mu\right\}\right\}^{\mu / 2} .
$$

This completes the proof.
Proof of Theorem 3. We can assume $\tilde{\mathscr{E}}\left[Y_{n}^{2}\right]=\mathscr{E}\left[X_{n}^{2}\right] \leq 1$ and $c_{\alpha}(n, n)\left|a_{n}\right|^{2} \leq 1$ for all n. Let $\ell(\ell \geq 2)$ be an integer. We define a sequence $\left(\nu_{j}\right)_{j=1}^{\infty}$ of integers, inductively. Set $\nu_{0}=1$. Assume that $\left\{\nu_{j}\right\}_{j=1}^{\mu-1}$ are already chosen. Then let ν_{μ} be the smallest integer such that $\nu_{\mu}>$ $\nu_{\mu-1}$ and $\sum_{\nu_{\mu-1}<n \leq \nu \mu} \tilde{\mathscr{E}}\left[Y_{n}^{2}\right] c_{\alpha}(n, n)\left|a_{n}\right|^{2}\left(=q_{\mu}^{2}\right) \geq \ell$. Set $c_{\mu}=\left(\log \nu_{\mu}\right)^{-1} \sum_{k=1}^{\mu} q_{k}^{2}$. By the assumption $\lim \sup _{N \rightarrow \infty}(\log N)^{-1} \sum_{n=1}^{N} \tilde{\mathscr{E}}\left[Y_{n}^{2}\right] n^{\alpha}\left|a_{n}\right|^{2}=+\infty$ and $q_{j}^{2} \leq$ $\ell+1(j=1,2, \cdots)$, we have $\lim \sup _{\mu \rightarrow \infty} c_{\mu}=+\infty$. We have

$$
\mu \nu_{\mu}^{2}\left(\sum_{j=1}^{\mu} q_{j}^{2}\right)^{1 / 2} \sup \left\{q_{j}^{-1} ; j=1, \cdots, \mu\right\} \beta^{\mu} \leq(\ell-1)^{-1} \mu \nu_{\mu}^{3} \beta^{\mu}
$$

$$
\begin{aligned}
& =(\ell-1)^{-1} \mu \exp \left(3 \sum_{j=1}^{\mu} q_{j}^{2} \frac{1}{c_{\mu}}-\mu \log \frac{1}{\beta}\right) \\
& \leq(\ell-1)^{-1} \mu \exp \left(3(\ell+1) \frac{1}{c_{\mu}}-\log \frac{1}{\beta}\right) \mu
\end{aligned}
$$

Since $\lim \inf _{\mu \rightarrow \infty} c_{\mu}^{-1}=0$, we have

$$
\liminf _{\mu \rightarrow \infty} \mu_{\mu}^{2}\left(\sum_{j=1}^{\mu} q_{q}^{2}\right)^{1 / 2} \sup \left\{q_{j}^{-1} ; j=1, \cdots, \mu\right\} \beta^{\mu}=0
$$

By Lemma 7, we have $\lim \inf _{\mu \rightarrow \infty} p^{\prime}\left(E_{\mu}\right)=0$. Let $G(\ell, m)$ be the event: there exists θ such that $P_{Y j}(\theta) \leq \frac{1}{4} \ell$ for $j=m, m+1, \cdots$. Since $G(\ell, 1)$ $\subset E_{\mu}$ for all μ, we have $p^{\prime}(G(\ell, 1))=0$. By the same method, we have $p^{\prime}(G(\ell, m))=0$ for all $m, \ell(m, \ell=2,3, \cdots)$. Therefore $p^{\prime}\left(\bigcup_{\ell=2}^{\infty} \bigcup_{m=1}^{\infty} G(\ell, m)\right)$ $=0$. This show that $\lim \sup _{j \rightarrow \infty} P_{Y j}(\theta)=+\infty$ holds for all θ a.s. $(\tilde{p} \times p)$. Since $A_{\alpha}\left(f_{Y}^{\nu j}, \theta\right)=P_{Y j}(\theta)+A_{\alpha}\left(f_{Y}^{\nu j-1}, \theta\right) \geq P_{Y j}(\theta)$, we have

$$
\limsup _{N \rightarrow \infty} A_{\alpha}\left(f_{Y}^{N}, \theta\right)=+\infty \quad \text { for all } \theta \text { a.s. }(\tilde{p} \times p)
$$

There exists $\varepsilon^{*}=\left(\varepsilon_{n}^{*}\right)_{n=1}^{\infty}\left(\varepsilon_{n}^{*}=1\right.$ or -1$)$ such that $\lim \sup _{n \rightarrow \infty} A_{\alpha}\left(f_{\varepsilon^{*} X}^{N}, \theta\right)=$ $+\infty$ for all θ a.s.. Since $\left\{X_{n}\right\}_{n=1}^{\infty}$ are symmetric, (by the similar method as in Theorem 1,) we have $\lim \sup _{N \rightarrow \infty} A_{\alpha}\left(f_{X}^{N}, \theta\right)=+\infty$ for all θ a.s.. This completes the proof.

References

[1] Kahane, J. P.; Some random series of functions, Raytheon education company, 1968.
[2] Lohwater, A. J. and Piranian, G.; On a conjecture of Lusin, Michigan Math. J., (1955), p. 63-68.
[3] Offord, A. C.; Distribution of values of random function in the unit disk, Studia Math., (1972), p. 71-106.
[4] Zygmund, A.; Trigonometric series II, Cambridge, 1959.

[^0]: Received April 22, 1975.

