MAPPINGS OF NONPOSITIVELY CURVED MANIFOLDS

SAMUEL I. GOLDBERG ${ }^{11}$

1. Introduction.

In recent papers with S. S. Chern [3] and T.Ishihara [4], the author studied both the volume-and distance-decreasing properties of harmonic mappings thereby obtaining real analogues and generalizations of the classical Schwarz-Ahlfors lemma, as well as Liouville's theorem and the little Picard theorem. The domain M in the first case was the open ball with the hyperbolic metric of constant negative curvature, and the target was a negatively curved Riemannian manifold with sectional curvature bounded away from zero. In this paper, it is shown that M may be taken to be any complete Riemannian manifold of non-positive curvature.

THEOREM 1. Let $f: M \rightarrow N$ be a harmonic K-quasiconformal mapping of Riemannian manifolds of dimensions m and n, respectively. If M is complete, and (a) the sectional curvatures of M are nonpositive and bounded below by a negative constant $-A$, and (b) the sectional curvatures of N are bounded above by the constant $-((m-1) /(k-$ 1)) $k A K^{4}, k=\min (m, n)$, then f is distance-decreasing. If $m=n$ and (b) is replaced by the condition (b^{\prime}) the sectional curvatures of N are bounded away from zero by $-A K^{4}$, then f is volume-decreasing.

Thus, even in the 1 -dimensional case, that is, even when M is a Riemann surface, the theorem is a generalization of Schwarz's lemma. P. J. Kiernan [8] assumed the ratio of distances attained its maximum on M in order to achieve this.

By assuming f is a mapping of bounded dilatation of order K (see [6]), a more general result may be obtained.

The concept of a K-quasiconformal mapping of equidimensional manifolds, $m=n>2$, was introduced by Lavrentiev, Markusevic and Kreines

[^0]in 1938, but it did not receive serious attention until the mid fifties. This notion was subsequently extended in [5] to include the cases $m \neq n$.

The proof of the theorem is inspired by the technique used so successfully to obtain the generalized Schwarz-Ahlfors lemma, as well as the real analogues and generalizations of Liouville's theorem and Picard's first theorem (see [5], § 5), viz., the manifold M is exhausted by convex open submanifolds defined in terms of the "distance from a point" function. This function is continuous and, in fact, convex since the sectional curvature of M is nonpositive.

2. Harmonic mappings and curvature.

We begin by reviewing the theory of harmonic mappings as found in [3]. Let $d s_{m}^{2}$ and $d s_{N}^{2}$ be the Riemannian metrics of M and N, respectively. Then, locally,

$$
d s_{M}^{2}=\omega_{1}^{2}+\cdots+\omega_{m}^{2}, \quad d s_{N}^{2}=\omega_{1}^{* 2}+\cdots+\omega_{n}^{* 2}
$$

where the ω_{i} and ω_{a}^{*} are linear differential forms in M and N, respectively. (In the sequel, the range of indices $i, j, k, \cdots=1, \cdots, m$, and $a, b, c, \cdots=1, \cdots, n$.) The structure equations in M are

$$
\begin{gathered}
d \omega_{i}=\sum_{j} \omega_{j} \wedge \omega_{j i} \\
d \omega_{i j}=\sum_{k} \omega_{i k} \wedge \omega_{k j}-\frac{1}{2} \sum_{k, \ell} R_{i j k \ell} \omega_{k} \wedge \omega_{\ell}
\end{gathered}
$$

The Ricci tensor $R_{i j}$ is defined by

$$
R_{i j}=\sum_{k} R_{i k j k}
$$

and the scalar curvature by

$$
R=\sum_{i} R_{i i}
$$

Similar equations are valid in N, where we will denote the corresponding quantities in the same notation with asterisks.

Let $f: M \rightarrow N$ be a C^{∞} mapping, and

$$
f^{*} \omega_{a}^{*}=\sum_{i} A_{i}^{a} \omega_{i}
$$

where f^{*} is the pull-back mapping, that is the dual of the tangent mapping f_{*}. If e_{1}, \cdots, e_{m} and f_{1}, \cdots, f_{n} are orthonormal bases of the tangent
spaces $T_{x}(M)$ and $T_{f(x)}(N)$, respectively, then

$$
\left(f_{*}\right)_{x} e_{i}=\sum_{a} A_{i}^{a} e_{a}^{*}
$$

It is evident that

$$
\left\|f_{*}\right\|^{2}=\sum_{a, i}\left(A_{i}^{a}\right)^{2}
$$

is an upper bound for the ratio function of distances on M and N, respectively (see $\S 3$ for the definition of the norm).

Later on we will drop f^{*} in such formulas when its presence is clear from the context.

The covariant differential of A_{i}^{a} is defined by

$$
\begin{equation*}
D A_{i}^{a} \equiv d A_{i}^{a}+\sum_{i} A_{j}^{a} \omega_{j i}+\sum_{j} A_{i}^{b} \omega_{b a}^{*}=\sum_{j} A_{i j}^{a} \omega_{j} \text { (say) } \tag{2.1}
\end{equation*}
$$

with

$$
\begin{equation*}
A_{i j}^{a}=A_{j i}^{a} \tag{2.2}
\end{equation*}
$$

The mapping f is called harmonic if

$$
\begin{equation*}
\sum_{i} A_{i i}^{a}=0 \tag{2.3}
\end{equation*}
$$

Taking the exterior derivative of (2.1), and employing the structure equations in M and N, we obtain

$$
\begin{equation*}
\sum_{j} D A_{i j}^{a} \wedge \omega_{j}=-\frac{1}{2} \sum_{j, k, \ell} A_{j}^{a} R_{j i k \epsilon} \omega_{k} \wedge \omega_{\ell}-\frac{1}{2} \sum_{b, c, d} A_{i}^{b} R_{b a c d}^{*} \omega_{c}^{*} \wedge \omega_{d}^{*} \tag{2.4}
\end{equation*}
$$

where

$$
D A_{i j}^{a} \equiv d A_{i j}^{a}+\sum_{b} A_{i j}^{b} \omega_{b a}^{*}+\sum_{k} A_{k j}^{a} \omega_{k i}+\sum_{k} A_{i k}^{a} \omega_{k j}=\sum_{k} A_{i j k}^{a} \omega_{k} \text { (say) }
$$

From (2.4)

$$
\begin{equation*}
A_{i j k}^{a}-A_{i k j}^{a}=-\sum_{\ell} A_{\ell}^{a} R_{\ell i k j}-\sum_{b, c, d} A_{i}^{b} A_{k}^{c} A_{j}^{d} R_{b a c d}^{*} \tag{2.5}
\end{equation*}
$$

By (2.2) and (2.5), the laplacian

$$
\Delta A_{i}^{a} \equiv \sum_{k} A_{i k k}^{a}=\sum_{k} A_{k i k}^{a}=\sum_{k} A_{k k i}^{a}+\sum_{j} A_{j}^{a} R_{j i}-\sum_{b, c, d, k} R_{b a c d}^{*} A_{k}^{b} A_{k}^{c} A_{i}^{d}
$$

is easily calculated. For a harmonic mapping

$$
\begin{equation*}
\Delta A_{i}^{a}=\sum_{j} A_{j}^{a} R_{j i}-\sum_{b, c, d, k} R_{b a c d}^{*} A_{k}^{b} A_{k}^{c} A_{i}^{d} \tag{2.6}
\end{equation*}
$$

Put $u=\left\|f_{*}\right\|^{2}$. Then

$$
\begin{equation*}
d u=\sum_{j} u_{j} \omega_{j} \tag{2.7}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{j}=2 \sum_{a, i} A_{i}^{a} A_{i j}^{a} \tag{2.8}
\end{equation*}
$$

Taking the exterior derivative of (2.7), we get

$$
\sum_{k}\left(d u_{k}-\sum_{i} u_{i} \omega_{k i}\right) \wedge \omega_{k}=0
$$

We may therefore set

$$
d u_{k}-\sum_{i} u_{i} \omega_{k i}=\sum_{j} u_{k j} \omega_{j}
$$

where $u_{j k}=u_{k j}$. Thus, from (2.8),

$$
u_{k j}=2 \sum_{a, i} A_{i k}^{a} A_{i j}^{a}+2 \sum_{a, i} A_{i}^{a} A_{i k j}^{a}
$$

For a harmonic mapping, (2.5) yields the laplacian

$$
\begin{align*}
\frac{1}{2} \Delta u \equiv & \frac{1}{2} \sum_{j} u_{j j}=\sum_{a, i, j}\left(A_{i j}^{a}\right)^{2}+\sum_{a, i, j} R_{i j} A_{i}^{a} A_{j}^{a} \tag{2.9}\\
& -\sum_{\substack{a, b, c, c \\
i, j}} R_{a b c a}^{*} A_{i}^{a} A_{j}^{b} A_{i}^{c} A_{j}^{d}
\end{align*}
$$

Let $A^{a}=\left(A_{1}^{a}, \cdots, A_{m}^{a}\right)$ and $A_{i}=\left(A_{i}^{1}, \cdots, A_{i}^{n}\right)$ be local vector fields in M and N, respectively. Then, locally, $\sum\left\|A^{a}\right\|^{2}=\sum\left\|A_{i}\right\|^{2}=\left\|f_{*}\right\|^{2}$. If M is pinched, that is, if there are constants C_{1} and C_{2} such that

$$
C_{1} \leq \text { sectional curvature of } M \leq C_{2},
$$

then it is easily checked that

$$
(m-1) C_{1}\left\|f_{*}\right\|^{2} \leq \sum R_{i j} A_{i}^{a} A_{j}^{a} \leq(m-1) C_{2}\left\|f_{*}\right\|^{2}
$$

Let $\left\|A_{i} \wedge A_{j}\right\|$ denote the area of the parallelogram spanned by A_{i} and A_{j} at each point. Then,

$$
\sum_{i<j}\left\|A_{i} \wedge A_{j}\right\|^{2}=\left\|\wedge^{2} f_{*}\right\|^{2}
$$

The last term in formula (2.9) may be expressed as

$$
\sum R_{a b c a}^{*} A_{i}^{a} A_{j}^{b} A_{i}^{c} A_{j}^{d}=2 \sum_{i<j} R^{*}\left(A_{i}, A_{j}\right)\left\|A_{i} \wedge A_{j}\right\|^{2}
$$

where $R^{*}\left(A_{i}, A_{j}\right)$ denotes the sectional curvature of N along the section spanned by A_{i} and A_{j} at each point. Hence, if the sectional curvature of N is bounded above by a nonpositive constant $-B$, we obtain

$$
-\sum R_{a b c a}^{*} A_{i}^{a} A_{j}^{b} A_{i}^{c} A_{j}^{d} \geq 2 B\left\|\wedge^{2} f_{*}\right\|^{2}
$$

3. K-quasiconformal mappings.

Let V_{1} and V_{2} be Euclidean vector spaces over the reals of dimensions m and n, respectively, and let $A: V_{1} \rightarrow V_{2}$ be a linear mapping. Let e_{1}, \cdots, e_{m} and f_{1}, \cdots, f_{n} be orthonormal bases of V_{1} and V_{2}, respectively. If $p \leqq \min (m, n), A$ may be extended to the linear mapping $\wedge^{p} A: \wedge^{p} V_{1} \rightarrow \wedge^{p} V_{2}$ given by

$$
\wedge^{p} A\left(e_{i_{1}} \wedge \cdots \wedge e_{i_{p}}\right)=A e_{i_{1}} \wedge \cdots \wedge A e_{i_{p}}
$$

where $1 \leq i_{1}<i_{2}<\cdots<i_{p} \leq m$.
Denoting the dual space of V_{1} by $V_{1}^{*}, \wedge^{p} A$ may be regarded as an element of $\wedge^{p} V_{1}^{*} \otimes \wedge^{p} V_{2}$, the space of $\wedge^{p} V_{2}$-valued p-forms. Set $A e_{i}=\Sigma A_{i}^{a} f_{a}$, put $I \equiv\left(i_{1}, \cdots, i_{p}\right)$ with $1 \leq i_{1}<i_{2}<\cdots<i_{p} \leq m, J \equiv\left(a_{1}\right.$, $\left.\cdots, a_{p}\right)$ with $1 \leq a_{1}<\cdots<a_{p} \leq n$, and let $D_{I}^{J} \operatorname{denote} \operatorname{det}\left(A_{i_{\beta}}^{a_{\alpha}}\right)$, where the i_{β} are the components of I and the a_{α} are the components of J. Moreover, let

$$
e_{I}=e_{i_{1}} \wedge \cdots \wedge e_{i_{p}}, \quad f_{J}=f_{a_{1}} \wedge \cdots \wedge f_{a_{p}}, \quad \theta^{I}=\theta^{i_{1}} \wedge \cdots \wedge \theta^{i_{p}}
$$

where $\theta^{1}, \cdots, \theta^{m}$ is the dual basis of e_{1}, \cdots, e_{m}. Then,

$$
\wedge^{p} A=\sum D_{I}^{J} \theta^{I} \otimes f_{J}
$$

the sum being taken over all possible I and J.
The inner products on V_{1} and V_{2} induce an inner product \langle,$\rangle on$ $\wedge^{p} V_{1}^{*} \otimes \wedge^{p} V_{2}$, and a norm $\left\|\wedge^{p} A\right\|$ is then defined by

$$
\left\|\wedge^{p} A\right\|^{2}=\sum_{I}\left\langle\wedge^{p} A\left(e_{I}\right), \wedge^{p} A\left(e_{I}\right)\right\rangle
$$

Set $G={ }^{t} A A$. Then,

$$
\left\|\wedge^{p} A\right\|^{2}=\operatorname{trace} \wedge^{p} G, \quad p \leq \min (m, n)
$$

In the sequel, we assume rank $A=k$. Then, $k \leq \min (m, n)$ and rank $G=k$. Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}>\lambda_{k+1}=\cdots=\lambda_{m}=0$ be the eigenvalues of G. If $p \leq k$, trace $\wedge^{p} G$ is the p-th elementary symmetric
function of the positive eigenvalues of G, that is

$$
\text { trace } \wedge^{p} G=\sum_{i_{1}<\cdots<i_{p}}^{k} \lambda_{i_{1}} \cdots \lambda_{i_{p}}
$$

From Newton's inequalities, we therefore obtain

$$
\begin{equation*}
\left[\left\|\wedge^{p} A\right\|^{2} /\binom{k}{p}\right]^{1 / p} \geq\left[\left\|\wedge^{q} A\right\|^{2} /\binom{k}{q}\right]^{1 / q}, \quad 1 \leq p<q \leq k \tag{3.1}
\end{equation*}
$$

Assume now that A has maximal rank k. By an orthogonal transformation A is transformed to a diagonal matrix with entries $\gamma_{i}=\lambda_{i}^{1 / 2}, i$ $=1, \cdots, k$. Let S^{k-1} be the unit sphere of dimension $k-1$ in V_{1}. Then $A\left(S^{k-1}\right)$ is an ellipsoid of dimension $k-1$ in V_{2}. For a given constant $K \geq 1, A$ is said to be K-quasiconformal if the ratio of the largest to the smallest axes of the ellipsoid $A\left(S^{k-1}\right)$ is less than K. Since $\gamma_{1} \geq \cdots$ $\geq \gamma_{k}>0, A$ is K-quasiconformal if and only if $\gamma_{1} / \gamma_{k} \leq K$ or $\lambda_{1} / \lambda_{k} \leq K^{2}$. As $\left\|\wedge^{p} A\right\|^{2}$ is the p-th elementary symmetric function of $\lambda_{1} \geq \cdots \geq \lambda_{k}$ $>0, p \leq k$, we then obtain

$$
\left[\left\|\wedge^{p} A\right\|^{2} /\binom{k}{p}\right]^{1 / p} \leq K^{2}\left[\left\|\wedge^{q} A\right\|^{2} /\binom{k}{q}\right]^{1 / q}, \quad 1 \leq p<q \leq k
$$

if A is K-quasiconformal.

Let $f: M \rightarrow N$ be a C^{∞} mapping. Then, the norm $\left\|\wedge^{p} f_{*}\right\|$ may be regarded as the "ratio function of intermediate volume elements" of M and N. In particular, $\left\|\wedge^{k} f_{*}\right\|$ is the ratio of volume elements when $k=m=n$, where $k=\operatorname{rank} f$. If $\operatorname{rank} f_{*}=k$ everywhere, then

$$
\begin{equation*}
\left[\left\|\wedge^{p} f_{*}\right\|^{2} /\binom{k}{p}\right]^{1 / p} \geq\left[\left\|\wedge^{q} f_{*}\right\|^{2} /\binom{k}{q}\right]^{1 / q}, \quad 1 \leq p<q \leq k \tag{3.2}
\end{equation*}
$$

Let f be a C^{∞} mapping of maximal rank and $K \geq 1$. Then, f is K-quasiconformal if at each $x \in M,\left(f_{*}\right)_{x}$ is a K-quasiconformal linear mapping of $T_{x}(M)$ into $T_{f(x)}(N)$.

Lemma 3.1. If f is K-quasiconformal, then

$$
\left[\left\|\wedge^{p} f_{*}\right\|^{2} /\binom{k}{p}\right]^{1 / p} \leq K^{2}\left[\left\|\wedge^{q} f_{*}\right\|^{2} /\binom{k}{q}\right]^{1 / q}, \quad 1 \leq p<q \leq k
$$

4. Proof of Theorem 1.

Let $d \tilde{s}_{M}^{2}$ be a Riemannian metric on M conformally related to $d s_{M}^{2}$. Then, there is a function $p>0$ on M such that $d \tilde{s}_{M}^{2}=p^{2} d s_{M}^{2}$. Let $\tilde{u}=$ $\Sigma\left(\tilde{A}_{i}^{a}\right)^{2}=p^{-2} \Sigma\left(A_{i}^{a}\right)^{2}$, and let $\tilde{\Delta}$ be the laplacian associated with $d \tilde{s}_{M}^{2}$. Then

$$
\begin{aligned}
\frac{1}{2} \tilde{d} \tilde{u}= & \sum\left(\tilde{A}_{i j}^{a}\right)^{2}+\sum \tilde{A}_{i}^{a} \tilde{A}_{i j j}^{a} \\
= & \sum\left(\tilde{A}_{i j}^{a}\right)^{2}+\sum \tilde{R}_{i j} \tilde{A}_{i}^{a} \tilde{A}_{j}^{a}-\sum R_{a b c d}^{*} \tilde{A}_{i}^{a} \tilde{A}_{j}^{b} \tilde{A}_{i}^{c} \tilde{A}_{j}^{d} \\
& +p^{-4} \sum A_{i}^{a}\left[A_{j j i}^{a}-2 A_{j j}^{a} p_{i}+(m-2) A_{j i}^{a} p_{j}\right. \\
& \left.\quad+(m-2) A_{j}^{a}\left(p_{j i}-2 p_{j} p_{i}\right)\right]
\end{aligned}
$$

where p_{i} is given by $d \log p=\sum p_{i} \omega_{i}$, and $p_{i j}=p_{j i}$ is defined by

$$
\begin{equation*}
\sum p_{i j} \omega_{j}=d p_{i}-\sum p_{j} \omega_{i j} \tag{4.1}
\end{equation*}
$$

If f is harmonic with respect to ($d s_{M}^{2}, d s_{N}^{2}$), then

$$
\begin{aligned}
\frac{1}{2} \tilde{d} \tilde{u}= & \sum\left(\tilde{A}_{i j}^{a}\right)^{2}+\sum \tilde{R}_{i j} \tilde{A}_{i}^{a} \tilde{A}_{j}^{a}-\sum R_{a b c d}^{*} \tilde{A}_{i}^{a} \tilde{A}_{j}^{b} \tilde{A}_{i}^{c} \tilde{A}_{j}^{d} \\
& +(m-2) p^{-4}\left[\sum A_{i}^{a} A_{i j}^{a} p_{j}+\sum A_{i}^{a} A_{j}^{a}\left(p_{i j}-2 p_{i} p_{j}\right)\right]
\end{aligned}
$$

Let \tilde{u} attain its maximum at x. Then at x,

$$
d \tilde{u}=2 p^{-2} \sum\left[\sum A_{i}^{a} A_{i j}^{a}-p_{j} \sum\left(A_{i}^{a}\right)^{2}\right] \omega_{j}=0,
$$

so

$$
\sum A_{i}^{a} A_{i j}^{a}=p_{j} \sum\left(A_{i}^{a}\right)^{2},
$$

and

$$
\sum A_{i}^{a} A_{i j}^{a} p_{j}+\sum A_{i}^{a} A_{j}^{a}\left(p_{i j}-2 p_{i} p_{j}\right)=\sum A_{i}^{a} A_{j}^{a}\left[p_{i j}+\delta_{i j} \sum\left(p_{k}\right)^{2}-2 p_{i} p_{j}\right]
$$

at x.
Lemma 4.1. Let $f: M \rightarrow N$ be harmonic with respect to $\left(d s_{M}^{2}, d s_{N}^{2}\right)$, and let \tilde{u} attain its maximum at $x \in M$. If the symmetric matrix function

$$
X_{i j}=p_{i j}+\delta_{i j} \sum\left(p_{k}\right)^{2}-2 p_{i} p_{j}
$$

is positive semi-definite everywhere on M, then

$$
-\sum R_{a b c d}^{*} \tilde{A}_{i}^{a} \tilde{A}_{j}^{b} \tilde{A}_{i}^{c} \tilde{A}_{j}^{d} \leq-\sum \tilde{R}_{i j} \tilde{A}_{i}^{a} \tilde{A}_{j}^{a}
$$

at x.

Assume now that M is simply connected. Let y be a point of M and denote by $d(x, y)$ the distance-from- y function. Then

$$
t(x)=(d(x, y))^{2}, \quad x \in M
$$

is C^{∞} and convex on M (see [2]). The function

$$
\tau(x)=d(x, y)
$$

is also convex, but it is only continuous on M. It is, however, C^{∞} in $M-\{y\}$. The convex open submanifolds

$$
M_{\rho}=\{x \in M \mid t(x)<\rho\}
$$

of M exhaust M, that is $M=\bigcup_{\rho<\infty} M_{\rho}$.
The nonnegative function

$$
v_{\rho}=\log \frac{\rho}{\rho-t}
$$

is a C^{∞} convex function on M_{ρ}, that is its hessian

$$
\left(v_{\rho}\right)_{i j}=\frac{1}{(\rho-t)^{2}} t_{i} t_{j}+\frac{1}{\rho-t} t_{i j}
$$

where t_{i} is given by $d t=\Sigma t_{i} \omega_{i}$ and $t_{i j}$ is its covariant derivative (see (4.1)), is positive semi-definite. Observe that $v_{\rho} \rightarrow \infty$ on the boundary ∂M_{ρ} of M_{ρ}, and for x fixed, $v_{\rho}(x) \rightarrow 0$ as $\rho \rightarrow \infty$.

Consider the metric $d \tilde{s}^{2}=e^{2 v_{\rho}} d s^{2}$ on M_{ρ}. Then,

$$
\tilde{u}=e^{-2 v_{\rho}} u=\left(\frac{\rho-t}{\rho}\right)^{2} u
$$

is nonnegative and continuous on the closure \bar{M}_{ρ} of M_{ρ} and vanishes on ∂M_{ρ}. Since \bar{M}_{ρ} is compact, \tilde{u} has a maximum in M_{ρ}. We compute the matrix $X_{i j}$ when $p=e^{v_{\rho}}$. It is easily seen that $p_{i}=\left(v_{p}\right)_{i}$ (the right hand side being given by $\left.d v_{\rho}=\Sigma\left(v_{\rho}\right)_{i} \omega_{i}\right)$, and $p_{i j}=\left(v_{\rho}\right)_{i j}$, so that

$$
\begin{aligned}
X_{i j} & =\left(v_{\rho}\right)_{i j}+\delta_{i j} \sum\left(v_{\rho}\right)_{k}^{2}-2\left(v_{\rho}\right)_{i}\left(v_{\rho}\right)_{j} \\
& =\frac{1}{\rho-t} t_{i j}+\frac{1}{(\rho-t)^{2}}\left[\delta_{i j} \sum\left(t_{k}\right)^{2}-t_{i} t_{j}\right]
\end{aligned}
$$

Since the function $t(x)$ is convex, the matrix $X_{i j}$ is positive semi-definite, so from Lemma 4.1

$$
-\sum R_{\text {abod }}^{*} \tilde{A}_{i}^{a} \tilde{A}_{j}^{a} \tilde{A}_{i}^{c} \tilde{A}_{j}^{d} \leq-\sum \tilde{R}_{i j} \tilde{A}_{i}^{a} \tilde{A}_{j}^{a} .
$$

The relation between $\tilde{R}_{i j}$ and $R_{i j}$ is given by

$$
e^{2 v_{\rho}} \tilde{R}_{i j}=R_{i j}-\frac{m-2}{\rho-t} t_{i j}-\frac{1}{\rho-t}\left(\Delta t+\frac{m-1}{\rho-t}\langle d t, d t\rangle\right) \delta_{i j},
$$

from which

$$
\begin{align*}
\sum \tilde{R}_{i j} \tilde{A}_{i}^{a} \tilde{A}_{j}^{a}= & \left(\frac{\rho-t}{\rho}\right)^{2} \sum R_{i j} \tilde{A}_{i}^{a} \tilde{A}_{j}^{a} \\
& -\frac{\rho-t}{\rho^{2}}(m-2) \sum t_{i j} \tilde{A}_{i}^{a} \tilde{A}_{j}^{a}-\frac{\rho-t}{\rho^{2}} \Delta t\left\|f_{*}\right\|_{\rho}^{a} \tag{4.2}\\
& -\frac{m-1}{\rho^{2}}\langle d t, d t\rangle\left\|f_{*}\right\|_{\rho}^{2} .
\end{align*}
$$

To see this, let $\left\{\tilde{\omega}_{i}\right\}$ be an orthonormal coframe such that $\tilde{\omega}_{i}=p \omega_{i}$. Then,

$$
\begin{aligned}
d \tilde{\omega}_{i} & =d p \wedge \omega_{i}+p d \omega_{i} \\
& =d p \wedge \omega_{i}+\sum p \omega_{j} \wedge \omega_{j i} \\
& =\frac{1}{p} d p \wedge \tilde{\omega}_{i}+\sum \tilde{\omega}_{j} \wedge \omega_{j i} \\
& =d \log p \wedge \tilde{\omega}_{i}+\sum \tilde{\omega}_{j} \wedge \omega_{j i} .
\end{aligned}
$$

Now, we know

$$
d \log p=d v_{\rho}=\sum\left(v_{\rho}\right)_{j} \omega_{j} .
$$

Hence,

$$
\begin{aligned}
d \tilde{\omega}_{i} & =\sum\left(v_{p}\right)_{j} \omega_{j} \wedge \tilde{\omega}_{i}+\sum \tilde{\omega}_{j} \wedge \omega_{j i} \\
& =\sum \tilde{\omega}_{j} \wedge\left(\omega_{j i}+\left(v_{p}\right)_{j} \omega_{i}\right) \\
& =\sum \tilde{\omega}_{j} \wedge\left\{\omega_{j i}+\left(\left(v_{p}\right)_{j} \omega_{i}-\left(v_{p}\right)_{i} \omega_{j}\right)\right\} .
\end{aligned}
$$

Thus, we obtain

$$
\tilde{\omega}_{j i}=\omega_{j i}+\left(v_{\rho}\right)_{j} \omega_{i}-\left(v_{\rho}\right)_{i} \omega_{j} .
$$

Substituting this in $\frac{1}{2} \sum \tilde{R}_{i j k l} \tilde{\omega}_{k} \wedge \tilde{\omega}_{t}=\sum \tilde{\omega}_{i k} \wedge \tilde{\omega}_{k j}-d \tilde{\omega}_{i j}$, gives

$$
\begin{aligned}
& \frac{1}{2} \sum \tilde{R}_{i j k k} \tilde{\omega}_{k} \wedge \tilde{\omega}_{\ell} \\
& \quad=\sum\left(\omega_{i k}+\left(v_{\rho}\right)_{i} \omega_{k}-\left(v_{\rho}\right)_{k} \omega_{i}\right) \wedge\left(\omega_{k j}+\left(v_{\rho}\right)_{k} \omega_{j}-\left(v_{\rho}\right)_{j} \omega_{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\left(d \omega_{i j}+d\left(v_{\rho}\right)_{i} \wedge \omega_{j}+\left(v_{\rho}\right)_{i} d \omega_{j}-d\left(v_{\rho}\right)_{j} \wedge \omega_{i}-\left(v_{\rho}\right)_{j} d \omega_{i}\right) \\
= & \sum \omega_{i k} \wedge \omega_{k j}-d \omega_{i j} \\
& -\sum\left(d\left(v_{\rho}\right)_{i}+\left(v_{\rho}\right)_{k} \omega_{k i}\right) \wedge \omega_{j}+\sum\left(d\left(v_{\rho}\right)_{j}+\left(v_{\rho}\right)_{k} \omega_{k j}\right) \wedge \omega_{i} \\
& +\sum\left(v_{\rho}\right)_{i}\left(v_{\rho}\right)_{k} \omega_{k} \wedge \omega_{j}+\sum\left(v_{\rho}\right)_{k}\left(v_{\rho}\right)_{j} \omega_{i} \wedge \omega_{k}-\sum\left(v_{\rho}\right)_{k}^{2} \omega_{i} \wedge \omega_{j} \\
= & \frac{1}{2} \sum\left[R_{i j k \ell}-\left(v_{\rho}\right)_{i k} \delta_{j \ell}+\left(v_{\rho}\right)_{i \ell} \delta_{j k}+\left(v_{\rho}\right)_{j k} \delta_{i \ell}-\left(v_{\rho}\right)_{j \ell} \delta_{i k}\right. \\
& +\left(v_{\rho}\right)_{i}\left(v_{\rho}\right)_{k} \delta_{j \ell}-\left(v_{\rho}\right)_{i}\left(v_{\rho}\right)_{\ell} \delta_{j k}-\left(v_{\rho}\right)_{j}\left(v_{\rho}\right)_{k} \delta_{i \ell} \\
& \left.+\left(v_{\rho}\right)_{j}\left(v_{\rho}\right)_{\ell} \delta_{i k}-\sum_{h}\left(v_{\rho}\right)_{h}^{2}\left(\delta_{i k} \delta_{j \ell}-\delta_{i \ell} \delta_{j k}\right)\right] \omega_{k} \wedge \omega_{\ell}
\end{aligned}
$$

Thus, we get

$$
\begin{aligned}
p^{2} \tilde{R}_{i j k \ell}= & R_{i j k \ell}-\left(v_{\rho}\right)_{i k}\left(v_{\rho}\right)_{j \ell}+\left(v_{\rho}\right)_{i \ell} \delta_{j k}+\left(v_{\rho}\right)_{j k} \delta_{i \ell} \\
& -\left(v_{\rho}\right)_{j \ell} \delta_{i k}+\left(v_{\rho}\right)_{i}\left(v_{\rho}\right)_{k} \delta_{j \ell}-\left(v_{\rho}\right)_{i}\left(v_{\rho}\right)_{\ell} \delta_{j k} \\
& -\left(v_{\rho}\right)_{j}\left(v_{\rho}\right)_{k} \delta_{i \ell}+\left(v_{\rho}\right)_{j}\left(v_{\rho}\right)_{\ell} \delta_{i k}-\sum_{h}\left(v_{\rho}\right)_{h}^{2}\left(\delta_{i k} \delta_{j \ell}-\delta_{i \ell} \delta_{j k}\right) .
\end{aligned}
$$

Lemma 4.2. For each ρ, there exists a positive constant $\varepsilon(\rho)$ such that the inequality

$$
-\sum \tilde{R}_{i j} \tilde{A}_{i}^{a} \tilde{A}_{j}^{a} \leq[(m-1) A+\varepsilon(\rho)] \tilde{u}
$$

holds on M_{ρ}. Moreover, $\varepsilon(\rho) \rightarrow 0$ as $\rho \rightarrow \infty$.
Proof. Since $\langle d t, d t\rangle=4 \tau^{2}\langle d \tau, d \tau\rangle=4 t$, the last term on the right hand side of (4.2) tends to zero as $\rho \rightarrow \infty$. The lemma will follow if we can show that $\Delta \tau$ is bounded as $\tau \rightarrow \infty$. For, $\Delta t=2 \tau \Delta \tau+2\langle d \tau, d \tau\rangle$ $=2\left(t^{\frac{1}{3}} \Delta \tau+1\right)$. Under the circumstances $(\rho-t) \Delta t / \rho^{2}$ will tend uniformly to zero. Moreover, since the matrix $t_{i j}$ is positive semi-definite, the quadratic form $\sum t_{i j} \tilde{A}_{i}^{a} \tilde{A}_{j}^{a} \leq \lambda_{0}((\rho-t) / \rho)^{2} \tilde{u}$, where λ_{0} is the least upper bound of the largest eigenvalues of $t_{i j}$ on M_{ρ}.

To see that $\Delta \tau$ is bounded as $\tau \rightarrow \infty$, observe that the level hypersurfaces of τ are spheres S with y as center. The hessian $D^{2} \tau$ of τ can be identified with the second fundamental form of those spheres, extended to be 0 in the normal direction. For, the value of $D^{2} \tau$ on a vector v is the second derivative of τ along the geodesic generated by v. Along a geodesic from y, τ is linear, so the second derivative is 0 . This shows that $D^{2} \tau$ is 0 on the normals to the spheres. One way of viewing the second fundamental form is as follows. On the tangent space $T_{x}(S)$ we define a function $\delta(v)$ to be the signed distance from $\exp _{x}(v)$ to S. Then, the second fundamental form h is the hessian of δ at 0 , where $T_{0}\left(T_{x}(S)\right)$
is identified with $T_{x}(S)$ in the usual way, that is,

$$
h(w, w)=\frac{d^{2}}{d t^{2}}(0)(\delta(t w)), \quad w \in T_{x}(S)
$$

But, for $S=\tau^{-1}(r)$, the signed distance to S is simply $\tau-r$, so $\frac{d^{2}}{d t^{2}}(0)$ $\cdot(\delta(t w))$ is just the second derivative of $\tau-r$ along the geodesic $t \rightarrow \exp _{x}(t w)$. Since r is constant, this is just $D^{2} \tau(w, w)$. It follows that $\Delta \tau=\operatorname{trace} D^{2} \tau=\operatorname{trace} h=(m-1)$. mean relative curvature of S.

If the curvature $K \geq a^{2}$ [in fact, if the Ricci curvature $\geq(m-1) a^{2}$], then from [1; pp. 247-255]

$$
\Delta \tau \leq(m-1) a \frac{\cos a \tau}{\sin a \tau}
$$

If we put $a^{2}=-\alpha^{2}$, then

$$
\Delta \tau \leq(m-1) \alpha \operatorname{coth} \alpha \tau
$$

It is now clear that $\Delta \tau$ is bounded as $\tau \rightarrow \infty$.
To complete the proof of the theorem, Lemmas 4.1 and 4.2 imply

$$
-\sum R_{a b c d}^{*} \tilde{A}_{i}^{a} \tilde{A}_{j}^{b} \tilde{A}_{i}^{c} \tilde{A}_{j}^{d} \leq[(m-1) A+\varepsilon] \tilde{u}
$$

at x where $\varepsilon \rightarrow 0$ as $\rho \rightarrow \infty$. Let $\left\|\wedge^{p} f_{*}\right\|_{\rho}$ denote the norm of $\wedge^{p} f_{*}$ with respect to $d \tilde{s}^{2}$. Then, if the sectional curvature of N is bounded above by a negative constant $-B$,

$$
2 B\left\|\wedge^{2} f_{*}\right\|_{\rho}^{2} \leq[(m-1) A+\varepsilon] \cdot\left\|f_{*}\right\|_{\rho}^{2}
$$

at x, where $\varepsilon \rightarrow 0$ as $\rho \rightarrow \infty$. It follows from Lemma 3.1 that

$$
\left\|f_{*}\right\|_{\rho}^{2} \leq \frac{k K^{4}}{B(k-1)}[(m-1) A+\varepsilon]
$$

everywhere on M_{ρ}. Since this inequality holds for every ρ and $\lim _{\rho \rightarrow \infty}\left\|f_{*}\right\|_{\rho}^{2}=\left\|f_{*}\right\|^{2}$, we conclude that

$$
\left\|f_{*}\right\|^{2} \leq k\left(\frac{m-1}{k-1}\right) \frac{A}{B} K^{4}
$$

The first part of the theorem follows by taking $B=((m-1) /(k-1))$ $\cdot k A K^{4}$. Applying the inequality (3.2) we conclude that

$$
\left\|\wedge^{p} f_{*}\right\|^{2 / p} \leq \frac{m-1}{k-1}\binom{k}{p}^{1 / p} \frac{A}{B} K^{4}
$$

Putting $k=m=n$ and $B=A K^{4}$, the volume-decreasing statement is obtained. The assumption of simple connectedness is clearly not essential.

By taking $M=E^{m}$ with the standard flat metric the above proof quickly yields the following real version and generalization of Liouville's theorem as well as Picard's first theorem originally obtained in [4]. However, the definition of K-quasiconformality must be slightly revised to allow for the possibility that f_{*} vanish at each point x of M.

THEOREM 2. Let N be an n-dimensional Riemannian manifold with negative sectional curvature bounded away from zero. Then, if $f: E^{m}$ $\rightarrow N$ is a harmonic quasiconformal mapping, it is a constant.

Bibliography

[1] R. L. Bishop and R. J. Crittenden, Geometry of Manifolds, Academic Press Inc., New York, 1964.
[2] R. L. Bishop and B. O'Neil, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49.
[3] S. S. Chern and S. I. Goldberg, On the volume-decreasing property of a class of real harmonic mappings, Amer. J. Math. 97 (1975), 133-147.
[4] S. I. Goldberg and T. Ishihara, Harmonic quasiconformal mappings of Riemannian manifolds, Bull. Amer. Math. Soc. 80 (1974), 562-566.
[5] ——, Harmonic quasiconformal mappings of Riemannian manifolds, Amer. J. Math., to appear.
[6] S. I. Goldberg, T. Ishihara and N. C. Petridis, Mappings of bounded dilatation, Journ. of Math., Tokushima Univ. 8 (1974), 1-7.
[7] Z. Har'El, Harmonic mappings and distortion theorems. thesis, Technion, Israel Inst. of Tech., Haifa, 1975.
[8] P. J. Kiernan, Quasiconformal mappings and Schwarz's lemma, Trans. Amer. Math. Soc. 148 (1970), 185-197.

[^0]: Received September 11, 1975.

 1) Work done under partial support of National Science Foundation grant GP43688.
