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CODING THEORY IN GAUSSIAN CHANNEL WITH

FEEDBACK II: EVALUATION OF

THE FILTERING ERROR

SHUNSUKE IHARA

Introduction.

The main purpose of this paper is to give a method to evaluate the
actual value of the filtering error which arises in the transmission of a
signal process, using the optimal coding, over a Gaussian channel. In
his earier papers ([4] and [7]), the author has shown a method to con-
struct an optimal causal coding for which the filtering error is minimized
and at the same time the mutual information is maximized.

A Gaussian channel is expressed in the form,

Y{t) = φ(t) + X(f) ,

where Φ(t) stands for the channel input which is a function of a Gaussian
message {ξ(s); s < t) and of the output {Y(s); s < t}, and where X( ) is
a Gaussian noise assumed to be independent of f( ). As in [4] and [7]
we assume that the input Φ( ) is limited by the average power. It has
been proved that the coding attaining the minimal error is given by a
linear algorism. We now come to the evaluation of the error, which
will be given in this paper.

In section 1, we shall prove the convergence theorem which asserts
that for any Gaussian process f( )> if ξn( ), n = 1,2, , form a sequence
of Gaussian processes converging to f( ) in the sense of mean square
for each moment t, then the error for fn( ) tends to the one for f( )
(Theorem 1). Each fn( ) can be taken to be a stepwise Gaussian process
for which the filtering error can be obtained explicitly.

The actual value of the error for a stepwise process is given by
Theorem 2, in section 2.
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128 SHUNSUKEIHARA

Section 3 will be devoted to discussions on some related topics be-
ing in line with our approach to construct an optimal coding. There
will be discussed an optimal but not necessarily causal coding. It will
be proved that there exists a coding method with which we can send a
message having the information equal to the channel capacity and the
filtering error can be minimized although the way of evaluating is some-
what different from the ealier sections (Theorem 4). It is noted that
an interesting difference between causal cases and non-causal ones ap-
pears in the evaluation of the filtering error.

It might be worth noting that an intrinsic meaning of the concept
of multiplicity of a Gaussian process may be given from the point of
view of information theory in the same spirit as the present paper (cf.
[2], [3]).

The author should like to express his thanks to Professors M. Hitsuda
and I. Kubo.

§ 1. A convergence theorem in Gaussian channel.

In this section, we establish a convergence theorem on the filtering
errors according to messages.

Let X( ) be a zero mean separable Gaussian process with the ca-
nonical representation in the sense of Hida-Cramer, (cf. [1]).

(1.1) Xit) = Σ Γ
i = l JO

where B^uYs are mutually independent Gaussian processes with inde-
pendent increment such that E\dBi(u)\2 = m^chO's are continuous measures
with the property m̂  > mi+1. The number N is called the multiplicity of
the process Z( ). The Gaussian channel treated here is the following type:

Y(fi) = Σ Γ Ft{t, u)Ai{u){Uu) - Mu)ymt(du) + X(t) ,
(1.2) i- iJo

0 < t < T{< oo) ,

where f<( )'s are messages independent of X( ), Ai(u)'s are non-negative
(non-random) functions and fi(uYs are JΓ^(Y)*) measurable functions. Let
us assume the following conditions,
(a.l) The equation (1.2) has the unique solution Y( )

*> We denote by J^(Γ) the σ-algebra generated by {Γ(s); 0 < s < t}.
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(a.2) The message ξ(-) = (?i( )> •••,?#(•)) is a N-dimensional Gaussian

process such that Eξ^t) = 0, 0 < t < T, and that 0 < Γ EξK^m^dt) < oo.
Jo

(a.3) The channel input satisfies the average power constraint:

(1.3) A\(t)E \Ut) - Λ(ί)l2 < Pi(t) , i = 1, - , N ,

iv rT

where pt'& are given positive functions such that 2 Pi(u)nti(du) < oo.
ΐ=i Jo

Here we review some results obtained in the previous papers [4]

and [7], which are useful in later. Let us denote by Φ the class of

admissible codings:

(1.4) φ = fφ(.) Φ(t) - Σ Γ FΛί, ̂ )A,(^)(f,(^) - flu^mldv) ,
I i = l j θ

satisfying (a.l) and (a.3)> .

The capacity Ct (0 < t < T) of the channel (1.2) under the constraint (1.3)

is defined by

(1.5) Ct = sup /t(f, Y) ,

where It(ξ, Y) is the mutual information between {ξ(s) 0 < s < t] and

{Y(s) 0 < s < t}, and the supremum is taken over all messages ξ satis-

fying (a.2) and all Φ e Φ. It has been shown ([4]) that

(1.6) t - 1 £ Γ
2 i = l J θ

Let a message ξ — (ξ19 , ξN) be fixed, then we say that a coding

Φ e Φ is optimal in information sense if J^f, Y) = Ct, 0 <t<T. While

a coding Φ e Φ is said to be optimal in filtering sense if the infimum of

the filtering error

(1.7) Δ(t) = inf Σ E |£,(ί) - ξi(t)\2

is attained by Φeφ, where ^(ί) = E[ζt(t)\ ^ί(Y)] and the infimum is

taken over all Φ e Φ.

We have shown the following two lemmas.

LEMMA 1. (i) (Theorem 2 of [4] and Theorem 2 of [7]). Let a

Gaussian message ξ(-) satisfy the assumption (a.2). Then the coding
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Φ* e Φ defined by the following equations (1.8) and (1.9) is optimal in

information sense and also in filtering sense,

(1.8) Y(t) = f; Γ Ft(t, u)AM(Uu) - UuDmMu) + X(t) ,
i = l j θ

(1.9) AJ(t)4(ί) = M*) » t = 1, , JV ,

wfeere

(1.10) 4(t) = #!&(«)-&(*) |2 and ξt(t) = #[?,(ί) I J*"t

(ii) (Lemma 2.4 of [4]) ΓΛ-e inequlity

A%t)Eξ%t) < Pi(t) exp Γf; ['Pj(u)m}{du)\
b-iJo J

holds.

Now the problem is to find a method evaluating the filtering error

Δ{t) = Σa-i Δitt) determnied by (1.8)-(1.10).

LEMMA 2. (Proposition 3 of [4]). Let Y{ ) and At's> be the process

and the functions given by (1.8) and (1.9). Define a process Z{ ) =

) by

(1.11) Zt(t) = Γ AMξMmldu) + BM , i = 1, , N .
Jo

Then &lZ)^3?t(Y)Ai(t) = E[Ut)\&t{Y)'\ = 'ElUt)\&rt(Z)-\ and It(ξ,Z)

It is well known that the following result can be obtained from

Lemma 2.

COROLLARY. The filtering &(t) = S[f<(«) | ̂ t (Y)] = Mfi(t)

(1.12) ^ Σ Γ
Jo

(t) = Σ Γ
i=i Jo

where hij(t, u) = AiifyHijit, u) is the solution of the following Wiener-Hopf

equation,

Ai(t)rij(tys)Aj(s)
N rt

(1.13) = Σi hίk(t>u)Ak(u)rkj(u9s)Aj(s)mk(du) + hiό{t,s) ,
fc = l Jo

0 < s < t < T , i,j = 1 , . . . , 2 V ,
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where riό{t,s) = tffo(*)£,(*)]. And then J(t) = Σf-i#l£i(*)-&(*)I2 i«
by

(1.14) # |£,(t) - &(t)|* = Aτ\t)hu(t, t) , 0 < ί < Γ .

The Corollary implies that if the equation (1.13) is solved then the
error can be evaluated. But, unfortunately, it is difficult to get the
concrete solution of (1.13) in general. Therefore we will evaluate the
error Δ(t) by an approximating method. For this purpose we prepare
a convergence theorem. At first we prove the continuity of the error
Δ(t) with respect to the power p(t).

LEMMA 3. Let pni(t), n = 1,2, , i = 1, , N be non-negative func-
tions such that

lim pni(t) = pi(t) for every 0 <t < T , i = 1, ,2V .
n-*°o

And define a process Un(t) and functions Dnί(t), ί = 1, ,2V, by (1.8)
and (1.9), replacing pi(t) by pnί(t), namely,

Un(t) = Σ Γ F ^ ^ D ^ W X ^ M ) - frOO^Wtt) + X(t) ,
ϊ=i Jo

D*ni(f)Δϊ(t) = pn <(ί) ,

(1.15) lim J?(ί) = Jt(ί) /or even/ 0 < ί < T , i = 1,

Proof. ( i ) At first we assume that ^n<(t)'s are monotone decreas-
ing as % / o o , for each 0 < t < T and i = 1, ,iV. Then it is easily
shown that Dni(t) is monotone decreasing (cf. Proof of Theorem 2 of [4])
and Δi(t) is monotone increasing (Lemma 2.3 of [4]) as n/*oo. The
monotonicity enable us to define the functions D^t) and Δ\{t) by

DM) = lim Dnt(t) and JJ(ί) = lim J?(t) .

In the same manner as in [6] we can show that if we define a process

U(.) by
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U(t) = Σ Γ F^uWMiUu) - &t))mt(du) + X(t) ,
i = l JO

(ξ%u) = ElUu)\^u(U)]) then E\Ut) - U(ί)|* - Δ\(t). Using the relations

D\(t)Δ\{t) = li

and the uniqueness of the optimal coding (cf. Theorem 2 of [4]), we have

Z)i(ί) = Ai(ί) and JΪ(t) = J i(ί)

Thus (1.15) is proved.

(ii) In case where pni(tys are monotone increasing, (1.15) can be
proved in the same way as above, since AJtΐ) is bounded ((ii) of Lemma 1).

(iii) In the general case, put

p£t(t) = sup (pkί(t) V pi(t)) and p-tf) = inf (^(t) Λ /o<(ί)) ,

(where ayb — max (α, b) and aΛb = min (α, δ)), then ^i(i) > /oni(ί) > p-Jίt)
and ^ ( t ) (/)̂ (0) is monotone increasing (decreasing, respectively) to pi(t)
as nfoo. Since (i) and (ii) are applicable to p~ and p$9 respectively,
if we define D^ and Δfn in the same manner as in (i) for p£i9 then we
have

DilLt) > Dni(f) > D-.it) , Δtnit) < Δ.it) < Δrit)

and

Dί4(ί)\D<(t), D-M/DM, Δt\t) / Δi{t) , Δr\t)\Δi{t)

as n/*oo. Thus the proof is completed.

Let (?ni( )> >?nΛr( )) (w = 1,2, •) be a Gaussian process satisfying
the condition (a.2) and denote r^(ί, s) = .Eΐ£ni(*)£nj(«)]- We introduce the
following conditions (b.l)-(b.4):
(b.l) limn_ r?t(ί, t) = r,,a, t), 0 < t < T, i = 1, .. , N.

(b.2) lim |r?/t, s) - r^(ί, s)|2 mM^m^ds) = 0 .
n-»oo Jo Jo

(b.3) There exist constants 0 < ^ < α:2 < oo such that ax < ru(t, t) < a2

and ax < rn

u(t, t) < a2 for all 0 < t < T and i = 1, , N.
(b.4) There exists a constant K > 0 such that /?*(£) < K for all 0 < t < T
and i = 1, ,N.

Now we can give the statement of our theorem.
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THEOREM 1. Define processes Yn{-) and functions Ani(t) by

X(t) ,
i=i Jo

A2

ni(t)Δni(t) = Pi(t) 9 i = l ,

where

Δnί(t) = E \ξni(t) - Li(t)\2 and ξni(t) =

Then, under the conditions (b.l)-(b.4), Δni(t) converges to Jέ(ί) for each

0 < t < T and i = 1, , N.

In order to prove Theorem 1 we need a lemma. Let us introduce

some notations for the lemma. We define processes Zn( ) = (Znl(-), - >,

ZnN( )) and ZJ(.) - {ZM ) , , ^ ( 0 ) by

(1.16) Zni(t) = Γ An<(w)f
Jo

(1.17) ZUt) = Γ A^Cw^M^Wίί) +
Jo

and define |°,zf» and p°n by (1.18), (1.19) and (1.20), respectively,

(1.18) ξ°ni(t)

(1.19) ΔUt)

(1.20) pUt) = AU

From Corollary of Lemma 1, there exist the kernels H^(t, s) and Hfj(t, s)

such that

LS) = Σ Γ HUt,u)dZnj(u)
ci.21) ς J ; ,

= Σ ff?y(ί,iί)Aβ/w)f1,i(M)mί(dM) + Σ Htjfo
j=ljθ J = l j θ

If we denote

(1.23) Δa

ni{t) = E ξt(;,
3=1 JO
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and

(1.24) Δnί(t) = E ξni(t) - Σ Γ H?j(t, u)dZnJ(u)
j=i Jo

then it is clear that

(1.25) Δni(t) < Δnί(t) , Δ°nί(t) < 2Ut).

LEMMA 4. Under the conditions (b.l)-(b.4), for every fixed t e [0, Γ],

there exist a constant M (— Mit)) < oo and numbers εn ( = εn(t)), n =

1,2, , such that lim^^^ εn = 0 and ίfcaί

(1.26) IΔni{t) - Δim <Mεny i = 1, . ., N ,

(1.27) |P<(t) - $ 4(t) | < Mεn , ί = 1, . ., N .

Proof. We can choose numbers εn(= εn(t)), n = 1,2, ., by the as-

sumptions (b.l) and (b.2), such that l i m ^ o ^ = 0 and that

(1.28) | r « ( ί , t ) - rUt, t ) \ < ε n , i = l,- , N ,

(1.29) Σ f f |rw(tt, Φ) - r?/M, -υ)|2 mάduymjidυ) < εn ,
ij JO JO

(1.30) Σ Γ | n / ί , M) - r?/ί, u)f m}(du) < εn , ί = 1, , N .
j Jθ

Now we will prove the existence of a constant Mλ{— Mx{t)) < oo such

that

(1.31)
IΔnί{t) - 2Q

ni(t)\ < Mxεn and \Δni{ϊ) - J°nί(t)\ < Mxεn ,

By the definitions, 2°ni(t) and J

t, ί) - 2 Σ Γ H?y

j Jo

Σ Γ Γ ̂ ( ί ' w)^
j,kjθjθ

(ί) can be written in the form,

, u)Anj{u)riS(]b, u)mό{du)

(*> v)Anj(u)rjk(u, v)Ank(v)mj(du)mk(dv)

+ Σ [
j Jo

and
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Jni(t) = t, t) - 2 Σ Γ H ? A u)Anj(u)rUt, u)m3{du)

So we get the inequality:

where

Γi = |r«(ί,ί)-

<2 = 2-1 H i .
j I Jo

272

t, M) - r?/ί,

and

0 Jo

X [ris(w, v) - r%(

We have /x < εn from (1.28). By the use of (ii) of Lemma 1 and the as-
sumptions (b.3) and (b.4) we get

AUt) < [rw(ί,t)]-Vi(*)β3φ [Σ f/i^WiWw)] < a^KL ,

and we get

Σ Γ [H^uiYm^du) < E \ξni(t)\2 < ru(t, t) < a2 ,
j Jo

from (1.21). Therefore it holds that

< Σ Γ ίHU^
i Jo

i Jo

- exp

and in the same way, it holds that I\ < {{a2la^KL)hn. We obtain the in-

equality \2°nt(t) ~ Δni(t)\ < Mιen9 putting Mλ = 1 + 2V(a2/a1)KL + (a.JaJ
The other inequality of (1.31) can be obtained in the same manner.

The desired inequality (1.26) follows from (1.25) and (1.31). Finally,
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the inequality (1.27) is derived from the inequality,

\pi(t) - PUt)\ = \AUt)Δni{t) ~ AUt)Δim <

Now we proceed to

Proof of Theorem 1. By (1.26), it holds that

(1.32)

On the other hand, using (1.27) we have the following relation by Lemma 3,

(1.33) lim AUt) = 4(ί) .

Thus we have, from (1.32) and (1.33), the result:

lim Δni{t) = Δt{t) .

§ 2. Evaluation of the filtering error.

We can take stepwise processes as the approximating processes ξn's

in Theorem 1. In this section, we give a method to evaluate the mini-

mal filtering error Δ(t) for such a stepwise process in a special case

where the noise X(-) — B( ) is a standard Wiener process (Theorem 2).

Consequently, we can evaluate the minimal filtering error for any

Gaussian process, using Theorem 1 and Theorem 2. The method pre-

sented in this section is applicable to the case of multiplicity one.

Let us assume, throughout this section, that the noise X( ) = 2?( )

be a standard Wiener process. Then the message f( ) of (a.2) is a

Gaussian process such that 0 < Eξ\t)dt < oo, and the optimal coding

for ξ( ) can be presented by

(2.1) Y(t) - Γ A(u){ξiu) - ξ(u))du + B(t) ,
Jo

(2.2) A\t)Δ{t) = p(t) ,

where

(2.3) Δ(t) = E |f(ί) - f(ί)|2 , ξ(t) = E[ξ(t) IPtOW ,

and p(t) is a given positive function.

Remark. In the transmission of the Gaussian message
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£«) = f] ['Flt,u)Uv)mi{du)
i = l JO

over the channel (1.8), if we assume t h a t fi( )> •••,£#(•) are mutually

independent, then

Jo
(

are mutually independent and

Therefore, for the evaluation of

A(f) = £ J<(t) = Σ £7 |?<(t) - f,(*)|2 ,
i=l i=l

it is enough to consider the case of multiplicity one.
As for the minimal filtering error Δ(t) of (2.3), the following ex-

amples are known.

EXAMPLE 1. ([5], [10]). Let ξ(t) = θ, 0 < t < T, be a deterministic
process, where θ is a Gaussian random variable with distribution N(0, γ).
Then

(2.4) A(t) = γ exp Γ- Γ piu)dv\ , 0 < t < T .

EXAMPLE 2. (Liptzer-Shiryaev [10], [11]). Let f( ) be a Gaussian
Markov process presented by

dξ(t) = ait)ξit)dt + bit)dWit) and Eξ(0) = 0 , Eξ\0) = γ > 0 ,

where TF( ) is a standard Wiener process independent of B( ) Then
Ait) is given by

j(t) == ̂  exp 2 α(s)ds exp — ^(s)ds

+ b\s) exp 2 α('u)^ exp —

We give a lemma which is used in later.

LEMMA 5. (i) The process Y( ) given by (2.1) is a standard Wiener
process.

(ii) The equation (2.1) can be rewritten in the form,
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(2.5) ?(ί) = Γ A(u)(ξ(u) - i(u))du + B(t) , t > ί0 (> 0) ,
J to

where Ϋit) = Y(t) - Y(t0), Bit) = Bit) - B(t0), ζ(u) = ξiu) - E[ξ(u) \^tQ(Y)]

and liu) = E[ζ(u)\^u(Ϋ)l

Proof, (i) It is easily shown that Y( ) is the innovation process

for the process Y0(t) = Γ A(u)ξ(u)du + B(t) (cf. Kailath [8]).
JO ^ A

(ii) It is enough to show that ξ(u) — ξ(u) = f (u) — |(^) (^ > t0). Since
y(s), s < ί0, is independent of f (ί) = Γ(ί) - Γ(t0), ί > ί0, ^ ί o (Γ) is inde-
pendentof ^ ( f ) and then ^ t t(Y) = ^ ί o (Γ) V ^ ( f ) (w > to). Therefore,
l ω = E[ξ(u)\^u(Y)] - SK(^) | f tβ(Γ)] + S[f(w)| Jfβ(Ϋ)] and ξ(u) - f(^) =
ξiu) - Ϋ | |

Remark, (i) The property (i) of Lemma 5 was first pointed out
by Liptzer-Shiryaev [10].

(ii) The property (ii) of Lemma 5 makes it possible to treat t0 as
the starting point of the channel, by replacing the message ξ by f.

Now we consider a stepwise process. Let 0 = t0 < tx < < tn = T
be a partition of the interval [0, T], And let f( ) be a Gaussian process
such that

(2.6) ξit) = 0, , tt^ <t< U ,

where (θl9 , θn) is a system of Gaussian random variables with

Eθt = 0 and £ 7 ^ = ris , i , ; = 1, -,2V .

Then we can give a formula to calculate the error Δit) for the process

£(•)•

THEOREM 2. Let f( ) be the Gaussian process given by (2.6). Then,

V Γt "1

(2.7) Δ(t) = γkk_x exp — p(u)du\ , tk_x < t < tk, k = 1, ,n ,
L Jίft-i J

where γkk.ι is determined by the following equations:

/ Ίc-l

/ o o x \rkk — Σ AM 9 k = 2 , 3 , , n — 1 ,
(2.8) ykk_x = <̂  i-i

ϊr.1 1 >

(2.9) = αLr^-i l 1 — e χ P I — J ' p{u)duVi , £ — 1, , k ,
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,o i m [rJl-iine - Σ ̂ Λ A Λ , ^ = l, , k - l ,
(2.10) aki = < \ i i /

[I , ί = fc .

Remark. γkk_t is uniquely determined by (2.8)-(2.10), inductively.

Proof. For the process Y( ) given by (2.1) and (2.2), we define a
process Yk(t) by (2.5), replacing ί0 by ί^:

( 2 . 1 1 ) Y * ( ί ) = Γ A(u)(ξk(u) - & ( w ) ) c t o + £ * ( t ) , t * - ! < t < t k ,
JtJc-l

where Γ»(t) = Y(ί) - Yί^.J, £»(«) = β(t) - B(ί*.,), ζk(u) = ξ(u) - E[ξ(u)\
^1*^(7)] and ξk(u) = E[ξk(u) | ̂ ( Γ * ) ] (M > **_,). Define random variables
4< and θu by

ô 191 ft 77717? I ΦCV W 0 1 . . h
\Cι.l.ώ) "ki JJJ L"Λ^_l I <Jr \JL g)} , -ΰ ± , , tV ,

"ke-ι — ϋke 9 % — 1 , , AC ,

θk, i = 0 ,

where ^(Ye) = ̂ tfY^, and put

Then it follows from Lemma 5 that θke>β = 1, -- ,fc, are mutually in-
dependent and that

&
\Δ.LD) EJ \Όk I <3r £Λ-« ) \ — / ^ "kί 9 % — •*-> > "^

. 1 6 ) Yk(t) = Γ i i ^ X β * * . ! - ^ M . x C w ) ) ^ + Bk(t) , t ^ x < t < t k ,
Jίfc-l

Since

(2.11) can be rewritten as follows:

(2.

where
Using (ii) of Lemma 5 and (2.4), it it concluded that the error Δ(t)

is given by (2.7).
From (2.14),(2.15) and (2.16), γkk_x is given by (2.8), since θkiyi = 1,

• , k, are mutually independent.
To prove (2.9) and (2.10) completes the proof of Theorem. Define

constants ak/s by
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(2.17) θkt-i = a*fiu-i + φu, £ = l, ,k,

where φtl is independent of θu_x. Since φkt is independent of Y/ ) and

Έ \θu_λ - θuf = r«_, exp

(by (2.4)), we have

It, = E \θktf = a\fi \θeef = αLr«-i[l - exp (

Thus (2.9) is proved. In order to prove (2.10), we put

au{m) = E[θkmθem] , 0 < m < £ < k .

Then, by (2.12), (2.17) and (2.14),

akι{m) = EKΘ^^ - θkm)(βm_x - θίm)]

(2.18) = ake(m - 1) - akmaemE \θmm\2 =
m m

.7=1 y = i

On the other hand, from (2.17), it follows that

(2.19) α t,(4 - 1) - E[ΘU_XΘUΛ = akβ \θu.λ\
2 -

The relation (2.10) follows from (2.18) and (2.19).

Theorem 1 and Theorem 2 give us a method to evaluate the mini-

mal filtering error Δ(t).

THEOREM 3. Let ζ(t), 0 < t < T, be a zero mean Gaussian process

such that r(t, s) = Eξ(t)ξ(s) is continuous in (t, s) and that r(t, t) Φ 0 for

all t. Let 0 = tn0 < t n l < < tnkn = T(n = 1,2, •) be a partition of

[0, T] such that max i α < f e ί i \t n k — tnk_λ\ ^ 0 αsn->oo, and define a Gaussian

process fn( ) 6τ/

f»(ί) = f(ί»») if tnk<t< tnk+1 .

If we denote by Δn(t) the minimal filtering error for ξn( ), then, under

the assumption (b.4), Δn(t) is given by (2.7)-(2.10) {replacing riό by r?y =

E[ξn(tni)ξn(tnj)]). And the minimal filtering error Δ{t) for f( ) is given by

(2.20) Δit) = lim Δn(t) .
W-»oo

Proof. We can easily show that the conditions (b.l)-(b.3) are satis-

fied, because r(t, s) is continuous and r(t, t) Φ 0. Thus we can apply
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Theorem 2 and we know that Δn(t) is given by (2.7)-(2.10). And we get
(2.20) from Theorem 1.

§ 3. Filtering error under non-causal coding.

We take into account non-causal codings in this section, while we
treated only causal codings in the preceding sections. We will show
that we can construct a non-causal coding which is optimal in informa-
tion sense and, at the same time, in filtering sense, and that the minimal
filtering error is determined by the ε-entropy of the message and the
channel capacity (Theorem 4).

Atfirst we will interpret the messages and the codings to be considered
in this section. Let the message ξ(t) = (fi(ί), , £^(0), 0 < t < S (< oo)
be a M-dimensional Gaussian process such that

Eξi(t) = 0 , E[ξi(s)ξj(t)] = ufa t)

and that

/^ I Eζ*(fi)vi(dt) ^ oo ,
ί = l Jθ

where v/s are measures on [0, S]. The ε-entropy i?e(?) of f( ) is defined
(cf. [9], [13]) by

where the infimum is taken over all processes η(f) = (^(ί), , ̂ (ί))> 0 <
t < S, such that

(3.2) Σ Γ £7 |f,(0 - φ)\2 vι(dt) < ε2 .
i=i Jo

On the other hand, the channel and the codings are as follows:

(3.3) Y(ί) = Φ(t) + X(t) , 0 < t < T ,

where the noise X(t) = T] Fi(t,u)dBi(u) is of (1.1) and the channel
i = l Jθ

input Φ(0 is a functional of {£(s) 0 < s < S} and {Y(w) 0 < u < t}. Note
that Φ( ) can be non-causal in the message f( ). Let us assume that
Φ( ) can be written in the form,

N ft

(3.4) Φ(t) = Y] F^(ί, v^Φiiv^miidu) , with probability one ,
ί = l Jθ
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where Φ\(t)mi(dt) < oo (with probability one), and assume that the
Jo

average power constraint is imposed on Φ( )

(3.5) E Φ % t ) < P i ( t ) , 0 < £ < Γ , t = l , . . - , N ,

where p/s are given positive functions with Ύ] pi(u)mi(du) < oo. Then
i=i Jo

the capacity Ct of the channel (3.3)-(3.5) is given by (1.6).
From the definitions, we know that if

H6(ξ) > C (= Cτ) ,

then their is no method of coding which transmit ξ( ) with reproduction
accuracy ε. The Shannon's fundamental problem ([14]) is that if

He(ξ) < C

then is it possible to construct a coding which transmit f( ) with reproduc-
tion accuracy ε. The first result of this section is to construct such a
coding.

THEOREM 4. Assume that

(3.6) He(ξ) = Cτ ,

iV ΛC

then there exists a coding method Φ*(t) = 2] Fi(t, u)Φf(u)mi(du), satisfy-
ί=i Jo

ing (3.5), such that

(3.7) t \ S % lf*(ί) - ?**(«)I2 »i(dt) = ε2 ,

where

7**(t) = S[fi(t)|^Γ(Γ*)] and Y*(jb) = Φ*(t) + X(t) .

Remark. In case where M = N = 1 and X( ) is a standard Wiener
process, the result has been obtained by Ovseevich [12].

In order to prove Theorem 4 we prepare two lemmas. The one is
concerning the ε-entropy and the other is concerning the optimal coding
for a deterministic process.

A formula to calculate the ε-entropy can be obtained in the same
manner as in 1-dimensional case (cf. [9], [13]). Let i f b e a Hubert space

Se = {φ(t) = (Pl(t), , <pM(t)) Ψi e L2([0, S], vt)}

with an inner product
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M

i=ljθ

Then the covariance operator R on ££, given by

M rs
= Σ Γ r,/*, s)φj(s)vj(ds) , p e J2? ,

i=i Jo

is symmetric, positive definite and Hilbert-Schmidt type. Denote by {λk}

the eigenvalues of R, then we have

LEMMA 6. The ε-entropy H£ξ) is given by

(3.8) H£ξ) = 1 Σ log ( A . V l) ,

where a is a constant determined by

Σ « t Λ α) = ε2 .

Let Θ be a Gaussian random variable with Eθ = 0 and Stf2 = / > 0.

Then it is known ([9], [13]) that

(3.9) HXΘ) = inf {I(θ, 8);E\Θ- θf < ε2} = 1 log (JL- V l ) .

By Lemma 1, the optimal coding (in Φ of (1.4)) for θ is given by

(3.10) Y(t) = Σ Γ ̂ i(«, ̂ )A,(^)(^ - Oiuftmiidu) + X(t) ,
i=i Jo

(3.11)

where θ(t) =

LEMMA 7. Under the optimal coding (3.10) cmd (3.11), if we put

then the following relation holds:

(3.12) He(t)(θ) = Ct, 0<t<T.

And then the error ε\t) is

(3.13) e%t) = γ exp Γ - Σ Γ M«)»»i(^)
L i = l j θ

Proof. By Corollary of Lemma 2, it holds that
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(3.14) huίt, t) = A\{t)E \θ - O(t)f = A\{tY(t) = Pi(f) ,

where hij(t, s) is the solution of the equation

(3.15) AiWγAjίs) = Σ Γ hik(t, ^A^γA^m^du) + hυ(t, s) , s<t .
ί=l Jo

Noting that fey must be in the form hi} (ί, s) = γHi(b)Aj{s), we have,

from (3.14) and (3.15), that

(3.16) ε\t) = γ\r Σ f Al(u)mk(du) + ll .

According to (3.9) we have

(3.17) He(ί)(0) - \ log \γ f] f A\{u)mk{du) + l l .

On the other hand, it is easily shown, from (1.6), (3.14) and (3.16), that

(3.18) Ct = I Σ Γ rA*t(v)\r Σ Γ Al(v)mk(dv) + lVm.idu) .
i = l J 0 L Jc=l J 0 A

The desired equation (3.12) is obtained by differentiating the right hand

sides of (3.17) and (3.18). And finally (3.13) is derived from (1.6), (3.9)

and (3.12).

By the use of Lemma 6 and Lemma 7, Theorem 4 can be proved

in the same manner as in [12]. So we show only the outline of the proof.

Outline of the proof of Theorem 4. The desired coding method

ΐ=i Jo

is given by the following progresses (i)-(iv):

( i ) Define constants a and L, for ε in (3.6), by the equation

ε

2 = f; Qk A a) = La + J] λk
k=l k>L

(we may assume that Λ /s are arranged in decreasing order),

(ii) Define 0 < Tx < - < TL by the equations

then it can be shown that TL = Γ.

(iii) Define random variables ξk, k = 1,2, - by
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where φk(t) = (<pkl(t), -,<pkM(t)) e if is an eigenfunction of R correspond-
ing to λk such that {<pk} forms a complete orthonormal system of JS?. And
define processes fi( )> i = 1, ,iV by

!,(«) = £* if T^KtKT^ i = l, . . . , # .

(iv) The coding Φf,i = 1, ,iV is given by

Φf(t) = AΛttXfi(t) - £<(ί)) ,

where A (̂£) and ξt are determined by

E \Φ*(t)\2 = A\(t)E \Ut) - Ut)\2 =

Then we can show (3.7), applying Lemma 7 to ffc on each time in-
terval (Tk_19 Tk].

From Theorem 4 we can get the following fact in the same manner
as in [5].

COROLLARY. Let f( ) = (fi( )> ^f^ί )) be a M-dimensional Gaussian
message. Then in all non-causal codings of (3.4) and (3.5), the coding
Φ* in Theorem 4 minimizes the error

(3.19) £ [*E \Ut) - ί(t)\
Jo

where ξ^t) = £^[fi(ί)|^r(y)] And ίfeen ίfee minimal filtering error ε2 is
given by (3.6).

Proof. Suppose that there exists another coding ¥ such that δ2 =

E\Ut)-Ci(t)\2Vi(dt)S£2> where ζ,(ί) = M£ι(ί) I#V(£)] and Z(ί) =
O

+ Z(t). Then by the definitions we have

(3.20) #.(£) ̂  iϊδ(f) < I(ξ, ζ) < C r

[where we use the fact that the ε-entropy He(ξ) is strictly decreasing in

£2(< Σ Γ ^fϊ(*>«Wί))V The inequality contradicts the equality (3.6).

Corollary asserts that, if we take into account non-causal codings
the minimal filtering error is determined only by the sum P(T) —
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N ΓT

Σ pi(t)mi{dt)9 since the capacity Cτ depends only upon P(T). But if
i = l JO

we treat only causal codings Φ e Φ (of (1.4)), such a fact is not expected.
To illustrate such a situation we give an example.

EXAMPLE. Let ?(•) = (£i( )> >£tf( )) be a iV-dimensional process

such that ξi(t) = θi9 0 < t < T, where θ19 , ΘN are mutually independent

and the distribution of θι is N(0, ̂ ) (suppose that yiχ > γu > > γiw).

Then it is easily shown that the minimal filtering error A(t) = Σ?=1 dt(t)

is not determined only by the sum P(t) = 2 pi(u)mi(du). Here we as-
i = l j θ

sume that the sum Pit), 0<t<T, is given. Then the method, to choose

Pi(t) such that Δ(t) is minimized, is as follows:

k = 1, •••,•&,

if t,_i < t < t t

fc = 4 + 1 , •••,#,

where ^(ί) = piίtXmiidfy/m^dt)), p(t) = 2]f.i /δϊ(0 and ί/s are determined by

The proof follows from Lemma 7 and the proof of Theorem 4.
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