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THE UNIQUENESS PROBLEM OF MEROMORPHIC MAPS

INTO THE COMPLEX PROJECTIVE SPACE

HIROTAKA FUJIMOTO

§ 1. Introduction*

In 1921, G. Pόlya showed that non-constant meromorphic functions
φ and ψ of finite genera on the complex plane C are necessarily equal
if there are distinct five values α* (1 ^ i g 5) such that φ(z) — at and
ψ(z) — at have the same zeros of the same multiplicities for each i ([8]).
Afterwards, R. Nevanlinna obtained the same conclusion for arbitrary
φ and ψ satisfying φ~ι(ai) = ψ" 1 ^) (1 <̂  i <̂  5) regardless of multiplicities.
And, some other results relating to this were given by H. Cartan ([2],
[3]), E. M. Schmid ([9]) and others. The purpose of this paper is to
give some types of generalizations of these results to the case of mero-
morphic maps into the 2V-dimensional complex protective space PN(C).

We consider q hyperplanes Hi in PN(C) located in general position
and two non-constant meromorphic maps / and g of Cn into PN(C) with
f(Cn)^Hίf g(Cn)<£Hi such that u(ftHt) = v(g9Ht) for any i, where
v(f,Hi) and v(g,Hi) denote the pull-back of the divisors (Ht) on PN(C)
by / and g respectively (c, f., Definition 3.1).

The first main result is the following

THEOREM I. // q = 32V + 1, there is a protective linear transfor-
mation L of PN(C) such that L / = g.

And, we shall prove also

THEOREM II. // q = 32V + 2 and either f or g is non-degenerate,
i.e., the image does not included in any hyperplane in PN(C), then f — g.

Moreover, we shall give some other results on the uniqueness problem
in the case q = 32V + 1 under suitable assumptions. From this we shall
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show that, if N — 2, Theorem II remains valid under weaker assumption
that q — 7 (= SN + 1). For the case N ;> 3, the author does not know
if the number of given hyperplanes in Theorem II can be replaced by
an integer smaller than 3N + 2. It is a very interesting problem to
seek the smallest integer q(N) for each N such that Theorem II holds
for arbitrarily given q(N) hyperplanes in general position.

These results will be proved by the use of the classical theorem of
E. Borel ([1]) and some combinatorial lemmas given in §2.

For a domain B and a thin analytic subset S of B we shall study
also meromorphic maps defined on B — S which have essential singular-
ities of special type along S (c.f., Definition 5.5) and give some theorems
similar to the above Theorems I and II. Moreover, meromorphic maps
/ and g into P2(C) will be studied more precisely in the last section.

§2. Combinatorial lemmas.

Let G be a torsion free abelian group and consider a g-tuple A =
(a19 a2, , aq) of elements at in G. For the subgroup A of G generated
by aly a29 , aq9 we can take a basis {b19 b2, , bt] of A, because A
is a free abelian group. Then, each at (1 <J i :g q) can be uniquely
represented as

(2.1) α, = &ί"Z# &ί"

with suitable integers &it.

(2.2) For integers ίu (l<^i <^ q, 1 ^ τ <; £), iί is possible to choose in-
tegers p19 p2> '' y Vt satisfying the condition that, for integers

h: = ίiiPi + Zi2V2 + + ZuVt

if ii = ±tj9 then

This is shown by induction on t. The case t = 1 is trivial. Assume
that there exist p19 , Pί_i with the property that

if f̂ = ± £* for integers if: = ^ ^ + + iu-ίPt-i Then, it is easy
to show that there are only finitely many integers pt such that pl9p2,
'"9pt do not satisfy the desired condition.
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DEFINITION 2.3. We shall call integers p19 p29 , pt with the property

(2.2) to be generic with respect to £iτ and the integers ίt = Σί=i £uVx to

be representations of at (1 ^ i <g #).

We have

(2.4) // αĵ αg" α™r = affaff α^;, iί fcoicfe ί/wiί

m1^iχ + m.Ji2 + + mr£ir = m j ^ + m'2^ 2 + + m ^ s .

In fact, substituting the identity (2.1) into both sides, we see

δ^&j . bγ = &?*&;* • ••&?*

for integers wr: = Σ«r=imΛ«r a n c * K = Σ ί = i w ^ v Since b19b2, — ,bt

are linearly independent in G, wr = ^ for any τ (1 ^ τ ^ ί). Therefore,

Now, we give

DEFINITION 2.5. Let q ^ r > s ^ 1. We shall call a g-tuple A =

(a19 a29 , αβ) of elements α* in G to have the property (Pr,s) if any

chosen r elements α ί ( 1 ),α l ( 2 ), •• ,α t ( r ) in A satisfy the condition that, for

any given i19 i29 , ίs (1 <̂  ix < < iβ ^ r), there exist some other j l 9 j29

•- ,js (1 ^ Λ < <is^r9{iί9ί29 - ,i,} ^ {/i,y2> *>ij) such that

Let us study relations among at for a g-tuple A = (α^ α2, , aq) with

the property (P r, s). To this end, we take representations £l9 £29 , £q of

a19 a29 - , aq for suitably chosen basis and generic integers. Changing

indices i of at if necessary, we assume

k ^ t>2 ^ * £ tq

LEMMA 2.6. /n ίfcβ α&ot β situation, it holds that

and so
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for u: = q — r + 1.

Proof. Assume that

for some v with v <u ( = g — r + 1). Among αέ (1 ^ i ^ g), we choose

r elements

By the assumption, considering the case ix = 1, i2 = 2, , is — s in

Definition 2.4, we can take some j19 j29 •••,/, (1 ^ λ < < js<^r, {jί9 j 2 ,

• , h} Φ {1,2, . , s}) such that

Then, by (2.4), we have

^(/O + 4<Λ) + + ^O s) - (A + 2̂ + + 4 )

- (^O x) - A) + (4o 2) ~ Q + ' + (4(y.) ~ A)

= 0 .

On the other hand, we see easily K = iκ ^ 0̂*,) and so £tUκ) — £κ ^ 0 for

any /c (1 ^ K ̂  s). This implies that

By the assumption, £t < £tU) for any i,j if 1 ^ i ^ s and 8 + 1 <ί i ^ r.

We have necessarily jκ = Λ: (1 ^ Λ ̂  S). This is a contradiction. We con-

clude thus Ί; ^ u. The proof of Lemma 2.6 is completed.

For the case r — 2s, we can give more precise conclusion.

LEMMA 2.7. In the same situation as in Lemma 2.6, if r — 2s

(s > 2), aι = 1 ( = ίfee smiί element of G) for any i with s <*i ^ q — s +

1, ds-ι Φ 1, αg_ s + 2 Φ

Proo/. By Lemma 2.6,

Considering the case (̂1) = 1, , c(s + 1) = s + 1, c(s + 2) = q — s + 2,

• , c(2s) = g and ix = 1, i2 = 2, - , i8_x — s — 1 and is = s + 2 in Defini-
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tion 2.5, we can take indices j19j29---j8 (1 έ h < < i% < 2s, {jl9j29

. . . , js} φ {1,2, , 8 — 1,8 + 2}) such that

whence

(2.8) 4 f ( i l ) + £tU2) + + A(y.) = 4 + 4 + + 4.-1 +

by (2.4). We define the number k by the condition that

'tiύ < <Uΰ < < ^O'*-i) < s £ c(jk) < - - < ^0

and put

{mx, m2, -. , ms_k} = {1,2, ., s - 1} -

Here, s> k. In fact, if not, *0Ί) = 1, -^fe-i) = s — 1 and so ^_ s + 2 —

ι̂(i,)> which contradicts the assumption. Canceling StUκ) (1 ^ A: ̂  k — 1)

from the both sides of (2.8), we obtain

If t(Js) ̂  Q ~ s + 2, then we get inequalities

0 ^ £tUk) + £(Uk+l) + + ^o,.,)

^ 4 1 + 4 2 + + 4^-* < 0 ,

which is a contradiction. Therefore, js^s + 1. Then, we have neces-

sarily e(jt-i) = s a n d e(Js) = 8 + 1. By the relation (2.8), we conclude

4-i + ΰqs+2 — 0, whence hs_1hq_t+2 = 1. This completes the proof.

§ 3. Two meromorphic maps with the same inverse images of hyperplanes

Let / be a meromorphic map of a domain D in Cn into PN(C). For

arbitrarily fixed homogeneous coordinates wx\w2: : wN+1 on PN(C),

we can write

on a neighborhood t/ of every point a in D with holomorphic functions

/ΐ(^) (1 ^ i ^ ^ + 1) on Z7, where they can be chosen so as to satisfy

the condition

codim {/iGs) - flz) = . . . - fN+1(z) = 0} ^ 2 .
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In the following, such a representation of / is referred to as an admis-

sible representation of / on U. If D is a Cousin-II domain, then / has

an admissible representation on the totality of D.

Let us take a hyperplane

H-.a'Wί + a2w2 + + aN+1wN+1 = 0

in PN(C) with f(D) ςt H. For any a = (al9 α2, •••αjeί), taking an admis-

sible representation / = fλ: f2: : fN+1 on a neighborhood U of a, we

define a holomorphic function

F = a1/, + a2f2 + . . . + α* + 1 /* + 1

on Z7 and expand it as a compactly convergent series

F(ux + a19 . ., un + an) = Σ ^ = o P w ( ^ , ̂ 2, , wn)

around α, where Pm is either identically zero or a homogeneous poly-

nomial of degree m.

DEFINITION 3.1. We define

v(f, H)(β) = min {m: Pm(u) =£ 0} ,

which is obviously determined independently of any choice of homogeneous

coordinates and admissible representations.

Now, let us consider two non-constant meromorphic maps / and g

of D into PN(C) and q (^ 2N + 2) hyperplanes Ht (l^i^q) in PN{C)

located in general position. Suppose that fφn) gt Hu g(Dn) gt Hi and

v(f, Hi) = v(g, Hi) for any i. Let Ht be given as

(3.2) Hi a\wλ + a\w2 + + a?+1wN+ί = 0 .

For an arbitrarily given Cousin-II subdomain U of D, we take admis-

sible representations / = fx: f2: : fN+1 and g = &: # 2: . . . : ^ + 1 on U.

We define holomorphic functions

F{ - αj/x + a\f2 + + a?+1fN+ι

and

^ = a\9ι + a\g2 + - - + af+1gN+1

on U and put

(3.3) ht(z) = -ffiL (1 ̂  t ^ g) .
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By the assumption, each hi is a nowhere zero holomorphic function on

C7. As is easily seen, the ratios hi: hό are uniquely determined inde-

pendently of any choices of homogeneous coordinates, representations

(3.2) and admissible representations. Therefore, we can consider the

well-defined holomorphic map

(3.4) h = hx\h2\ : hq

of D into Pq^iC). If D itself is a Cousin-II domain, h has an admis-

sible representation on the totality of D with functions hiiz) on D

defined by (3.3).

We shall study the case q = 2N + 2. By / w e denote the set of

all combinations / = (i19 i2, , iN+ι) (1 <̂  iλ < < iN+1 <̂  2N + 2) of in-

dices 1,2, ,2N + 2. For a point u — uγ\u2\ : ̂ + 2 e P22v+i(C) and

/ = (ij,i2, ,ίN+1) e ,/, we put ̂ 7 = ^ ^ i 2 uijί+1 and consider the map

Φ of P2ΛΓ+1(C) into PM-i(C) defined as

where M = (2N + 2 \
\N + 1/N +

PROPOSITION 3.5. /n the above situation, non-zero constants Ax (I e *f)

can be chosen independently of each f and g such that, for the maps h

defined by (3.4),

Φ h(D) c H* : - {u 6 PM.^C) : Σiei ^Uj = 0} .

Proof. Without loss of generality, we may assume that D is a

Gousin-II domain. For, by the theorem of identity, Proposition 3.5 is

true if it is shown that Φ h(U)aH* for some non-empty open subset

U of D. Let Hi (1 ̂  i <; 2N + 2) be given by (3.2). By the assumption,

any minor of degree 2V + 1 of the matrix (a) ίlJIKi) does not vanish.

Taking admissible representations / = fx: f2: •••/#+! and # = gλ: # 2 :

we rewrite the definition (3.3) of hi (1 <̂  i ^ 2iV + 2) as

(3.6) α}/x + α?/2 + - + αf+1fN+1 = ^(αlΛ + αjft + + α f + 1 ^ + 1 ) .

From these 2N + 2 identities eliminating 2iV + 2 functions f19f2, -,fN+ι>

£fu92f - ,9N+I> we get

(3.7) y : = det (αj, ,a?+1,a\hi9 ,αf+1V, 1 ̂  ί ^ 2N + 2) = 0 .
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For any combination / = (i19i29 ,ij\r+i)e^> we take J = (j19j2, ^J
such that

{h,h>--->W>h,h, ,3N+I} = {1,2, ,2ΛΓ + 2} .

And, put

A7 = (-iYN+1"N+2)/2+i>+ ' +i»"det(a^ ,

Then, by the Laplace expansion formula,

Since A7 Φ 0 for any / e J by the assumption, this gives Proposition 3.5.

§ 4. Some consequences of £. Borel's theorem.

In the following, we shall study mainly functions and maps defined
on D: = Cn or a domain Z) which is given as D: = B — S for a sub-
domain Z? of Cn and its irreducible analytic subset S. We denote by Jf *
the set of all nowhere zero holomorphic functions on D and by # the
set of all constant functions for the case D = Cn and of all holomorphic
functions on D which can be meromorphically continuable to the totality
of B for the case D = B - S. Moreover, we put ^* = V Π Jf *. Then,
as is easily seen, the multiplicative group G — £?*!<£* is a torsion free
abelian group. For two elements h and fo* in «̂ f*, we mean by the
notation

h~h*

that
Now, we recall the following theorem of E. Borel ([1]).

THEOREM 4.1. // functions huh2, ,fep m ̂ f* satisfy the condition
that hi </> hj for any i,j (Φ), then they are linearly independent over #,
i.e., a relation

a% + a% + . - + α*^ = 0

(α* e #) implies always a1 = α2 = = αp = 0.

For the proof, see [5], Theorem 3.5 and Theorem 4.1.



UNIQUENESS PROBLEM OF MEROMORPHIC MAPS

COROLLARY 4.2. // a% + a2h2 + + aphp = 0 for functions hi e

and a1 e #, ίfeen there exists a partition of indices

{1,2, , p) = 7X U 72 U U h

(Ie Π 7m = 0 , 7̂  =£ 0 ) ŝ cfc £fcα£

/or αn# ^ αwd fet — /^ for any i, j e Ie.

Remark. In Corollary 4.2, if a1 Φ 0 for any i9 each 7̂  contains

obviously at least two indices. This shows that, for any hi9 there exists

some hj (i Φ j) with hi ~ hό.

Proof of Corollary 4.2. Consider the partition {1,2, , p) = Iλ U

• U 7fe such that i and / are in the same class if and only if hi ~ hj.

Then, we can write

\ΓΊ> rιih V1^ V1 π^h V1^ Mh ft

for some c^e^ and any fixed i£el4. By Theorem 4.1, c* = 0 for any £9

which yields Corollary 4.2.

After these preliminaries, we give

PROPOSITION 4.3. Let D be a domain given as the above and as-

sume that it is a Cousin-Π domain. If meromorphic maps f and g of

D into PN{C) satisfy the condition that f(Dn) ςzί Tϊ̂ , g(Dn) gί Hi and

v(f9Hi) = v(g9Hi) for g(Ξ> 2N + 2) hyperplanes Hi (1 fg i <J q) in general

position, then the q-tuple of the canonical images of the functions hi

defined by (3.3) into G = jf*/^* has the property (P2N+2,N+I) (<?•/•>

Definition 2.5).

Proof. We choose 22V + 2 functions, say hl9 h29 9h2N+2, among fe4.

With each combination 7 = (i19i29 ,%+i) of indices 1,2, ,2JV + 2 as-

sociate the nowhere zero holomorphic functions hi = h^h^ hίN+1 on

D. By Proposition 3.5, they satisfy the identity

for non-zero constants A7. Then, by Remark to Corollary 4.2, we have

easily Proposition 4.3.

Since any one of hi may be assumed to be the constant 1 by a suit-
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able change of admissible representations, Lemma 2.6 and Lemma 2.7
imply immediately

COROLLARY 4.4. Under the same assumption of Proposition 4.3,
q — 22V functions hkl, hk2, , hkq_2N can be chosen such that hkm ~ 1
(1 <^ m <; q — 22V). And, furthermare, if ht ^ 1 for any other i, then
there exist some i, j with i Φ j and i,j φkm (1 <^m <^ q — 22V) such that
hi ~ hj or hihj ~ 1.

Remark. Theorem 4.1 remains valid under the weaker assumption
that each hi can be written as ht — /? with a not identically zero holo-
morphic function ft on D such that, for any i,j(Φ), fi/fj ^ const, in
the case Ώ ~ Cn and fi/fj has essential singularities along S in the case
Z> = 5 - S if d > p(p - 2) (c.f., [5], Remark 3.7, (ii)). By the same
argument as the above, we can prove Proposition 4.3 under the as-
sumption

»(/,#«) = i,(flr, JT<) (modd)

for a sufficiently large d depending only on 2V instead of the assumption
v(f,Hi) = v(g9Hi). And, many of the results in the following sections
remain valid under these weaker conditions. We omit here the details
in this direction.

We shall give now another application of E. BoreΓs theorem.

PROPOSITION 4.5. Let P(XU X2, , Xt) be a polynomial of t vari-
ables with coefficients in <S. If

P{KK •••-,&*) = 0

for some hί9 h2, - , ht in tf* such that h\xhv

2

% hγ & &* for any integers

( * Ί , x > 2 , • - • f V t ) Φ ( 0 , 0 9 - - , 0 ) ,

P(X19Xt,.. ,Xt) = 0.

Namely, all coefficients of P are equal to zero.

Proof. We write

P(Xlf •• ,Xt) = Σw,«*oam....gX?X? '"X?

(βvxvi—vt e ^) a n ( i assume that avlV2...vt ψ 0 for some v\,v\, ,v\. Since

Σ n hviljV2 . . . hvt 0



UNIQUENESS PROBLEM OF MEROMORPHIC MAPS 11

and hph? hγ e Jf*, we can conclude by Remark to Corollary 4.2 that

there exist some μl, μ°2, , μ\ with (v°19 v\, , 1$ Φ (μ°19 μl, , μ?) such that

and so hfx~μQih$~μ* /^""^ e ^* . This contradicts the assumption. We

have Proposition 4.5.

§ 5. Uniqueness theorems of meromorphic maps.

As in the previous sections, we consider two meromorphic maps /

and g of D into PN(C) and q(^> 22V + 2) hyperplanes Ht in P;v(O located

in general position such that f(D) ς£ Hί9 g(D) ςzί Ht and v(f,Hi) = v(g,Hi)

(l^ί^q). We study first the case D = Cn.

THEOREM 5.1. // q >̂ 3iV + 1, ίfeeπ iί is possible to choose homo-

geneous coordinates w1:w2: : wN+ι on PN(C) such that

(5.2) gx = cjlf g2 = c2f2, gN+1 = cN+1fN+1

for suitable admissible representations f = fx: f2: : fN+ι and g = g1:

02- * :
 9N+I9 where ct are some non-zero constants.

Proof. As in § 3, we define by (3.3) a nowhere zero holomorphic

function hi for each Ht. According to Corollary 4.4, we may assume

that N + 1 ( = (SN + 1) — 22V) functions among them, which we say cx\

= h19 , c^+ 1: = hN+19 are of constants. Since the ratios hx:h2: : / ^ + 1

are determined independently of a choice of homogeneous coordinates,

each Hi (1 ^ ΐ ^ 2V + 1) may be assumed to be given as

Hi: Wi = 0 .

We have then Theorem 5.1 by the definition (3.3) of ht.

Proof of Theorem I. Theorem I stated in § 1 is an immediate con-

sequence of Theorem 5.1. In fact, it suffices to take a linear transfor-

mation

Liw'i^ CiWi 1 ^ i ^ N + 1

for constants ct in Theorem 5.1.

Proof of Theorem II. In this case, ct: = hi (1 <: i <; N + 2) may be

assumed to be of constants and each Hi (1 ^ i <: 2V + 2) may be given as



12 HIROTAKA FUJIMOTO

Hi*. Wi = 0 1 ^ i ίg N + 1

and

#i\r+2: Wj + w2 + + w^+1 = 0 .

For admissible representations / = fx: f2: : fN+ι and g = gt: g2: :

#iy+i> we have the relation (5.2) and

Therefore,

\@l ^N + 2/Jl i \^2 ^iV + 2Λ/2 ~Γ ' * * I \@N + l ^N + 2/J2V + 1 """ "

Since / may be assumed to be non-degenerate, we conclude

This shows that f = g.

Here, we cannot conclude f = g without the assumption of non-
degeneracy of / or g in Theorem 5.1 even if any large number of
hyperplanes Ht in general position with v(f9 Hi) = v(g, Hi) are given.
We give an example. For an arbitrarily given g(̂ > 6), take a matrix

such that any minor of M does not vanish and

(5.3)

and consider hyperplanes

- 1) bi(bδ ~ 1)

HiiWi^O 1 ^ i ^ 3

i ϊ 4 : wx + w2 + w3 = 0

As is easily seen by (5.3), we can choose non-zero constants c19 c2, c3, (

(5 ^ i ^ ^) such that cx =£ 1 and

1. — — i ?— = — 2 ŝ — (5 ^ ^ ^ g') .
1 — di cLiiCi — di) bi(c2 — di)
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If we take meromorphic maps / = fx: f2: / 3 on Cn into P2(C) with

f(Cn) gLHi (1 ^ ϊ ^ g) and

(1 - cβ)/! + fa - c3)f2 + fa - c3)/3 = 0

and g = / x : Cχ/2: c2/3, then we see easily / =£ # and v(/, Hi) = p(#, if*) for

any i (1 ^ i ^ g).

Consider next the case D = B — S, where B is a domain in Cw and S

is an irreducible analytic subset of B. Let / be a meromorphic map

of D into PN(C). Using inhomogeneous coordinates ut: =Wi/wN+1

(1 <; i <; 2V) for homogeneous coordinates ^ : w2: : w^+1 with /(D) ςί

{wN+1 = 0}, we can write

where φ{ are meromorphic functions on D.

THEOREM 5.4. Let /, g be meromorphic maps of D into PN(C) such

that f(D) ςt Hu g(D) φ Hi and v{f9 Ht) = v(g, Ht) for 32V + 1 hyperplanes

Hi (1 ^ i <̂  3ΛΓ + 1) in general position. Then, it is possible to choose

inhomogeneous coordinates uuu2, - - ,uN such that, for representations

f = (<p{, φ{, --,φ{r) Cind g = (φϊ, φl, , φ%),

where at are meromorphic functions on the totality of B.

Proof. Take a regular point x in £ arbitrarily. We can choose a

neighborhood C7 of x such that

and

for suitably chosen local coordinates zίfz29 - ,zn with x = (0,0, ,0).

Since C7* is a Cousin-II domain, we can apply Corollary 4.4. By the

same argument as in the proof of Theorem 5.1, for functions ht on [7*

defined by (3.3), we may assume that h19h2, ,hN+1 have meromorphic

continuations to U. And, we can find easily inhomogeneous coordinates

on PN(C) such that at: = ψ\\ψ{ (l^i^N) are meromorphically continu-

able to U for representations / = (<p{, , φf

N) and # = (φl, - , <p°N). Then,

by the classical E. E. Levi's theorem, at are meromorphic on the totality
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of B. This completes the proof.

We want to get an analogy to Theorem II. To this end, we give

DEFINITION 5.5. We shall call a meromorphic map / = (φ{,φ{9 ,φQ
of D (= B — S) into PN(C) to have essential singularities of type (E) along
S if cPφζ + a2φζ + + aNφf

N is not meromorphically continuable to S for
any meromorphic functions at (1 ̂  i ^ N) on B except the case a1 = a2 =
. • = α * = 0.

THEOREM 5.6. Le£ /, g be meromorphic maps satisfying the same
conditions as in Theorem 5.3 for SN + 2 hyperplanes Hi in general
position. If f or g has essential singularities of type (E) along S, then

f = g.

Proof. For a regular point x of S, as in the proof of Theorem
5.4, taking a neighborhood U of x, we may assume that hi (l^i<^N
+ 2) are well-defined and meromorphic on U. Moreover, choosing suit-
able homogeneous coordinates and an admissible representation / = fx:
Λ :/N+I o n U* = UΠD, we have by the similar manner as in the
proof of Theorem II

(K - hN+dfi + (h2 - hN+2)f2 + + (hN+1 - hN+2)fN+1 = 0 .

Therefore,

(a, - l)φ{ + (a2 - ΐ)φζ + - + (aN - l)φf

N + (a^ + 1 - 1) = 0

for well-defined meromorphic functions φ{: = filfN+ι (X^i^N) and a3:
= hj/hN+2 (1 ̂  j ^ N + 1) which are also meromorphic on 5 by E. E.
Levi's theorem. By the assumption,

This completes the proof.

§ 6. The case that 3N + 1 hyperplanes are given.

Let /, g be meromorphic maps of a domain D stated in § 4 into
PN(C) and assume that, for SN + 1 hyperplanes Hi (1 ̂  i ^ 3JV + 1),
/(D) ςzί iϊi, #(D) ςzί ίίi and v(f,Hi) — ι>(g,Hi). Under these assumption,
we shall give more precise informations in the previous section.

THEOREM 6.1. (i) In the case D = Cn, if f or g is non-degenerate,
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then each ct of Theorem 5.1 can be chosen to be + 1 or — 1, and, more-

over, if N >̂ 2, it is impossible that exactly one ct is equal to 1.

(ii) In the case D == B — S, if f or g has essential singularities of

the type (E) along S, then each at in Theorem 5.4 can be chosen to be

of constant + 1 or — 1 and, moreover, if N^>2, it is impossible that

cti = —1 for any i (1 <; i <; N + 1).

Proof. For the proof of the case D — B — S, it may be assumed

that B = {IsJ < 1, . , |s n | < 1} and S = {zλ = 0} Π B as in the proof of

Theorem 5.4. In the following, we mean D = Cn or D = B — S for

the above B and S and by 2/f*,^, <£* and hi the ones defined as in §4

for such a domain D. By Corollary 4.4, we may assume that at least

N + 1 ht's are in ^ * and, moreover, h€ 6 ^* for the other ht because,
if hi e tf* for mutually distinct N + 2 i's, / = # by the same reason as
in the proof of Theorem II. For convenience' sake, assume h€ £ tf*
(1 ^ i ^ 22V) and or,: = hj e V* (2N + l£j ^3N + 1). Let each Ht

(1 fg i <; 32V + 1) be given as (3.2). We may assume here a\N+j = 5J
(1 ^ i, j ^ 2V + 1) by a suitable change of homogeneous coordinates. Then,
any minor of the matrix

does not vanish. Take now functions ηl9η2, ,ηt in JF* whose canonical

images into G = jf*/^* constitute a basis of the subgroup A of G

generated by the canonical images of h19h2, •• ,hZN+ι into G. Then, we

can write uniquely as

(6.2) hi = aiVi^ rfj*- (1 ^ i ^ 32V + 1)

for some at e tf* and integers £it. Choose here integers p19 p2, , pt which

are generic with respect to Sίτ and put t%\ = J^τ=1 £iτpτ (1 ^ i ^ 32V + 1).

Now, let us take a combination / = (ί19 %, , i2i\r+2) (1 ^ ii < < w + 2

^ 32V + 1) arbitrarily. As in the proof of Proposition 3.5, considering

admissible representations / = fλ: f2: - : fN+1 and g = ^ : g2: : gN+ί

related as (3.6), we obtain

(6.3) det (a\, , a?+1, αjfei, , αf+ 1^ i = i19 i2, , w + 2 ) = 0 .

Substitute the identities (6.2) into (6.3). Then, we can rewrite (6.3) as
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where P/CXΊ, X2> > Xt) is a polynomial of t variables with coefficients

in # . And, by Proposition 4.5, we have

(6.4) Pj{X19X2,...9Xt)=0.

Consider a rational function

of ζ, which is identically zero because of (6.4). On the other hand, Q/(ζ)

is also obtained by substituting hi = atf* into (6.3). We have thus

(6.5) Q7(ζ) = det (αj, , α?+ 1, a&«a\, • , α^'αf+ 1 i = < „ . . . , w + 2 ) = 0 .

Particularly, for a combination Jo = (1,2, , 22V + 2), we observe the

coefficients of terms of QIo(ζ) of the highest degree and of the lowest

degree. To this end, we may assume by Lemma 2.6

V \ -̂ iV + 1 ^ ^ "2N

Then, we have easily

/O AΛ I A, 0

det A2 0 = d e t 0 A2 = 0 ,

U A*} U . ^s*/1 3

where

A^ί1 °
\0 1 0 . . . 0

and

A? =

By the Laplace expansion formula, we conclude

where

and D2 = det ί^\ det M
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for e1 = (1,0,0, , 0) and e2 = (0,1,0, , 0). Since Hi are in general

position, we know DγΦθ and D2 Φ 0. Hence, a2

2N+1 = a2

2N+2. The same

arguments are available for the other αr/s among a2N+1, ,a3N+1. Thus,

we can conclude at — ± 1 (22V + 1 ^ i <* 32V + 1), because we may assume

To complete the proof, assume that exactly one among at (22V + 1

<; i <̂  32V + 1) is equal to — 1 , e.g., a2N+1 = a2NJr2 = = aZN — 1 and

ar3iV+1 = _ l . We shall prove first that there are at most 2V — 1 indices

i (1 <̂  i ^ 22V) such that atΦl. Suppose that aj Φ 1 for some mutually

distinct j19j2, -,jN (1 ^ /m ^ 22V). Here, changing rjτ if necessary, we

may assume that aJjr+1 = 1 for some V+i with jN+ίΦ j m (1 ^ m ^ 2V) and

1 ^ V+i ^ 22V. Putting j N + 2 = 22V + 1, . -., ;2i^+2 = 32V + 1, we consider

the identity (6.5) for a combination Iλ = (j19j2, *--,j2N+2). Particularly,

substituting ζ = 1, we get

det (fl)u, , <m

+1, αjmα)m, , ̂ ^m<TO

+1 1 ^ m ^ 22V + 2)

IB, Bf

= det N?2 0

= ±2(αjt - 1) . . . (α i i r - 1) det (B2) det

= 0 ,

where

and eN+1 = (0,0, ,0,1). This is a contradiction, because

I Bxdet (B2) Φ 0 and det I

by the assumption. Therefore, we can choose N + 1 ( = 22V — (N — 1))

indices i19 i2y , iN+1 (1 ^ iTO ^ 22V) with aim = 1.

Take now an index μ such that
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Then, \£iμ\ = \£iμ,\ for some μ' (Φ μ). In fact, if not, substitute an ^ - t h

primitive root of unity into the identity (6.5) for a combination I2: =

(iifh* * >iN+i>2N + 1, ,32V + 1). We have then a contradiction by

the same argument as the above. The fact \£iμ\ = \£t \ means that hiμ>

= hfμ for m = ± 1 . For admissible representations f =z fx\ f2: ••• :fN+1

and g = gr. g2: : fl^+i, we know #< = /« (1 ^ ί ^ N) and ^ + 1 = —/γ+ 1.

We may assume here aι

jμ = 1 (1 <Ξ ί rgj N + 1) by a change of homogene-

ous coordinates and put bι: = α},. Then,

= (/l + Λ +

whence

(6^+i _ mbl)fx + (bN+1 - mb2)f2 + - + (6^+1 - mbN)fN = 0 .

Since / may be assumed to be non-degenerate,

Then, &* = δ 7 for some i,y (^t) in the case N^2, which is a contra-

diction. This completes the proof of Theorem 6.1.

COROLLARY 6.6. Under the same assumption of Theorem 6.1, if

N = 2, ίfcβw, / = 0.

Proof. For the case D = C w , Theorem 6.1 implies t h a t cγ~ c2 — c3

= 1 or cx = c2 = c3 = — 1. In any case, we have f = g. Similarly, for

the case D = B — S too, we conclude also f = g.

THEOREM 6.7. Let f,g be meromorphίc maps of Cn into PN(C) such

that f(Cn)£Hi9 g(Cn)gtHi and v(J, Ht) = v(g, H,) for SN + 1 hyper-

planes Hi (1 ^ i <̂  3Λ7" + 1) m general position. If the image of f is not

included in any subvariety of PN(C) which is defined as the zero set of

a homogeneous polynomial of degree ^ 2, then f — g.

Proof. Let Ht be given as (3.2). By Theorem 6.1, we may put gx =

Cifi (1 ^ i ^ N + 1) for admissible representations / = fλ: f2: : fN+ιr

where ct: — hi— ± 1 . Moreover, by Corollary 4.4, if fΦg, we may

assume that hN+2hN+2 — 1 or hN+2 — fe^+3, i.e., hN+3 = dfo^+2 for m = ± 1

and d e ^ * . As in the proof of Theorem 6.1,
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f\ + * ' * + #2J\Γ + l/iV" + l) m(α2JV + 2./l + ' ' ' + Λ^Λ/jV + l)

- d{a\N+ιcJx + - + aξN^1cN+1fN+1)~m(alN+2c1f1 + + aξN

+^cJN+1) = 0 .

By the assumption, the left hand side vanishes identically as a polyno-

mial of N + 1 indeterminates f19f2, ,/γ+i. By simple calculations, we

can conclude f = g.

§ 7. Meromorphic maps into P2(C).

Let us consider in this section two meromorphic maps / and g of

Cn into P2(C) such that f(Cn) ς£ Hi9 g(Cn) gt Hi and i>(f,Hd = v{g,H%) for

six hyperplanes Hi (I <*i <L 6) in general position. We shall study

relations between the functions ht defined by (3.3). By the equivalence

relation hi ~ hjf i.e., fcj^ Ξ const., we classify the set {hlf h2, , h6}

into the subclasses J19J29 ••-,«/*. By M we denote the maximum of the

numbers of elements in J\ (1 ^ I gj fc).

We study first the case M = 2. To this end, take functions ^ , 3?2,

• ,ηt in Jf* whose canonical images to G = jf7*/^* constitute a basis

of the subgroup of G generated by the canonical images of ht (1 ^ i <I 6)

into G. Writing each ht as

we choose integers plfpz, , Vt which are generic with respect to £iτ and

put £t: = Σ L i 4 ^ By Lemma 2.6 and Proposition 4.3, it may be as-

sumed that

Λ <- 0 <S 0 0 C\ ^ 0 <? 0
#1 ^ -€>2 ^ ^3 — "̂ 4 — " ^ ^5 — "̂ Λ

after a suitable change of indices. Let us assume lλ < £2 and th < £9.

Then, by Corollary 4.4, we see —£2 — 4 Moreover, exchanging each ηt

by η'1 if necessary, we may assume A + 4 ^ 0 By Proposition 4.3, we

can take indices i, j , k (1 ^ i < / < k ^ 6, {i, /, fc} =̂= {1, 5, 6}) such that

hihjhk - fc^δfeβ. Then, £t + £d + 4 = tx + 4 + 4 by (2.4). Let Ix + ί6 > 0.

If k <̂  5, we have a contradiction that

4 + £, + 4 ^ 4 + A + 4 = 4 < A + A + k

Therefore, fc = 6, % :> 2, y ^ 4, and so hλh5 = ^fe^ for some i, / (2 ^

i < j ^ 4). In conclusion, there are two possible cases (i) hjιβ ~ 1 and

(ii) hxh5 — h2. For the case (i), changing notations, we have the type
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( I ) (KK--, K) = (Cife*"1, c2h~\ 1,c3,Λ, h*) ,

where ft, ft* e ^ * with ft ^ 1, ft* ^ 1, ft ^ ft* and ftft* ^ 1 and cλ e C*.

For the case (ii), if we put ft: ~ ft5, then ftt — ft~2. Observe the types

of functions hrhsht (r < s <t, {r, s, t] Φ {1,2,6}) such that hrhsht ~ hjiji^.

Using the assumption £6 < ^6, we can easily conclude ft6 ~ h* for £ = 2,

3 or 4. The case ^ = 2 can be reduced to the type (I). For the case

£ = 3, we have the type

(II) (hlf h2, ., fe6) = (Cχ/r2, ̂ fe-1,1, c3, fe, c4fe
3) ,

where h </> 1.

On the other hand, we can prove that the case £ = 4 is impossible.

In fact, suppose that

(7.1) (Λi, fe2, . . . , hQ) = (c^- 2, C.Λ-1,1, c8, h, cjf)

for some fee^f* with h~l and c^e^7*. For fixed admissible represe-

tations of / and g we consider the identity (3.7) as in the proof of

Proposition 3.5. Substituting (7.1) into them, we have a relation

P(h) = 0 ,

where P(X) is polynomial of degree ^ 8 with constant coefficients.

According to Proposition 4.4, the coefficients of P(h) are all zeros. Thus,

we get nine relations among unknowns ct and a) (1 fg i ^ 3, 1 ^ ^ 6).

By elementary computations, it is possible to conclude that all solutions

contradicts the assumption that Hi are in general position.

Consider next the case M = 2 and £ι=z £2. If £δ = £6, then we get

the type

(III) (fa, h2, . , Λβ) = (h, cji, 1, c2, h*9 c3h*) ,

where fe ^ 1, h* </> 1 and fe ̂  /̂ *.

Suppose that 4 < £9. In this case, by Lemma 2.7, we see hxhh — h2hδ

— 1. Observe the possible types of functions hihjhk (ί < j < fc, {ΐ,y, fe} ̂

{1,2,6}) such that hihjhk — hfahβ. Putting h: = fe5, we have easily fe6 ^

hm for m = 2 or 3. Therefore, we have one of the types

(IV) (hlf h2, . , hύ = (cΛ"1, (^fc"1,1, c3, fe, c4Λ,2)
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(V) (h19 ft2, , ft6) = (φ-1, c2h~\ 1, c2, ft, φ
z) ,

where ft </> 1.

For the case M = 2 and 4 = ^β, we have also one of the types (III),

(IV) and (V), because this case can be reduced to the above by exchang-

ing each ητ by η'1 (1 <̂  τ ^ ί).

Now, let us study the case M = 3. Without loss of generality, we

may assume ftx ~ ft2 ~ ft3 ~ 1. Observe all possible types of functions

hihjhjc such that hihjhk ~ ftift2ft3, where i < j < k and {£, /, fe} =£ {1,2,3}.

There are two possible subcases (a) hih3 ~ 1 (4 <; i < j ^ 6) and (b) foA&6

— 1. We consider first the subcase (a). Changing indices if necessary,

we may write

(7.2) (h19 h2, , K) = (1, c1 ? c2, h9 c3h~\ h*) ,

where h, ft* e ^f * with h</Ί, ft* ^ 1 and c< e #*. If we substitute (7.2)

into the identity (3.7), we have a relation

(7.3) Ajft2ft* + A2h
2 + A3hh* + A4h + A5ft* + A6 = 0 ,

where A4 (1 <J i ^ 6) are some constants. If ft ^ ft*, ft2 ^ ft*, ft2ft* ^ 1

and ft ~ ft*, then As = 0 for any s because of Proposition 4.5. This

means that (7.3) vanishes identically as a polynomial of ft and ft*. By

substituting ft = ft* = 1, we have easily cx = 1, c2 = 1 or c3 = 1. In any

case, it is not difficult to conclude that (7.3) has no solution. On the

other hand, if ft2 — ft*, ft2ft* — 1 or ft — ft*, by exchanging ft by ft"1 and

indices if necessary, we have one of the types

(VI) (h19 ft2, , ft6) = (1, c29 c3, ft, φ-\ c5ft)

and

(VII) (ftx, ft2, , ft6) = (1, c2, c3, ft, c4ft-
J, c5ft

2) ,

where ft ^ 1.

We study next the subcase (b). Put

(ftx, ft2, . . , ft6) = (1, c2, c3ft, ft*, c4(ftft*)-χ)

for ft, ft* e «2f * with ft ^ 1, ft* ^ 1 and ftft* ^ 1. As the above, by the

use of (3.7), we have a relation

(7.4) β1ft
2ft*2 + β2ft

2ft* + β3ftft*
2 + β4ftft* + Bδh + β6ft* + B7 = 0 ,
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where Bi are some constants. If h2h* •/ 1, hh*2 ^ 1 and h ^ h*, then

Bt = 0 for any ί by Proposition 4.5. In this case too, we can show easily

that (7.4) has no solution. On the other hand, if h2h* ~ 1, hh*2 - 1 or

h ~ h*, we can reduce all possible cases to the type

(VIII) (h19 h2, , h6) = ( 1 , c2, c3, h, c,h, cδh~2) ,

where h </Ί.

For the case M ^ 4, we may assume hx ~ h2 ~ hz~ hA. By the similar

way as above, we have the only cases (a) hδ ~ h6 ~ 1, (β) h6h& ~ 1 (h6 ^ 1),

(r) ^ 5 ^ 1 and h6 </> 1 and (d) h5 ~ h6 ~ 1. But, for the case (β), we see

always f(Cn) c iϊ6, which contradicts the assumption. Thus, we obtain

one of the following types;

( "V Λ (Tt ΊΛ ΊΛ \ ί~\ In 7 — 1Λ

(ΎΛΛ (h h . . . 7? ϊ — (Λ o o o o oΛ
\uΛ.\.j \ 7 t / l> ll/29 9 ll/6/ — \-* > ^29 *̂ 3> W? ^δ9 ^ 6 / >

where h</>l.

As is easily seen, one of these eleven types cannot be constructed

from the others by changing indices 1,2, ,6, by multiplying all ht by

a common function in jf* or by choosing other generators h, h*. And,

it is not difficult to find concrete examples of meromorphic maps / and

g and hyperplanes of these types.

Summalizing them, we give

THEOREM 7.5. Let f,g be meromorphic maps of Cn into P2(C) such

that f(Cn) ς£ Hi9 g(Cn) gt Hi and v{f, H^ = v(g, Ht) for six hyperplanes

Hi in general position. Then, after a suitable change of indices, the

functions ht defined by (3.3) as in §3 are related with one of the above

types (I) - (XI).

As a consequences of this, we can prove

COROLLARY 7.6. Uuder the same assumption of Theorem 7.5, it is

possible to choose homogeneous coordinates w1:w2: w3 such that, for

suitable admissible representations f = fx: f2: / 3 and g — gx: g2: g3, f and

g are related with
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91 =/i

(7.7) g2 = cf2

where P(wίf w29 w3) and Q(w19 w2, w3) are homogeneous polynomίnals of

degree <* 3 and ^ 2 respectively and c is a non-zero constant.

Proof. Let each Hi be given as (3.2). Assume that {hi} is of type

(I). Without loss of generality, we may assume a\ = a\ — a\ = 1, a\ = a\

= a\ — a\ = a\ = a\ — 0. We have then

Ί + a\cj2 + a\g3) =

by the identities (3.6) for i = 2,3,4,5, and

by (3.6) for ϊ = l,3,4,6. From these two relations we can conclude
easily the relations of the type (7.7). In the same manner, it is easy to
obtain the desired relations for the other types of {hi}. We have thus
Corollary 7.6.
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