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ON AREA INTEGRALS AND RADIAL VARIATIONS OF

ANALYTIC FUNCTIONS IN THE UNIT DISK

TAKAFUMI MURAI

1. Introduction

We are concerned with the behaviour of analytic functions near the
boundary. Let T and D be the unit circle \z\ — 1 and the unit disk
\z\ < 1, respectively. The element of T is denoted by θ (0 < θ < 2π).
Let f(z) = Σn=i a>nZn be analytic in D. The area integral A(f, θ) of /
at θ is defined by

A(f,θ) = \f'(reί*)\2rdrdφ,
JJ Γ{θ)

where Γ(θ) = {z \z\ > J, |arg (z — eiθ)\ < 1}. It represents the area of the
image of Γ(θ). We know the following two relations:

(1) The finiteness of A{f,θ) reflects the existence of limr_^ f(reίθ).

(2) The infiniteness of A(f,θ) reflects the totality of f(Γ(0))9 that

is, f(Γ(θ)) = {z; \z\< +oo}.

So it is interesting to know whether A(f,θ) is finite or not. Our pro-
blems are to characterize the finiteness of A(f,θ) and to study these
relations (1) and (2). But it is complicated to examine them for given
/ and θ eT. So some authors studied them for a given / occasionally
neglecting a small subset of Γ. (cf. Theorem (1.1) in [4] p. 199) The
author also took the same line at first. But, in this paper, we shall
study them neglecting a class of functions. To define a negligible class
of functions, we need a probability space.

Let (β, S3, v) be a probability space, where Ω is a space, S3 events
and p a probability. Let X = (Xn)n=i be a sequence of independent
random variables. Consider a class of analytic functions, so-called a
random Taylor series by Z, fΣ(z) = J^=ιXnanz

n. For a random Taylor
series fZ9 we shall neglect a class of functions in fx with probability 0.
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From the point of view of random Taylor series, we shall consider the
above problems. First, we remark the following fact. The property of
the finiteness of A(/x, θ) is an event and independent on the values of
a finite number of Xnanz

n. By the zero-one law, we obtain that A(/x, θ)
< +00 holds with probability 1 or 0.

We shall also treat by the same manner the generalized area integrals
and the radial variations which are defined in the section 2.

2. Definitions

Let C be the complex plane. The element of C is denoted by z =
τeiψ

9 ζ, etc. Let T and D be the unit circle and the unit open disk
with center zero, respectively. The element of T is denoted by θ (0 <
β < 2π). Let f(z) = 2«=i UnZn be analytic in D.

The area integral A(/, θ, β) of / at θ is defined by

A(f,θ,β)= ίf \f'(rei*)\2rdrdφ,
JJΓβw

where Γ,(0) = {z \z\ > J, |arg (z - eu)\ < β} (0 < β < π/2). We denote
A(f, θ) = A(f, θ, 1). We have two generalizations of A(f, θ).

The area integral Aa{f,θ) of / of order a (—1 < α < 1) is defined
by

= Γr(l - r)-'dr Γ*""""' \f\re^)f dψ .
JO Jθ-a-r)

We know that Ao(/, θ) and A(/, θ) are equivalent in the following sense:
There exist γl9 γ2 (0 < γ19 γ2 < π/2) such that cACΛ θ> ϊ) < A.<J> 0) <
c2A0(/, 0, γ2) for some positive constants cu c2.

The area integral Aα(/, θ) of / of tangency a (0 < a < J) is defined
by

A.<J,δ)= rdr\ \f'(re*)\>dφ.

The radial variation V(f,θ) of / is defined by

V(f,0)= [\f'{re")\dr.
Jo

For convenience sake, we write the following notation:

rt fθ+a-r)

A'.(f, θ) = r(l - r)-"dr \f(re^)\2 dφ (0 < ί < 1)
Jo Jί-(l-r)
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ca(n, m; t) = nm j r

n+m~1(l — r)~a \ * cos (n — m)φdφ ,
Jo J -l+r

where n,m are integers. We denote ca(n, m) = ca(n, m 1). Let f(z)

= Σn-i #n3n be analytic in Z). We have

AU/, β) = r ( l - r)-aά
Jo

= Σ Σ cβ(tι, m ί)αnβ
<n<?αme*TO<' .

In this paper, we use the following notation: If the inequality

0 < f(z) < cg(z) holds for some positive constant c, we denote f(z) < g(z).

If the inequality cλf{z) < g(z) < c2f(z) holds for some positive constants

c19c2, we denote f(z)&g(z).

Next, we define the probability space (Ω, S3, p) which is fixed through-

out this paper. Let I be the interval [0, 1) and let (/, £37, Pi) be the

usual probability space. Set Ω = H ; B l / n , where ln — l for all n. Then

the product space (Ω, S3, p) is usually defined. The element of Ω is de-

noted by ω. The expectation is denoted by S\ ]. We consider a sequence

X = (Xn)n=1 of independent random variables which satisfies the follow-

ing conditions:

( i ) Xn is real-valued.

(ii) Xn is a random variable on /w.

(iii) ZTO is symmetric, that is, p(Xn > c) = p(—Xn > c) for all c > 0.

(iv) sup*?[Xy < +oo.

(v) sup S[Xi]g[XlT> < +oo.

As a technique, we shall use a Rademacher series which is defined

as follows. Let J be two points {—1,1}. Set Ω = [j?=i^n> where /TO

= / for all ti. Then the usual probability space (β,S3, p) is defined. The

element of Ω is denoted by x. A Rademacher series ε = (en)^=1 is defined

by
(a) εn is a random variable on Jn

(b) e»(-l) - - 1 , en(l) - 1.

Then ε = (εn)n=1 is a sequence of independent random variables with

p(£n = 1) = p(ε. = - 1 ) = i (rc = 1,2, •)•

If some property Px on β hold with probability 1, we say that P1
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holds almost surely (a.s.). If some property P2 on T holds with Lebesgue

measure 2π, we say that P2 holds almost everywhere (a.e.)

3. Immediate consequences and constructions of examples

We first show the following

PROPOSITION 1. Let \a\ < 1 and let fx(z) = ]Γ£βl Xnanz
n be a random

Taylor series defined by X = (Xw)~=1. Then Aa(fx,0) < +oo a.s. if and

only if Zn=i^[\Xn\2]na\an\
2< + o o . . . ( * ) β .

For the proof, we prepare the following

LEMMA 1 ([1] p. 6). Let Y be a positive random variable. Then for

0 < λ < 1, we have

P(Y > χg[Tύ > α -

Proof of Proposition 1. First we remark r^-^ l — r)ι~adr^na~2.
Jo

Assume that (*)α holds. From the hypothesis (v), we have, with some

constant c, £[X4

n] < a[X2

nY. Since

Al(fx,0) = ΣΣ XnXmca(n,m; t)anam ,
n=l m = l

it follows from (iii) that

Xm-\cSn,m; t)anam

Σ , n ; t)\anf .
n=l

Letting t tend to 1, we have

^[Aα(/x,0)l = ± £[Xl]ca(n,n)\an\
2π ± <?\-X2n\na \an\

2 < +oo .
n=l n=l

Hence Aa(fz,0) < +oo a.s..

Conversely, assume that A£fΣ, 0) < +oo hold a.s.. We shall apply

the above lemma to the random variable Aι

a{fx> 0). We have

*[A'a(fX9 0)]2 = if] *[XUca(n, n t) \an\
2\

and
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= i\ Σi Xn1Xm1XniXm2Ca(ni9 ΎYlx \ t)Ca(n29 ΎΠ2 \ t)anflmχanflm%

XmiXn2Xm2]ca(n19 mλ t)ca(n2, m2 t)anχamian%am%

< Σ £[XlX2Jca(n, n t)ca(m, m t) \anf\amf
n,m

Uca(n,m; t)*\anf\amf .

Since we have

and

ca(n, m; t) < nm \ r m + m " 1 ( l — r)'adr dφ < ^/ca(n, n t) Vca(m, m t) ,
Jo J -1+r

we obtain

*tei(fz, 0)2] < 2c ( g ^K]cα(n, w t) |αw |2y .

Therefore

2c

By Lemma 1, we have

/[A^(/X,O)]) > ( l ( ) ) - A _ ( = 7 ) > 0 .

Choose a sequence (ίw)^=i such that 0 < tn < 1 and ίTO 11. Set

En = {AiK/x,0) >

Since p(2?J > 57 for all n, we have p(lim sup̂ ôo En) > η. By the assump-
tion, there exists ω e lim sup,^ En such that Aa(fX(ω),0) < +00. Then
we have

/X, 0)] - lim fi[A'β*(fz, 0)]

lim A^/1,.,,0) = Aα(/ x w,0) < +00 .

This completes the proof.
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COROLLARY 1. Let |α| < 1 and fx be the same as in Proposition 1.
Then Aa(fZ9θ) < +oo a.e. holds a.s. if and only if (*)« holds.

Proof. Consider the product space (i3χΓ, S3 x S3Γ, p x dθ). We
denote by /[ ] the expectation. Define a sequence Y = (Yn)n=i of
random variables on Ω x T by Yn(ω, θ) = Xn(ώ)eίnθ. Then we have

-2 < +oo
n n

and

where ^n>m means Kronecker's. By the same method as in Proposition
1, we know that Aa(fγ, 0) < +oo a.s. (p x dθ) if and only if O)α holds.
Since Aβ(/Γ(βfί),0) = Aa(fZiΛ)90), we know that Aa(fx,θ) < +oo a.e. holds
a.s. if and only if (*)α holds, this completes the proof.

PROPOSITION V. Let fΣ(z) = Σn=i Xnanz
n be a random Taylor series.

Set 8j = (Σ2Jzn<2J+i£[X2n\\(in\Ύ/2 If Σ7-o *j < + °°> then 7(/r,0) < +oo
a.s..

Proof. We have

V(fx>0)= ΐ\fί(r))dr£Σ Γ
Jo j=oJ o

Since we have

< 0 I NT"1 V Ί

& I /-I -^-n^

nXnanr
n

Σ
2y

we obtain

ftV(fz, 0)] < Σ SjW+1 Γ r^-^r « Σ « i < + o o .
.7=0 JO j=0

Therefore we have V(fx,0) < +oo a.s.. This completes the proof.

COROLLARY Γ. // Σ7=o^ < +oo, then V(fXfθ) < +cx> α.e. fcoZds a.s..

This is easily proved by the same method as in Proposition 1/.
Hence we omit the proof.

Remark 1. The similar assertion as in Proposition 1 for Aa (0 < a
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< J) holds. Now, choose a sequence (αn)^βl such that Σ^»i nβ |αn]2 < +00

and 2]n-i ^ |αn |2 = + 00 (0 < α < β < J). Consider a random Taylor

series /s(z) == 2]n-iSn^n«
n. Then we have almost surely Aa(fs,θ) < +00,

Aβ(fe,θ) = +00, Iα(/e,0) < +00 and Aβ(/.,0) = +00 a.e..

PROPOSITION 2. Lei X = (XJ~=1 δe α sequence of independent real-
/»ί

valued normal Gaussian variables (i.e. p(Xn < t) ~ 1/V2ττ e~sy2ds) and
j —00

ϊet α random Taylor series. Then V(fx, 0) < + 00

a.s. if and only if ^/f] n2 \anf r
2n~2 dr < +00.

J 0 n = l

Proof. We can assume that an's are real. We have

, 0)] = Γ 4 Σ ^nwαnr ^lldr - J- Γ Λ/Σ ^2 l^l2 r2

JO L n = l |J 7Γ J 0 w=l

dr .

Hence 'if part holds. Set 7'(/ z,0)= Γ|/i|dr. We shall show that
Jo

/r, 0)2]<r[7£(/x, 0)]-2 < 4 for all 0 < t < 1. We have

and

—
Jojo

ojo L»=i

drds-

drds

= = = \x\\y\exm—π-
— C2 J-ooJ-oo \

+ AT/2 - 2Ca?y
AJS-C 2

where

A =

and

Since

C =

J n=\ n=l

oo "I oo

/ i Λ.nnans I — 2LJ ^ ttwl ' s

n=l J n=l

- C2 < Ay/AB ,
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we have

, 0)2] < 4(£ V έ n* Kl 2 r2n~2 drj .

Therefore i\Y\fXy 0)V[F έ (/ i , 0)]~2 < 4. Hence the rest of the proof

follows in the same manner as in Proposition 1. This completes the

proof.

To discuss the sure properties, we consider lacunary series. Let

(4(&))?=o (0 < a < 1) be a sequence of positive integers such that (1 —

a)£a(k + 1) > 2ia{k). We denote by Na(k) = 2£a(k) and N(k) = 22* through-

out this paper.

PROPOSITION 5. Let 0 < a < 1 and let (an)ζ=ι be a bounded sequence

such that an = 0 for n Φ Na(k) (Jfc = 0,1, ••••)• Set f(z) == Σ~=ιanz
n.

A£f,θ) < +oo /or αZZ θ or Aa(f,θ) = +oo /or αZZ 0 according to

=1n
a\an\

2K +oo or = +oo.

Proof. We can assume |α n | < 1 for all n. We have

OO CX5

A ί/'f* fl\ V 'V1 o (on WΊ f\n p^nθπ pifnΌ
a\J 9 ") / i / i ^αV'^ί "^ 9 vjll>n& U"m,&

fc=0

We have the following estimation:

I (The second term)| £ Σ Σ Nβ(k)Nβ(k0Qfβ(k) + iVα(fe0)α"2

< Σ Na(.k)"Kk-Na(k - 1)< +oo .
k = l

Letting t tend to 1, we have Aa{f,θ) « ΣrT=i^Ί^I 2 + 0(1). This com-

pletes the proof.

PROPOSITION 5r. Let 0 < a < 1 and Zeί (aw)~=1 &e an absolutely con-

vergent sequence such that an — 0 /or n Φ N(k) (k — 0,1, •)• Set f(z)

= Σ ^ = i a ^ n Γ f e r a Aa(f,θ) < +oo for all θ or Aa(f,θ) = +oo /or aίί 0

according to Σln=ι^a\an\2 < +oo or = +oo.

By using the following estimation, we have Aα(/, 0) « Σn=i^αiαwl2

+ 0(1).
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fc'=0

< Σ l«to*>| Σ I<W>I N(k)N(k%N(k) + Nik'))

COROLLARY 2. Γfoere exists an absolutely convergent Taylor series

f(z) — Σn=1anz
n such that Aa(f,θ) = +00 /or αZZ # and aZZ 0 < a < 1.

Proof. Let (an)£βl be a sequence such that α^(Λ) = (fc + I)" 2 (k — 0,.1, •)

αn = 0 n Φ N(k). Then Σ~,orcβ |αw |2 = +00 for all 0 < α < 1. By Pro-

position 2', Aa(f,θ) = +00 for all 0 and 0 < a < 1. This completes the

proof.

Remark 2. By [2], θeT is called a Lusin point of / if A1/2(f,θ,t)

= if l/^Prdrcfy? diverges for all 0 < ί < 1. We know that

there exists a bounded function such that every point θ e T is a Lusin

point of it ([2]). Let / be the function in Corollary 2. Then every

point θ e T is a Lusin point of / . We shall show it. We have A1/2(/, 0)

= + 00 for each θ. We can assume t > J. If we choose suitable con-

stants βt,γtj, we have, for each 0,

= if
r<ί

+ [rdr\
Jt J Iί>-0|<arccos(2

> f rdr f _ I /'
Jt J\φ-β\<βtVl-r

Therefore Aι/2(f, θ, t) = +00 for all 0 e Γ and all 0 < t < 1. But there

exists #(2) = 2]n-i frrcZw s u c h that each 0 e Γ is not a Lusin point of g

and Aα(#, θ) = + 00 for all 0 and all α > J. For example, put bN(k) =
/4 (fc = 1,2, . •) and &„ = 0 for w

EXAMPLE. There exists an analytic function / such that V(f9θ)

— + 00 and Ao(/, 0) < + 00 for all θ.

Put 6^(&) = k~1/2N(k)1/2 (A? = 1,2, .) and &w = 0 for w ̂  N(fc) (fc =

1,2, . . . ) . Consider /(s) = Γ (f; bnζ
nYdζ. We show that / satisfies the

Jo V=o /
required conditions. We have
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V(f,θ)= f
Jo

bnr
neinθ dr

bNik)bNikΊ(N(k) \-ιoUN(k)-N(k'))e

= Σ VNφ){2N{k) + I )" 1

Σ
fc'fc

N(k')

We have the following estimation:

(The first term) « Σ fc"1 = +00
Λ = l

I (The second term)| ^ Σ b^Nik)-1 Σ &*<*<> <ΣN(k- 2) ' 1 < +00 .

Therefore we have V(/, ^) = + oo for all θ. On the other hand, we have

Ao(/,0) = dr Σ &.rV»' <%>
Jθ J«-(l-r) n»l

= f dr f+α"r) Σ bso

» Σ bm^K^b^b

£ Σ *&

N(k3)

Σ
Λ ' l

+ Σ
fcX

Σ ft~
A2

Σ ΛΓ(fc - I)" 1

+00.

Therefore we have Ao(/, ^) < + oo for all ^.

4. Almost sure property for all θ

THEOREM 1. Let \

Taylor series. Set Sj =

THEOREM 1. Let \a\ < 1 and fx(z) = 2]

|2 ϋ =
random

+°°>
We denote by \\P\U = sup,6r

We use the following

= 0,1, •)• / / Sj | 0

A«(fx>θ) is bounded ((as a function of θ) a.s..

f ° r a continuous function P on Γ.



ANALYTIC FUNCTIONS IN THE UNIT DISK 145

LEMMA 2. ([1] p. 55) Let (Pn)ίUi be a sequence of trigonometric

polynomials of degree <JV. Set P$ = Σe

n=1εnPn. Then we have, with

positive constants c19 c2y

(
/ £ \l/2\

(HP.IU > φogW^Σ WPnWl) ) < c2N-> .

Proof of Theorem 1. First we consider the case of a Rademaeher

series. We denote RΛ(z) = Σim><:n<.jr(*+i> snanz
n (fc = 0,1, •)• We have

JTΘ) < VAJ&z,® + Σ
ft = 0

We show

pU\Aa(Rek, )\U > efiogN(k + lψ>( Σ ca(n,n) \an\

< c2N(k + I )" 1 .

Set £{k) = N(k + 1) - N(k), εμ = εmm.1+μ, bμ = aNιk)_ι+μ and bβ) =

»' (μ = l,- -,m). We denote by 6.(0 = &&,(«, ,

and

ca(N(k), N(k)), • • • cf(N(k), N(k + 1) - 1)

\ca(N(k + 1) - 1, ΛT(fc)), c.(N(fc + 1) - 1, N(k + 1) - 1)/

Since C is positive definite, there exists a unitary matrix U = (uμv)μy=ι,

• -,£(k) such that U*CU = \ , where {̂ }̂ 21 are eigen values of

\0 'λtj

C. Set dzXθ) = Σ ί ϊ l eμbβ)uμv (v = 1, . . . , ^(fc)). Then we have

Since deg &X61) < N(k + 1), we have

Therefore we have

( /em \ i/2

l|d»ll- > ΦogN(k + 1 ) H Σ IM* I«,.IΊ for some v (1 < v <
I)"1
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Since

)IU < Σ
l

and

em i(k) em em

we have

β6,,.)IU > φog N(k + lψ>( Σ cJLn, n) |an
W(«^7!<2V(* + l)

< c2N(k + I)"1 .

By the Borel-Cantelli lemma, we have

V\\A.(RΛ, OH- = θ((logN(fc + IW( Σ c.(»,»)|o,|»)I/2) a.s.

Since

Σ dog N(k + l))1/^ Σ ca{n9 n) \ an

Σsj + so< +oo ,
.7=0

we have ||Aα(/e, )IU < +°° a.s. (β). We show this in the general case.
Consider a random Taylor series feX(z) = 2n-i ew^wttn̂ 71. Set

( \l/2
Σ XIι(α»)1c.(n,»)|o)|

ϊ)
N(.k)£n<N(k+l)

Then we have

Σ

Consequently ΣΛ=oΓfc(cy) < +oo a.s. (p). Therefore we have ||Aα(/εX,
< +oo a.s. (p) for each α> such that Σ?=o ΓΛ(^) < +°° Hence ||Aα(/x,
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< +00 a.s. (p X p). There exists a sequence I = (εn)n=i of numbers 1 or

— 1 such that \\Aa(f*x, )IL < +00 a.s. (p). For positive integers N, &

and fc,

1 sup Σ xnxmanameUn-m)θca(n, m; 1 - -1)1 <
n=l \ k/\

E»k = {ωeΩ; (X^ω), , XN(ώ)) e F»k}

and

E»k = {ωeΩ; (t1X1(ω\ , ίNXN(ω)) e F?tk} .

If F^k is a cylinder set, p(E%k) = p(E*k) (since Z^s are symmetric). In

the general case, using a limit process, we have p(Efik) = p(Efik). Since

l i m ^ linifc^ lim^.,^ p(2££fc) = lim^^ lim .̂̂ ^ lim^..^ p(E*k) = 1, we have

| |Aα(/ x, )||co < +00 a.s.. This completes the proof.

COROLLARY 3. Let fx(z) = X^=i Xnanz
n be a random Taylor series.

Set Sj = (Σ2/£»<2/+i <y(-XJ) \am\ψ2 (j = 0,1, •). 7/ (s^ ô is α decreasing

sequence and fΣ is bounded a.s., then A0(fx, •) is also bounded a.s..

Proof. It is known that if fx is bounded a.s., then ΣjLoS/ < + ° °

([1] p. 72). By Theorem 1, we have \\A0(fx, OIL < +00 a.s.. This com-

pletes the proof.

THEOREM V. Let fx and (ŝ )7=o be the same as in Corollary 3. If

Σj=oJ1/2Sj < +00, then V(fx, •) is bounded a.s..

Proof. Firs t , we consider the case of Rademacher series. We de-

note by Qek(z) = Σ f e n < a * + 1 ennanz»-* and Qtk(0) = QΛ(eiΦ) (fc = 0, l , •-•).

Since

.,«) < Σ Γ r2*'1 \Q.M\ dr<± 2~« \\Qek\U ,
fc=θJθ A; = 0

it is sufficient to show that Σ*=o2~* ||Q,*||oo < +co a.s. (p). By Lemma

2, we have

p(\\QskL > c^2( Σ n2\an\
2Y2) < c22-2« .

By the Borel-Cantelli lemma, we have
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\\aL Σ \nή) a s

Since

l/2

Σ tf\an\Λ ^Σk1/2sk< +00,

we have Σ£=o2~fc IIO.*IL < +° ° a.s.. In the general case, using the same

method as in Theorem 1, we obtain the proof. Hence we omit the rest

of the proof.

Next, we prove the following:

THEOREM 2. Let \a\ < 1. Let X — (Xn)ζ^ be a sequence of real

valued normal Gaussian variables and fx{z) = Σ~= 1 Xnanz
n a random

Taylor series by X. If Σn=ιna(logri) \an\
2 < +oo, then A 0(/ x, •) is bound-

ed a.s..

LEMMA 3. Let Y be a real valued Gaussian variable such that i[Y]

= 0 and #[Y2] = σ. Then for any E eSB, we have

ί I Y\2 dp(ω) < σp(E)U log - 1 - + J^L) .
JE \ p(E) V π /

Proof. We have se~s2μ < \/~2V1/2. We have

f \Y\2dp(ω)= f + f
JE J E; \Y\*£σ4log(l/p{E)) J E\ \Y\*>Φ

hKσpiEHlog-λ-
p(E)

and

72 < -A=- Γ s2e-sl/uds = -^JLσ

9 r
< -^=e~1/2σ se~s2/4ds =

Therefore we have

f \Y\2dp(ω)<σp(E)U\og-j-
JE \ Vd

LEMMA 4. Set rs = 1 - 2~

p(E) V )
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AβS(Jz, θ) = Γ + 1 (1 - ryrdr f'+α~r) \fί{re^)f dψ
J rj Jθ-a-r)

j =z 0 ,1, . Then we have, for θ,φeT such that \θ — φ\ < 1.

\θ- φrλ Σ \Xn
/ i1 — a

Proof, We can assume 0 < φ < θ < 1. We have

= \ (l-r)-rdr{ - \ Ifίire^ dψ
Jrj Uί-(l-r) Jp-(l~r)J
Λry+i fΛ5 + (l-r) f(?-(l-r)^

(l-r)-rdrj - 1 |/i(re
Jr./ U?-(l-r) J^-(l-r)J

0<r<l-(β-p)/2

Γ^ + i f f ί + (l-r) /»y+(i-r)N

+ (1 - r)-"rdr - |Λ(r
l-(θ-φ)/2<r<l

< (1 - r)-«rdr\ + ( Σ |Z,|*w*|αB
J Tj Uφ+(l-r) J j>-(l-r)J \W = 1

< 2{θ -φ)± \Xnf n2 \anf ry+\
l

and

h < 4 Γ/+1 (l - ry-^ Σ iz^i2^2!^!2

J rj n-l
l-(θ-φ)/2<r<l

< 4 Σ \Xn\>n*\an\
2r%\ Γ (1 - r)-dr

71 = 1 Jl~(.θ-φ)/2

This completes the proof.

Proof of Theorem 2. We may assume that αw's are real. Since
na\an\

2 — 0(1), we can assume that \an\ < n. If Y]^xn
2\an\

2 < +00, we
have

< 4% Γd - ry- r-f] \Xn\
L Jo w=i
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Σ n2 K| 2 2 f (1 - r)-«dr = — ? — £ n2 \an\
2 < + oo .

n=l Jo 1 — a w=l

Therefore \\Aa(fz, •)L < + oo a.s.. Suppose 2Γ=i ™2 |α n | 2 = + oo. We have,

for each yo,

, OIL \Xn\
2n2\an\

2r^ + £

Since Σ n - i l - ^ n l 2 ^ 2 ! ^ ! 2 ^ 1 < +oo a.s. for each jQ, it is sufficient to

show that Σ?-jQ\\Aaj(fz, OIL ̂  + ° ° a s f ° r some yo There exists j0

such that Σ Γ - i ^ Ί ^ n l 2 ^ " 1 > 1- For a positive integer ^, let Eβ) be

the event:

, OIL > — - — Σ rc2Kl2 Γy+1α - ry-v-w .
1 — Tj n=l Jrj

We shall show that p(lim sup^^^ Eό(β)) = 0 for some £ > 0. Choose a

random variable θό{ω) such that AaJ(Ziω)9θj(ω)) = ||Aα^(/X(fi)), OIL Let N

be an integer such that 2N > 21 6 + 4 M max (1,1/(1 - a)). Then 2- ( '+ 1 ) l α | >

2 1 1 + α max( l , l / ( l -α:))2 ( 5 + | α | + ^^ for any j > 1. Set K = WN and ^ =

2π(k/K) (k = 0,1, ,K - 1). Let £7/^, fc) be the event: £7̂  and ̂ (ω)

e (ψΛ - π/K, ψk + π/K). We prove p(Ej(£9 k)) < exp (e"1

for ^ > jQ. Suppose ωeEj(£,k). By Lemma 4, we have

Aaj(fZM,θj(ω)) < Aaj(fZ(ω),ψk)

i 2 1

+

We integrate each term by dp\E/il,k) and use Lemma 3. Then we have

f
< ί

v V

Γ
y+i

a-r)

<2Γ(1-

dψ{\
JΨk-a-r) UEj(t,k)

L,,

1 — a

= /! + /,,

l2 r2

COS (^ — l ) ψ

Xnnanr
n~ι sin (n —

L

jii, k))

dp(ώ)

#(<*>)}
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(41oj

and

( 1 p~ί/2

( \ g-l/2

4 l

72 < 21+«max (l, _ J L _
\ 1 — a

< 2U+" max (l, —-—W+"•>-*> W / ^ , k))
\ 1 — a)

\

4 l 0 S piE^

(since Σ n*rr+\ <±n(n + ΐ)(n + 2)(n + Z)r%\ < 2° N5 = 2ω 2 Λ .
\ n=l n=l (1 — rj + 1) '

For j > j 0 , we have

Γ ί + I (i _ r)i-« f; M2 \anf r^-'dr > Γ + ' (1 - rf-dr > 2-<J+1'1"1

J rj τι=l J ry

> 2n+a max ( l , — - —
\ 1 — a

Therefore we have, for j > j 0 ,

ί Aaύ(fΣ{ω),Θ3{ω))dv(ω)

<3Σn2 \an\
2 Γ + 1 (1 - ry-ar2n^dr p(Ej(£, k))

n=l J rj

On the other hand, we have

ί Aaj(fX(ω)9θj(ω))dp(ω)
J Ej(£,k)

> £p(Ej(£, k)) log ~ Σ n2 |α»l2 Γ + 1 ^ ~ r)l~ar2n-ldr .
1 — Tj n=l J rj

Therefore p(Ej(£, k)) < exp (e-1/2/(4V~^))2-wl2)'' for j > j 0 . Consequently,

we have p(Ej(£)) < exp ((e-1/2/(4^V))2(N-W2))J for j >j,. Choose £0 = 12N

+ 12. Then p(Ej(S0)) < exp ((e-1/2/(4/F))2-> for y > /0. By the Borel-

Cantelli lemma, we have (lim sup^^ J>Jo Ej(SQ)) = 0. So we have
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IIAa{fz, Oil- = Oίlog — * Σ n2 \an\
2 Γ'+1 (1 - ry-t*>-*dr)

\ 1 — Tj Λ-1 J*v /

y-aτ2n~ι log A
1 — r

0 — η 0 _L_ 1
J Jθ9 JO 1̂  ±9

Since

-dr
rS ί Γ ' ( 1 ~ r) 1"α r 2 n" 1 lo^ Yzr

pi 1

£ (1 - r)1-**-1 log —i-
Jo 1 —

°° 1 Γ1 1-β 2 + - 1 °° 1

m=i m Jo m=i m(ti + m) 2

dr
r

— Σ —
2 ~ α m=i m

we have

y=o n=i
Γ + 1 d - ίO - r 1 - 1 log — i — d r ^ Σ «αdog «) |αn |2 < + 00 .

J rj 1 — T n=l

Therefore ΣΓ=;ol(^«//.r> OIU < +00 a.s.. This completes the proof.
By Theorem 2, we can answer the converse problem to Corollary 3.

That is, we can show that there exists a random Taylor series fz such
that ll/rlU = +°° and ||AO(/X, OIU < +00 a.s.. For example, set a2j =
1/0' log j) 0" = 2, . 0 and an = 0 f or w Φ V (j = 2, - 0- Let Z = (Zn)?=1

be the same as in Theorem 2. Then Σ7=o(Σ2^n<2i+i|^l2)1/2 = Σ 7 - o ^ =
+ 00. Therefore /zfe) = Σ Γ = i ^ A ^ is unbounded a.s.. On the other
hand, since Σn-i (logn) |αw|2 < +00, we have ||AO(/X, OIU < +00 a.s..

The method of the proof is usual. But it has many applications.

Since the case of V(fZf 0 is typical, we show some applications for

V(fz, -).

PROPOSITION 6. Let X = (Xj£=i α^d fz be the same as in Theorem
2. For any m > 1, we have with constant c19

, 0) > c{m Γ 7f] ^Ί^l 2 r 2 w " 2

JO w = l

LEMMA 5. Let Y be the same as in Lemma 3. Then for any E e
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Proof. We have

J E;\Y\>-J7Ί2

2 j

Proof of Proposition 6. Let 2? be the event:

Vifx, 0) > 4VTm Γ V έ ̂ 2 lα.l2 * 2n-2 dr .
Jo n=l

Then we have

p(E)4/2'm Γ J f ; n2 \an\
2 r2n~2 dr

< f y(/
JE

< 2 £ Vil^Wt-dr^/iVlog-^- + JI) .

Therefore p(ίθ < e-«

PROPOSITION 7. Under the same hypothesis of Proposition 6, for

any m < 1, we fcαw, wiίfe constant c2,

> 1 — m .

LEMMA 6. Let Y be the same as in Lamma 3. Then for any E

e S3, we have

f
J E

Proof. Choose α such that p(\Y\ < a) = %p(E). Then we have

α > Γ e-s2/2ds
Jo
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Then we have

ί \Y\dp(ω)> f \Y\dp(ω)
JE JE:\Y\^a

> ap(E ;\Y\>ά) afriE
O

Proof of Proposition 7. Let E be the event:

V(fz, 0) <

We may assume

16
Γ V έ n2 \an

2r2-2dr .

Γ Λ / Σ ^2(Re anyr2n~2 dr > — Γ J f ] n2 \an\
2 r2n~2 dr .

Jo w=i 2 Jo w=i

Then we have

v V2TΓ Γ A / γ i ^ 2 l ^ | 2 r 2 n - 2 / / r
— - — m I Λ^21J

 n \an\ ™ a τ

1 Ό JO n=i

> ί F(Λ, 0)φ(o») > f dr f
Js Jo Jί

dp(ω)

Jo n=l

16 Jo w=i

Therefore we have p(E) < m. Consequently, we have

0) Γ V Σ n2 \an\
2 r2-2dr) > l - m .

Jθ n=l /16

THEOREM 21. Let X = (Xn)Z-i w^d fx be the same as in Theorem 2.

Γ V Σ n2 K| 2 r2n~2 log - 1 — dr < + oo ,
Jo * n=i 1 — r

Proof. The proof is analogous as in Theorem 2. For the sake of
completeness, we give the proof. We can assume that an's are real and
\an\ < 1. There is nothing to prove in the case of Σn=i^2\^n\2 < +oo.
Suppose that Σn-i^2lαnl2 = +°o. Let Ej be the event:
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max \fχ(reίθ)\ dr > 15 V2 Jlog \JΣn2\an\
2 r2n~2dr .

θ Jrj 1 — Tj Jrj n=l

We shall show that p{Eό) < exp (l/(3Vπ))2-^ for large j . Set Jϊ =
and ψk = 2π(k/K) (k = 0,1, , K — 1). Choose a random variable 0/
such that

dr .Γ + 1 l/χ(.)(^^(ω))| dr = max Γ + 1 |/ί(.,(re<#)
J ry θ J rj

Let #,(&) (fc = 0, .- , X - 1 ) be the event: Ej and ^(ω) e [ψft - π/K,

ψk + π/K). We prove p(Ej(k)) < exp (1/(3Λ/~TΓ))2-5^ for large /. Suppose

ωeEjik). Then

K n=

Therefore

Γ+l\fίM
Jrj

rj K w=2

Integrate each term by dp\Ejik) and use Proposition 6. Then we have

f
J E

f
Ej(k)

(2 Γ + 1 V έ W2 |αn|
2r2«-2dr + π2-«- J]n2\an\

\ J rj n=l w=2

Since ΣΓ=i^2l«n|2= +°°> there exists /„ such that

2rj n=l

for all j > j0. Then we have, for j > j0

1 —

< 3 Γ+1 Vέ
J rj w=l

X
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Therefore p(Ej(k)) < exp (1 /(SV π ))2~v for j > jQ. Consequently, p(E3)

< exp (l/(3v/^Γ))2- ?' for j > j 0 . So we have

max Γ + 1 \fχ(reiθ)\ dt = θ( Vlog —^ Γ+1 Vέ
Jrj \ 1 — Tj Jrj rc=l

Since Γ Λ/Σ ̂ Ί^I 2 ^ 2 n " 2 log—-—dr < +oo, we have
Jθ ^ n=l 1 — T

\\V(fx, OIU < Σ \Xn\n\an\r^ + f; max Γ + 1 |/χ(^ < # )l^ < +°° a.s..

This completes the proof.

Next, we consider one of converse problems for Theorem 2.

THEOREM 3. Let \a\ < 1 and let fx(z) = J^=ιXnanz
n be a random

Taylor series by X = (ZJ~= 1. // lim s u p ^ (log ΛΓ)"1 Σ»-i ^ffi]^α l^l2 =

+ oo α̂ cZ ̂ α | α π | 2 = 0(1), then lim s u p ^ ^ Aa(f%9 θ) — +oo /or αίZ <? α.s..

For the proof, we use the probability space ( f l χ β , 8 x S , p χ p ) .

We denote by /[ ] the expectation. Define a sequence Y = (ΓJ~=1 of

random variables on Ω x β by Yw(ίc, ω) = εn(x)Xn(ώ).

LEMMA 7. Lei (vj)J=0 (vQ = 1) 6e an increasing sequence of positive

integers. Set Pγj(θ) = Aa(f#, θ) — Aa(f}j-\ θ) and

( \ 1/2

Σ i{Yl)cSn,n)\anf) (j = 1 , 2 , • • • ) •

Lei ^ be the event:

There exists θ such that Pγj(θ) < \q) for j = 1, .,//.

we have, with positive constants B,β (0 < β < 1),

( μ l/2

Proo/. We denote by (i7, S3', pf) = φ x fl, 8 x S3, p x p). Set fl^ =

Π»y-ι<ns»> n̂ X J« The element is denoted by (Xj,ωj). Let (ί2j, 83̂ , Py) be

the usual probability space. We consider (Ω', S3', p') as the product space

iY\U^,Y\u%,WUP% Set
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QvM = = Aa(f}> - f?-\θ)

and

Rγj(θ) = RTj[(xuωd, ••-, (x

= 2 Re ( Σ Ynane
in° Σ Ymamca(n,m)elm») .

\vj-i<n<,vj m<.vj-i /

Then we have PYj{θ) = Qrj(θ) + Rγβ). Let E(θ,j) be the event: Qγβ)
< \q) or Rγβ) < 0. We show j/(Γfi-ι E(6> JJ) < f f o r s°me γ (0 < γ < 1).
F o r a n y {(x*,a>t)}lz\, le t E[(x*,ωf); k = 1, • • - , / - 1]((?) b e t h e e v e n t :

Qrsixj, ωj)(β) < i # or β^K^*, ωf), , (xf_lt ωf.,), (Xj, ωj)](θ) < 0 .

By the Lemma 1, we have, with constant η (0 < η < 1),

β) > t<ή) > η .

Suppose Qr0,,&})(0) > WJ and RYjKx*,ωf), • - ΛxJ-i,at}-ύΛZj,&j)'\(0)

for some (xj,ώj). Then we have QYJ(—Xj,ώj)(θ) > %q) and

RrjKxf, ω*), ••-, (xj-u a>J_d, (~Xj,&MΘ) > 0 .

Therefore we have

p'j(.Qrj(θ) > Wi and

Ryj[(xf, ωf), ••-, (Xf-ι, a>W), (Xj,a>j)](θ) ̂  0) > \η .

That is, p'jiEKx*, a>t) k = 1, , j - l](θ)) < 1 - \η (=γ). We have

= I
μ-1

< γp[ X

ί>'μ(E[(xk,

X

= l, ",μ- l\)divΊ X XV'μ-d

< γ" .

Let F(θ,§) be the event: PYj{θ) < \tfs. Then F(θ,j) c E{θ,j). There-
fore Π5-i f(0> Λ C Π?=i ^(^» j) We write ψ 4 = 2π(k/K) (k = 0, • , K -1),
where if is an integer which will be determined later. Then we have
P'OJf-o1 Π5-ι *X*». /)) ^ ̂ r " Next, we estimate HPi-jH.. We have

Prβ) = Σ Σ

Σ
vj-ι<.m<,vj
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Therefore we have

\\Pγj\U < 4»j Σ \Yn\ \an\ Σ |Γ«I K l ca(n,m)

<4v, Σ I ^ I K I V ^ O M O Σ \Ym\\am\VcXm,m)

< 4*5 V Σ Yl\anfca(n,n) V " ! ] Yl\amf ca(rn,m) .
n<,vj vj-i<m<:Vj

We have AHP'yJJ < 4i^(Σ;U QD1/2<1J Consequently, we have

p'(\\P'rjL > (4^)- 1 ^ ) < 16πK-Vj(± ςfcfqj1 .
\k=l /

Let Fμ be the event: ||Pί-,||. < (AπYιKq) for j = \, ,μ. Then

( μ \ 1/2

Σβi) supfoji ^l,...^}.
For any 0, there exists A; such that \PTJ(0) - PTj(φ*)\ < πK~ι \\P'YS\U.

Therefore PYj(ψk) < TCR-1 HP^IL + Prβ). If (x,ω)eEμΓlFμ, then we
have πK~ι ||Fr(*,β)j||-o < \Q) and PYj(θ) < \q) for some θ and j = 1, ,/i.
Therefore we have for some fc, PY{χίω)j(ψic) < jQ) (j = 1, ,μ). Hence
w e h a v e ^ Π F ^ c U ϊ l ϊ n S - i ^ C ^ Λ . That is, ^ c ^ U U ί : ί n 5
Consequently, we have

P T O < Kf + 16τrX->;(έ g?.)/ sup {(z;1 y = 1, . . . , μ) .

Let K be the integer part of γ~μ/2. Then we have, with positive con-
stant By

( μ \ 1/2

Σqή s u p ^ i - l , . . . , ^ / 2 .
This completes the proof.

Proof of Theorem 3. We can assume £[Y2J = £[X2J < 1 and
cα(n,^)|αw|2 < 1 for all n. Let £ (£ > 2) be an integer. We define a
sequence (1̂ )7=1 of integers, inductively. Set v0 = 1. Assume that {ι̂ }§iί
are already chosen. Then let ι>μ be the smallest integer such that vμ >
v,-i and Σ , M < . ^ ^[yilcβ(n, %) |αTO|2 (-g2,) > £. Set c, = (log vμ)" Σl-i Ql
By the assumption limsup^oo (logiV)~^^=i^[^]^al^l2 = +00 and q) <
£ + 1 (j — 1,2, •)> we have lim sup^^^ cμ — +00. We have

( μ \l/2

Σ 2J { 1 / 1

μ \l/2

Σ 92,J sup {qj1 / = 1, ,
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= (£- 1)"V exp (3 ± g}-L - μ log A)
\ y=i c, β)

<(£- I)"1// exp (δtf + 1 ) — - log -)μ .
\ cμ β)

Since lim infp-0O cj1 = 0, we have

( f \l/2

Σ Ql) sup {ίj1; j = 1, ..,μψ = 0 .
7 1 /

(
.7 =

By Lemma 7, we have lim i n ί ^ p'(Eμ) = 0. Let G(i,rri) be the event:

there exists θ such that PYj(θ) < \ί for j = m, m + 1, . Since G(^, 1)

c Eμ for all //, we have p'(G(£, 1)) = 0. By the same method, we have

p'(G(£, m)) =0 for all m, & (m, £ = 2,3, . . ) . Therefore p/(UΓ=2 US-i G(^, m))

= 0. This show that lim sup^^ PYj(θ) = +oo holds for all 61 a.s. (pxp).

Since Aa(jp,0) = Pγj(θ) + Aa{f?-\θ) > PYj(θ), we have
lim sup Aβ(/f, θ) = +oo for all 0 a.s. ( p x p ) .

There exists ε* = (e*)~βl (ε* = 1 or -1) such that lim s u p ^ Aa(f$x, θ) =

+ co for all θ a.s.. Since {X^=l are symmetric, (by the similar method as

in Theorem 1,) we have lim sup^^ Aa(fg, θ) = +oo for all θ a.s.. This

completes the proof.
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