Bang-yen Chen
Nagoya Math. J.
Vol. 60 (1976), 1-6

SOME RELATIONS BETWEEN DIFFERENTIAL GEOMETRIC INVARIANTS AND TOPOLOGICAL INVARIANTS OF SUBMANIFOLDS ${ }^{11}$

BANG-YEN CHEN ${ }^{2)}$

§ 1. Introduction.

Let M be an n-dimensional manifold immersed in an m-dimensional euclidean space E^{m} and let V and $\tilde{\nabla}$ be the covariant differentiations of M and E^{m}, respectively. Let X and Y be two tangent vector fields on M. Then the second fundamental form h is given by

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{1.1}
\end{equation*}
$$

It is well-known that $h(X, Y)$ is a normal vector field on M and it is symmetric on X and Y. Let ξ be a normal vector field on M, we write

$$
\begin{equation*}
\tilde{V}_{X} \xi=-A_{\xi}(X)+D_{X} \xi, \tag{1.2}
\end{equation*}
$$

where $-A_{\xi}(X)$ and $D_{x} \xi$ denote the tangential and normal components of $\tilde{\nabla}_{X} \xi$. Then we have

$$
\begin{equation*}
\left\langle A_{\xi}(X), Y\right\rangle=\langle h(X, Y), \xi\rangle, \tag{1.3}
\end{equation*}
$$

where \langle,$\rangle denotes the scalar product in E^{m}$. The mean curvature vector H is defined by $H=(1 / n)$ trace h. Let S denote the length of h and α the length of H.

In this paper we shall obtain some relations between differential geometric invariants and a topological invariants of M. In particular, we shall prove that, for any closed n-dimensional submanifold M in E^{m}, the geometric invariant given by the integral of S^{n} depends on a topol-

[^0]ogical structure of M. Moreover, if the submanifold is δ-pinching in E^{m} (for the definition, see §4), then the total mean curvature, i.e., the geometric invariant given by the integral of α^{n}, also depends on the same topological structure of M. In particular, we see that among all δ-pinching submanifolds in E^{m} with a fixed $\delta>-1$, the submanifolds with large homology groups must have large total mean curvature.

§ 2. Basic formulas.

Let ξ be a unit normal vector field on M. We define the i-th mean curvature $K_{i}(\xi)$ at ξ by

$$
\begin{equation*}
\operatorname{det}\left(I+t A_{\xi}\right)=1+\sum_{i=1}^{n}\binom{n}{i} K_{i}(\xi) t^{i}, \tag{2.1}
\end{equation*}
$$

where I is the identity transformation of the tangent spaces of M, t a parameter and $\binom{n}{i}=n!/ i!(n-i)!$. Let R be the curvature tensor of M, i.e.,

$$
R(X, Y)=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]} .
$$

Then the Gauss equation is given by

$$
\begin{equation*}
\langle R(X, Y) Z, W\rangle=\langle h(Y, Z), h(X, W)\rangle-\langle h(X, Z), h(Y, W)\rangle . \tag{2.2}
\end{equation*}
$$

Let E_{1}, \cdots, E_{n} be local orthonormal tangent vector fields of M. Then the scalar curvature ρ is defined by

$$
\begin{equation*}
\rho=\sum_{j=1}^{n}\left(\sum_{i=1}^{n}\left\langle R\left(E_{i}, E_{j}\right) E_{j}, E_{i}\right\rangle\right) . \tag{2.3}
\end{equation*}
$$

From (2.2) and (2.3) we have

$$
\begin{equation*}
\rho=n^{2} \alpha^{2}-S^{2} \tag{2.4}
\end{equation*}
$$

§ 3. Integral inequality for S^{n}.
Let \mathscr{F} be a field and let $H_{i}(M ; \mathscr{F})$ be the i-th homology group of M over the field \mathscr{F}. Let $\beta_{i}(M ; \mathscr{F})$ be the dimension of the i-th homology group $H_{i}(M ; \mathscr{F})$. We define a topological invariant $\beta(M)$ by

$$
\beta(M)=\max \left\{\sum_{i=0}^{n} \beta_{i}(M ; \mathscr{F}): \mathscr{F} \text { fields }\right\}
$$

The main aim of this section is to prove the following.

Theorem 1. Let M be an n-dimensional closed manifold immersed in a euclidean m-space E^{m}. Then we have

$$
\begin{equation*}
\int_{M} S^{n} d V \geqq\left\{\left(\frac{n}{2}\right)^{n / 2} c_{n}\right\} \beta(M), \tag{3.1}
\end{equation*}
$$

where c_{n} is the area of a unit n-sphere. The equality sign of (3.1) holds when and only when M is diffeomorphic to an n-sphere and M is imbedded as a hypersphere of an $(n+1)$-dimensional linear subspace of E^{m}.

Proof. Let M be an n-dimensional closed manifold immersed in E^{m} and ξ be any unit normal vector field on M. We denote by $S(\xi)$ the length of the second fundamental tensor A_{ξ} at ξ. Let $\xi_{1}, \cdots, \xi_{m-n}$ be local orthonormal normal vector fields of M in E^{m} and $\xi=\sum_{r=1}^{m-n} \cos \gamma_{r} \xi_{r}$. Then we have

$$
\begin{equation*}
A_{\xi}=\sum \cos \gamma_{r} A_{r}, \quad A_{r}=A_{\xi_{r}} \tag{3.2}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
S(\xi)^{2}=\operatorname{trace}\left(A_{\xi}^{2}\right)=\sum_{r, s} \cos \gamma_{r} \cos \gamma_{s} \operatorname{trace}\left(A_{r} A_{s}\right) \tag{3.3}
\end{equation*}
$$

The right hand side of (3.3) is a quadratic form on $\cos \gamma_{1}, \cdots, \cos \gamma_{m-n}$. Hence, we may choose local orthonormal normal vector fields $\bar{\xi}_{1}, \ldots, \bar{\xi}_{m-n}$ such that with respect to this frame field, we have

$$
\begin{gather*}
S(\xi)^{2}=\sum \rho_{r} \cos ^{2} \gamma_{r}, \quad \rho_{1} \geqq \rho_{2} \geqq \cdots \geqq \rho_{m-n} \geqq 0, \tag{3.4}\\
\rho_{r}=\operatorname{trace}\left(A_{r}^{2}\right)=S\left(\xi_{r}\right)^{2} . \tag{3.5}
\end{gather*}
$$

By the definition of S and ρ_{r} we have

$$
\begin{equation*}
S^{2}=\rho_{1}+\cdots+\rho_{m-n} \tag{3.6}
\end{equation*}
$$

In the following, let B_{ν} be the bundle of unit normal vectors of M in E^{m} so that a point of B_{ν} is a pair (x, ξ) where ξ is a unit normal vector at the point x in M. Then B_{ν} is a bundle of ($m-n-1$)-dimensional spheres over M and is a manifold of dimension $m-1$. Let Σ_{x} be the fibre of B_{ν} over x. Then there is a differential form $d \sigma$ of degree $m-n-1$ on B_{ν} such that its restriction to a fibre Σ_{x} is the volume element $d \Sigma_{x}$ of Σ_{x}. Hence $d \sigma \wedge d V$ is the volume element of the bundle B_{ν}. On the bundle B_{ν} we define a function f by

$$
\begin{equation*}
f(x, \xi)=S(\xi)^{2} \tag{3.7}
\end{equation*}
$$

For $\xi=\sum \cos \gamma_{r} \bar{\xi}_{r}$ we have

$$
\begin{equation*}
f(x, \xi)=\sum \rho_{r} \cos ^{2} \gamma_{r} \tag{3.8}
\end{equation*}
$$

Since $\rho_{r}, r=1, \cdots, m-n$, are nonnegative and $\sum_{r} \cos ^{2} \gamma_{r}=1$, an inequality of Minkowski [1, p. 21] implies that

$$
\begin{align*}
& \left\{\int_{\Sigma_{x}} f^{n / 2} d \Sigma_{x}\right\}^{2 / n}=\left\{\int_{\Sigma_{x}}\left(\sum \rho_{r} \cos ^{2} \gamma_{r}\right)^{n / 2} d \Sigma_{x}\right\}^{2 / n} \tag{3.9}\\
& \quad \leqq \sum\left\{\rho_{r}\left(\int_{\Sigma_{x}}\left|\cos ^{n} \gamma_{r}\right| d \Sigma_{x}\right)^{2 / n}\right\}
\end{align*}
$$

Moreover, we have the following identity :

$$
\begin{equation*}
\int_{\Sigma_{x}}\left|\cos ^{n} \gamma_{r}\right| d \Sigma_{x}=2 c_{n+p-1} / c_{n} \tag{3.10}
\end{equation*}
$$

Thus, by combining (3.6), (3.9) and (3.10), we find

$$
\begin{equation*}
S^{n} \geqq \frac{c_{n}}{2 c_{m-1}} \int_{\Sigma_{x}} f^{n / 2} d \Sigma_{x} \tag{3.11}
\end{equation*}
$$

On the other hand, from the definition of $K_{n}(\xi)$ and an elementary relation between elementary symmetric functions, we have $S(\xi)^{n} \geqq$ $\sqrt{n^{n}}\left|K_{n}(\xi)\right|$. Hence, by using (3.11), we see that

$$
\begin{equation*}
\int_{M} S^{n} d V \geqq \sqrt{n^{n}} \frac{c_{n}}{2 c_{m-1}} \int_{B_{\nu}}\left|K_{n}(\xi)\right| d \sigma \wedge d V . \tag{3.12}
\end{equation*}
$$

By a well-known inequality of Chern-Lashof [4, II], we have

$$
\begin{equation*}
\int_{B_{\nu}}\left|K_{n}(\xi)\right| d \sigma \wedge d V \geqq c_{m-1} \beta(M) . \tag{3.13}
\end{equation*}
$$

Thus, by combining (3.12) and (3.13), we obtain (3.1).
The remaining part of this theorem can be proved in a similar way as the corresponding results of Theorem 4.2 in [2, p. 229]. So we omit it.

Remark 1. Theorem 1 generalizes Theorem 4.1 of [3, II]. First, Theorem 1 drops the assumption of nonnegativeness of the scalar curvature of M. Second, if n is odd, the estimation is better than the one given in Theorem 4.1 of [3, II].

§4. Total mean curvature.

From Proposition 2.2 of [3, II] we see that the scalar curvature ρ is always bounded from above by $(n-1) S^{2}$ and bounded below by $-S^{2}$, i.e.,

$$
\begin{equation*}
-S^{2} \leqq \rho \leqq(n-1) S^{2} \tag{4.1}
\end{equation*}
$$

In the following, a submanifold M in E^{m} is said to satisfy a δ-pinching in E^{m} if we have

$$
\delta S^{2} \leqq \rho \leqq(n-1) S^{2}
$$

for some $\delta \geqq-1$.
Theorem 2. Let M be an n-dimensional closed manifold immersed in a euclidean m-space E^{m}. If M satisfies a δ-pinching in E^{m}, then we have

$$
\begin{equation*}
\int_{M} \alpha^{n} d V \geqq\left\{\frac{1}{2}\left(\frac{1+\delta}{n}\right)^{n / 2} c_{n}\right\} \beta(M) \tag{4.2}
\end{equation*}
$$

The equality sign of (4.2) holds when and only when M is ($n-1$)-pinching in E^{m}.

Proof. If M is δ-pinching in E^{m}, then (2.4) implies

$$
\begin{equation*}
\alpha^{2} \geqq \frac{1+\delta}{2} S^{2} \tag{4.3}
\end{equation*}
$$

Hence, by combining Theorem 1 and (4.3) we obtain (4.2).
Now, if the equality sign of (4.2) holds, then the equality sign of (3.1) holds. Hence, Theorem 1 implies that M is imbedded as a hypersphere of an $(n+1)$-dimensional linear subspace of E^{m}. In this case we have $n^{2} \alpha^{2}=n S^{2}$. Hence, by (2.4), we see that M is ($n-1$)-pinching in E^{m}. The remaining part of this Theorem is trivial.

Remark 2. If $\delta>-1$ and M is a minimal submanifold of a unit hypersphere of E^{m}, then M is δ-pinching in E^{m} when and only when the scalar curvature ρ of M satisfies the following inequality:

$$
\rho \geqq \frac{\delta}{1+\delta} n^{2} .
$$

In this case, $\int_{M} \alpha^{n} d V$ is equal to the volume of M.

References

[1] E. F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag, Berlin, 1961.
[2] B.-Y. Chen, Geometry of Submanifolds, M. Dekker, New York, 1973.
[3] B.-Y. Chen, On the total curvature of immersed manifolds, I, Amer. J. Math. 93 (1971), 148-162; __, II, Amer. J. Math. 94 (1972), 799-809; __, III, Amer. J. Math. 95 (1973), 636-642.
[4] S. S. Chern and R. K. Lashof, On the total curvature of immersed manifolds, I, Amer. J. Math. 79 (1957), 306-318; ——, II, Michigan Math. J. 5 (1958), 5-12.

Michigan State University

[^0]: Received July 22, 1974.
 Revised September 18, 1975.

 1) A partial result of this paper was announced in the following article "Some integral inequalities of two geometric invariants" appeared in Bull. Amer. Math. Soc. 81 (1975), 177-178.
 2) This work was partially supported by NSF Grant GP-36684.
