
Bang-yen Chen
Nagoya Math. J .
Vol. 60 (1976), 1-6

SOME RELATIONS BETWEEN DIFFERENTIAL GEOMETRIC

INVARIANTS AND TOPOLOGICAL INVARIANTS

OF SUBMANIFOLDSυ

BANG-YEN CHEN2)

§ 1. Introduction.

Let M be an n-dimensional manifold immersed in an m-dimensional
euclidean space Em and let V and V be the covariant differentiations of
M and Em, respectively. Let X and Y be two tangent vector fields on
M. Then the second fundamental form h is given by

(1.1) VΣY = VXY + h(X, Y) .

It is well-known that h(X, Y) is a normal vector field on M and it is
symmetric on X and Y. Let ξ be a normal vector field on M, we write

(1.2) Pxξ = -Aξ{X) + Dxξ ,

where — Aξ(X) and DΣξ denote the tangential and normal components of
Then we have

(1.3) < <O

where < , > denotes the scalar product in Em. The mean curvature vector
H is defined by H = (1/ri) traced. Let S denote the length of h and a
the length of H.

In this paper we shall obtain some relations between differential
geometric invariants and a topological invariants of M. In particular,
we shall prove that, for any closed ^-dimensional submanifold M in Em

9

the geometric invariant given by the integral of Sn depends on a topol-
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ogical structure of M. Moreover, if the submanifold is ^-pinching in Em

(for the definition, see §4), then the total mean curvature, i.e., the

geometric invariant given by the integral of an, also depends on the

same topological structure of M. In particular, we see that among all

^-pinching submanifolds in Em with a fixed δ>—1, the submanifolds

with large homology groups must have large total mean curvature.

§ 2. Basic formulas.

Let ξ be a unit normal vector field on M. We define the i-th mean

curvature Kt{ξ) at ξ by

(2.1) det(/ + tAξ) = l + ±(n W ,
i=i \ ^ /

where / is the identity transformation of the tangent spaces of Jlί,ί a

parameter and (n. j = nϊ/i\(n — i)\. Let R be the curvature tensor of

M, i.e.,

R(X, Y) = VXVY - VΎVX - FV.YI

Then the Gauss equation is given by

(2.2) <β(X, Y)Z, W} = <Λ(Γ, Z), h(X, W)> - <h{X, Z), h{Y,

Let E19'- ,En be local orthonormal tangent vector fields of M. Then

the scalar curvature p is defined by

(2.3) P=£
. 7 = 1

From (2.2) and (2.3) we have

(2.4) p = n2a2 - S2 .

§ 3. Integral inequality for Sn.

Let !F be a field and let Ht(M &) be the i-th homology group of

M over the field J^. Let βi(M IF) be the dimension of the i-th homol-

ogy group HiiM;^). We define a topological invariant β(M) by

β(M) = m a x [JZ βi(M ^ ) : ^ fields) .
li=0 J

The main aim of this section is to prove the following.



DIFFERENTIAL GEOMETRIC INVARIANTS

THEOREM 1. Let M be an n-dίmensional closed manifold immersed

in a euclίdean m-space Em. Then we have

(3.1) J^ S»dV ̂  { ( |

where cn is the area of a unit nsphere. The equality sign of (3.1) holds

when and only when M is diffeomorphic to an n-sphere and M is im-

bedded as a hypersphere of an (n + ΐ)-dimensίonal linear subspace of Em.

Proof. Let M be an n-dimensional closed manifold immersed in Em

and ξ be any unit normal vector field on M. We denote by S(ξ) the

length of the second fundamental tensor Aξ at ξ. Let ξl9 •• ,? m _ n be

local orthonormal normal vector fields of M in Em and ζ = Σ?=~iw c o s TVfr

Then we have

(3.2) Aξ = Σ cos ϊrAr , Ar = Aξr .

Hence we have

(3.3) S(ξ)2 = trace (A|) = 2 cos γr cos γs trace (ArAs) .

i m-n*The right hand side of (3.3) is a quadratic form on cos ft, •• ,cosfw

Hence, we may choose local orthonormal normal vector fields ξ19 ,fm_n

such that with respect to this frame field, we have

(3.4) S(ξ)2 = Σpr cos2 γr , Pl ^ p2 ^ ^ pm_n ^ 0 ,

(3.5) Pr = trace (A2

r) = S(fr)
2 .

By the definition of S and pr we have

(3.6) S2 = Pl + + ^m_n .

In the following, let Bv be the bundle of unit normal vectors of M

in Em so that a point of Bv is a pair (#,£) where ξ is a unit normal

vector at the point x in M. Then Bv is a bundle of (m — n — l)-dimen-

sional spheres over M and is a manifold of dimension m — 1. Let 2^

be the fibre of Bv over cc. Then there is a differential form dσ of degree

m — n — 1 on β υ such that its restriction to a fibre Σx is the volume

element dΣx of i/^. Hence dσ Λ d F is the volume element of the bundle

Bv. On the bundle Bv we define a function / by

(3.7) f(x,ξ)
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For £ = Σ cos γrξr we have

(3.8) /(^,ί) = Σ

Since pr9 r = 1, , m — n, are nonnegative and Σ r cos2 jv = 1, an in-

equality of Minkowski [1, p. 21] implies that

( ^ 2/71 f Λ ϊ 2/n

{[ f»»dΣΛ {[ ( S V ) " ^ }

Moreover, we have the following identity:

(3.10) f |cos" 7vI dΣa = 2cn+p.ι/cn .
J Σs

Thus, by combining (3.6), (3.9) and (3.10), we find

(3.11) Sn ̂  Cn f fn/2dΣx .
2cm_x JΣX

On the other hand, from the definition of Kn(ξ) and an elementary

relation between elementary symmetric functions, we have S(ξ)n ;>

<Sn? \Kn(ξ)\. Hence, by using (3.11), we see that

(3.12) ί SndV ^ Vί? —^2— ί \Kn(ξ)\ dσ A dV .
.I* 2cm_x Ĵ v

By a well-known inequality of Chern-Lashof [4, II], we have

(3.13) ί \Kn(ξ)\dσί\dV^>cm_φ{M).

Thus, by combining (3.12) and (3.13), we obtain (3.1).

The remaining part of this theorem can be proved in a similar way

as the corresponding results of Theorem 4.2 in [2, p. 229]. So we omit

it.

Remark 1. Theorem 1 generalizes Theorem 4.1 of [3, II]. First,

Theorem 1 drops the assumption of nonnegativeness of the scalar cur-

vature of M. Second, if n is odd, the estimation is better than the one

given in Theorem 4.1 of [3, II].
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§4. Total mean curvature.

From Proposition 2.2 of [3, II] we see that the scalar curvature p

is always bounded from above by in — 1)S2 and bounded below by —S2,

i.e.,

(4.1) - S 2 ^ p ^ in - ΐ)S2 .

In the following, a submanifold M in Em is said to satisfy a δ-pίnchίng

in Em if we have

δS2 ^ p ^ (n - 1)S2

for some <5 ^ — 1 .

THEOREM 2. Lei M 6e cm n-dίmensional closed manifold immersed

in a euclidean m-space Em. If M satisfies a δ-pinching in Em, then we

have

(4 2)

The equality sign of (4.2) holds when and only when M is in — l)-pin-

ching in Em.

Proof. If M is ^-pinching in Em

9 then (2.4) implies

(4.3) a2 > 1 + δ S2 .
~ 2

Hence, by combining Theorem 1 and (4.3) we obtain (4.2).

Now, if the equality sign of (4.2) holds, then the equality sign of

(3.1) holds. Hence, Theorem 1 implies that M is imbedded as a hyper-

sphere of an in + l)-dimensional linear subspace of Em. In this case we

have n2a2 — nS2. Hence, by (2.4), we see that M is in — l)-pinching in

Em. The remaining part of this Theorem is trivial.

Remark 2. If δ > — 1 and M is a minimal submanifold of a unit

hypersphere of Em, then M is 5-pinching in Em when and only when

the scalar curvature p of M satisfies the following inequality:

In this case, andV is equal to the volume of M.
J M
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