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MAPPINGS OF NONPOSITIVELY CURVED MANIFOLDS

SAMUEL I. GOLDBERG
υ

1. Introduction.

In recent papers with S. S. Chern [3] and T.Ishihara [4], the author
studied both the volume—and distance—decreasing properties of harmonic
mappings thereby obtaining real analogues and generalizations of the
classical Schwarz-Ahlfors lemma, as well as Liouville's theorem and the
little Picard theorem. The domain M in the first case was the open ball
with the hyperbolic metric of constant negative curvature, and the target
was a negatively curved Riemannian manifold with sectional curvature
bounded away from zero. In this paper, it is shown that M may be
taken to be any complete Riemannian manifold of non-positive curvature.

THEOREM 1. Let f:M-+N be a harmonic K-quasiconformal map-
ping of Riemannian manifolds of dimensions m and n, respectively. If
M is complete, and (a) the sectional curvatures of M are nonpositive
and bounded below by a negative constant —A, and (b) the sectional
curvatures of N are bounded above by the constant — ((m — l)/(k —
X))kAK4, k = min (m, n), then f is distance-decreasing. If m = n and
(b) is replaced by the condition (bθ the sectional curvatures of N are
bounded away from zero by —AK\ then f is volume-decreasing.

Thus, even in the 1-dimensional case, that is, even when I is a
Riemann surface, the theorem is a generalization of Schwarz's lemma.
P. J. Kiernan [8] assumed the ratio of distances attained its maximum
on M in order to achieve this.

By assuming / is a mapping of bounded dilatation of order K (see
[6]), a more general result may be obtained.

The concept of a K-quasiconf ormal mapping of equidimensional mani-
folds, m = n > 2, was introduced by Lavrentiev, Markusevic and Kreines
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in 1938, but it did not receive serious attention until the mid fifties.
This notion was subsequently extended in [5] to include the cases m Φ n.

The proof of the theorem is inspired by the technique used so suc-
cessfully to obtain the generalized Schwarz-Ahlfors lemma, as well as
the real analogues and generalizations of Liouville's theorem and Picard's
first theorem (see [5], §5), viz., the manifold M is exhausted by convex
open submanifolds defined in terms of the "distance from a point" func-
tion. This function is continuous and, in fact, convex since the sectional
curvature of M is nonpositive.

2. Harmonic mappings and curvature.

We begin by reviewing the theory of harmonic mappings as found

in [3]. Let ds\ and ds2

N be the Riemannian metrics of M and N, respec-

tively. Then, locally,

efeϊ, = ω\ + - + ωl , ds\ = ω*2 + • • + ωf

where the ωt and ω* are linear differential forms in M and N, respec-

tively. (In the sequel, the range of indices i,j9k, ••• = 1 , « ,m, and

a, 6, c, = 1, , n.) The structure equations in M are

= Σ ωJ

d«»ij = Σ °>ik Λ ωkj — — Σ Rijke<»k Λ ω£ .
k 2 M

The Ricci tensor RiS is defined by

Rij = Σ Rikjlc

and the scalar curvature by

R = Σ -̂ ίi

Similar equations are valid in N, where we will denote the corresponding
quantities in the same notation with asterisks.

Let / : M —• N be a C°° mapping, and

where / * is the pull-back mapping, that is the dual of the tangent map-

ping / # . If eu , em and fl9 •••,/» are orthonormal bases of the tangent
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spaces TX{M) and Tf(x)(N), respectively, then

(/*)**< - Σ M^a .
a

It is evident that

is an upper bound for the ratio function of distances on M and 2V,
respectively (see §3 for the definition of the norm).

Later on we will drop /* in such formulas when its presence is
clear from the context.

The covariant differential of A? is defined by

(2.1)

with

(2.2)

The

(2.3)

DAf =

mapping / is

dAf +

called

Aΐr-

harmonic

3

— Λa

if

a Λ

u — v

Taking the exterior derivative of (2.1), and employing the structure
equations in M and N, we obtain

(2.4) Σ DAfj A ωj = - 1 Σ A*RjiUωk A ωe - 1 Σ AJβ*ββdω* Λ α>*

3 2 ,̂*,/ 2 &,c,d

where

DAfj = dAfy + Σ A4>fβ + Σ AjyωM + Σ M^kj = Σ A?yfcω* (say) .
δ A k k

From (2.4)
(2.5) Afa - Afkj = -Σ AϊBHti - Σ A

By (2.2) and (2.5), the laplacian

JA? = Σ MM = Σ A.U = Σ MM + Σ A^R
Λ k k 3

is easily calculated. For a harmonic mapping

(2.6) JA? - Σ AϊRJt - Σ Bί
3 δ,c,<Z,fc
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Put M = ||/*lί2. Then

(2.7) du = Σ ujωj
3

where

yΔ.o) Uj = Δ 2_j ^-i^-ij

Taking the exterior derivative of (2.7), we get

Σ ί dujc —- Σ uίωn Λ ό)fc = 0 .

We may therefore set

Σ 2

where ujΊc = ^ A i . Thus, from (2.8),

For a harmonic mapping, (2.5) yields the laplacian

(2.9) ^Au=λ Σ UJJ = Σ (A?y)
2 + Σ

Δ Δ 3 aΛJ aΛJ

Let Aα = (A?, . . , AJ) and A€ = (AJ, , A?) be local vector fields in
M and N, respectively. Then, locally, Σ IIAΊΓ = Σ \\Aι\\2 = 11/*II2. If M

is pinched, that is, if there are constants Cx and C2 such that

Ci < sectional curvature of M < C2,

then it is easily checked that

(m - l)C t II/JI2 < Σ RijA?A? < (m - 1)C21|/*||2 .

Let || At Λ AjH denote the area of the parallelogram spanned by At and

A3 at each point. Then,

The last term in formula (2.9) may be expressed as

ΣR*boaA?A]AiA* = 22R*(A i t A } ) \\At A
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where R^iAi^Aj) denotes the sectional curvature of N along the section

spanned by At and Aό at each point. Hence, if the sectional curvature

of N is bounded above by a nonpositive constant — B, we obtain

- Σ RLcA?A>AlA« > 2B || Λ2/*ll2 .

3. 2Γ-quasiconformal mappings.

Let VΊ and V2 be Euclidean vector spaces over the reals of dimen-

sions m and n, respectively, and let A: Vλ —> V2 be a linear mapping.

Let β,, ,β m and f19 -,fn be orthonormal bases of V1 and V29 respec-

tively. If p <^mm(m,n), A may be extended to the linear mapping

Λ p A: Ap Vλ -» Λ p V2 given by

Λ p A{eiχ A Λ eip) = Aetl A Λ Aeip

where 1 < iλ < i2 < < ip < m.

Denoting the dual space of Vx by Vf9 Ap A may be regarded as an

element of ΛpVf®ΛpV2, the space of Λ p V2-valued p-forms. Set

Aβi = ΣA}fa, put / = OΊ, , ip) with 1 < ^ < i2 < < ip < m, J = (a19

• , αp) with 1 < α2 < < ap < n, and let D{ denote det (Aj^), where the

î  are the components of / and the aa are the components of J. Moreover,

let

βj - eiχ A Λ eip , / j = / α i Λ Λ /«, , ^ = β*1 Λ Λ ^

where θ\ - - ,θm is the dual basis of β1? , eTO. Then,

the sum being taken over all possible / and J.

The inner products on Vλ and V2 induce an inner product < , > on

ApV* ® ApV2, and a norm | |Λ P A| | is then defined by

II Λ p A||2 = Σ <ΛP A(ej), Λ p

Set G = ιAA. Then,

| |Λ pA|| 2 = trace Λ P G , p < min(m,n) .

In the sequel, we assume rank A = fc. Then, fc < min (m, ̂ ) and

rank G — k. Let ^ > ^2 > > λk > λk+1 = = λm — 0 be the eigen-

values of G. If v < fc, trace Λ P G is the p-th elementary symmetric
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function of the positive eigenvalues of G, that is

trace A* G = Σ K K .

From Newton's inequalities, we therefore obtain

(3.1) [ | | Λ * AW2/(k)]/P > \\\/\qA\\2/(k)]1/q > l < p < q < k .

Assume now that A has maximal rank k. By an orthogonal trans-
formation A is transformed to a diagonal matrix with entries γt = λ]/2, ί
= 1, , k. Let S10'1 be the unit sphere of dimension k — 1 in Vx. Then
A(Sk~λ) is an ellipsoid of dimension k — 1 in V2. For a given constant
JRL > 1, A is said to be K-quasiconformal if the ratio of the largest to
the smallest axes of the ellipsoid ACS*"1) is less than K. Since γx >
> fa > 0, A is K-quasiconformal if and only if γ1/γk < K or λ1/λk < K2.
As || Λp A ||2 is the p-th elementary symmetric function of ^ > > λk

> 0, p < k, we then obtain

< K2\\\W AW2/(kJ\1/Q » 1 < P < 9 < k

if A is K-quasiconformal.
Let f:M->N be a C°° mapping. Then, the norm ||ΛP/*|| may be

regarded as the "ratio function of intermediate volume elements" of M
and N. In particular, ||Λ*/*|| is the ratio of volume elements when
k = m = n, where k = rank/. If rank/* = k everywhere, then

(3.2) [|| Λ V*ll2 /(k)]/P > [ll Λ^Λ|| 2/( f c)] 1 / 3 , 1 < V < Q < k .

Let / be a C°° mapping of maximal rank and K > 1. Then, / is
K-quasίconformal if at each xe M, (f*)x is a ίC-quasiconformal linear
mapping of TX(M) into Tfix)(N).

LEMMA 3.1. // / is K-quasiconformal, then

' l<V<q<k.
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4. Proof of Theorem 1.

Let ds2

M be a Riemannian metric on M conformally related to ds2

M.

Then, there is a function p > 0 on M such that ds2

M = p2ds2

M. Let & =

Σ(Af)2 = p'lΣXA?)2, and let J be the laplacian associated with ds2

M. Then

Δ

— Σ \Aij) + 2_j tiijAiA* — 2_J ^abcdA

+ p-4 Σ A?[A?ί4 - 2 A ^ + (m -

+ (m - 2)Aj(pί4 - 2pjVi)]

where yt is given by dlogp = 2 2V«i> a n d Pî  — P^ is defined by

(4.1) Σ PiJωί = dVi ~ Σ P^«

If / is harmonic with respect to (ds2

M, ds2

N), then

1 M = Σ (Afj)2 + Σ RijAfAf - Σ Ri^Aϊ

+ (m - 2)p~4[Σ AfAfjPj + Σ MAa

Let u attain its maximum at x. Then at x,

du = 2p- A?A?J -

- 2pipj)] .

- 0 ,

so

and

Σ
Sit X.

+

Σ AfAϊj = Pj Σ (A?)2 ,

ij - 2ptpj) = Σ AtAjto + δ
ί3

- 2piPj]

LEMMA 4.1. Let f:M-+N be harmonic with respect to (ds2

M,ds2

N),

and let u attain its maximum at x e M. If the symmetric matrix func-

tion

Xυ = Pa + diS Σ (Pic)2 ~ ΪPiPj

is positive semi-definite everywhere on M, then

- Σ Rtuak^MA* < - Σ RiΛΛ]

at x.
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Assume now that M is simply connected. Let y be a point of M

and denote by d(x,y) the distance-from-2/ function. Then

)Y, x e M

is C°° and convex on M (see [2]). The function

τ(x) = d(x, y)

is also convex, but it is only continuous on M. It is, however, C°° in

M — {y}. The convex open submanifolds

Mp = {xeM\t(x) <p}

of M exhaust M, that is M = LΛ<°° Af,
The nonnegative function

vp = log p

is a C°° convex function on M,, that is its hessian

where tt is given by dt = J^ωi and t€i is its covariant derivative (see
(4.1)), is positive semi-definite. Observe that vp -> oo on the boundary
9M, of Λff, and for x fixed, ^(a?) -> 0 as p-» oo.

Consider the metric ds2 = e2vpds2 on Mp. Then,

tl = e~2Ό'u =

is nonnegative and continuous on the closure Af, of M^ and vanishes on

δM^. Since M^ is compact, u has a maximum in Mp. We compute the

matrix Xυ when p = e*>. It is easily seen that p< = (v^), (the right hand

side being given by dvp = Σ{v^tω^y and p ^ = (v^)^, so that

Since the function ί(^) is convex, the matrix XtJ is positive semi-definite,

so from Lemma 4.1
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Σ D * Δa Δb Ac Λd <^ V /? Aa

The relation between Rtj and Rid is given by

= Rtl -
p — ί p — t

from which

zλ^dt, dty)δi},
— t /

(4.2) - e-—±{m - 2) Σ t{JA?Aj -S—JLΔt ||/* |β

m — 1,

To see this, let {ώj be an orthonormal coframe such that ώt =
Then,

ώi = # Λ ύ)ί

= cίp Λ ωt

= — # Λ ώ< + Σ
V

= d log p A ώi +

Now, we know

<2 log p = dvp = Σ

Hence,

*δi = Σ (Vp)j<»j Aώi + Σώj A ωH

= Σ <fy A (ωif + (vP^)

= Σ ώ^ A {ω^ + ( O , ) ^ - (v̂ )

Thus, we obtain

Substituting this in — Σ RijktΦk A ώ4 = Σ ώik A ώkj — dώij9 gives
Li

λ. 2 Rmeωk A ωe
Li

= Σ (ω« + (v̂ fO)* - ( ^ ^ Λ (ωkj
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+ d(vp)i Λωj + (vjidωj - d{vp)ά A ωt — {vp)^)

= Σ o)ik A ωkj — dωij

- Σ (d(vp\ + (vp)kωkί) A ωj + Σ (d(vp)j + (vp)kωkj) A ωt

+ Σi (Vphivjjctojc A ωj + Σ (VplicivJjCui Aωk — Σ (vjlcύi A ω3

= ~ Σ

+ ivp)ό{vp)βik - Σ (VpYhtittδu - δuδjk)\ωk A ωe .

Thus, we get

V2Rim = β<ifcί - (tf,)<fc(i>,),, + (v^)iΛ* + (vp)jkδu

- (VphAk + i^P)iivp)kδje - OΛ<Λ)A*

- (^/v^A, + ivp)3{vp)βik - Σ ( ^ ( ί i ^ i -

LEMMA 4.2. For eαcfe ?̂, ίfeere exists a positive constant ε(p) such
that the inequality

- Σ RtjAϊA*

holds on Mp. Moreover, ε(p)-*O as p—> oo.

Proof. Since <d£, dί> = Aτ\dτ, dτ} = 4ί, the last term on the right
hand side of (4.2) tends to zero as p-*oo. The lemma will follow if
we can show that Δτ is bounded as r—> oo. For, Δt — 2τΔτ + 2(dτ,dτ)
= 2(£*zfτ + 1). Under the circumstances (p — t)Δt/p2 will tend uniformly
to zero. Moreover, since the matrix ttj is positive semi-definite, the
quadratic form Σ ί<Λβ^y ^ ô(O> — t)/p)2u, where ^0 is the least upper
bound of the largest eigenvalues of tij on Mp.

To see that Δτ is bounded as τ-> oo, observe that the level hyper-
surfaces of τ are spheres S with y as center. The hessian D2τ of τ can
be identified with the second fundamental form of those spheres, extend-
ed to be 0 in the normal direction. For, the value of D2τ on a vector
v is the second derivative of τ along the geodesic generated by v. Along
a geodesic from y, τ is linear, so the second derivative is 0. This shows
that D2τ is 0 on the normals to the spheres. One way of viewing the
second fundamental form is as follows. On the tangent space TX(S) we
define a function δ(v) to be the signed distance from exp .̂ (v) to S. Then,
the second fundamental form h is the hessian of δ at 0, where TO(TX(S))
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is identified with TX(S) in the usual way, that is,

h(w, w) = -|l(0)(ί(tw)) , w e TX(S) .

d2

But, for S = τ" 1 ^), the signed distance to S is simply τ — r, so — ( 0 )
dt2

-(d(tw)) is just the second derivative of τ — r along the geodesic

t-+ expx(tw). Since r is constant, this is just D2τ(w,w). It follows

that Δτ — trace D2τ = trace h = (m — 1) mean relative curvature of S.

If the curvature K>a2 [in fact, if the Ricci curvature > (m —

then from [1 pp. 247-255]

If we put a2 = —or2, then

Jτ < (m — l)α coth aτ .

It is now clear that Δτ is bounded as τ-> oo.

To complete the proof of the theorem, Lemmas 4.1 and 4.2 imply

- Σ R*uΛΐA)A\A) < [(m - 1)A + e]ft

at x where ε-»0 as p-+ oo. Let ||Λp/ίiί||/0 denote the norm of Λpf* with

respect to ds2. Then, if the sectional curvature of N is bounded above

by a negative constant — B,

2β| |Λ 2/*| | 2, < [(m - J

at as, where ε —> 0 as p—> oo. It follows from Lemma 3.1 that

everywhere on Mp. Since this inequality holds for every p and

limllΛH2, = IIΛH2, we conclude that

The first part of the theorem follows by taking B = ((m — l)/(fc — 1))

• kAK4. Applying the inequality (3.2) we conclude that
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Putting k = m = n and Z? = AZ4, the volume-decreasing statement is ob-
tained. The assumption of simple connectedness is clearly not essential.

By taking M — Em with the standard flat metric the above proof
quickly yields the following real version and generalization of Liouville's
theorem as well as Picard's first theorem originally obtained in [4].
However, the definition of if-quasiconformality must be slightly revised
to allow for the possibility that /* vanish at each point x of M.

THEOREM 2. Let N be an n-dimensional Riemannian manifold with
negative sectional curvature bounded away from zero. Then, if f:Em

—> N is a harmonic quasίconformal mapping, it is a constant.
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