THE UNIQUENESS PROBLEM OF MEROMORPHIC MAPS INTO THE COMPLEX PROJECTIVE SPACE

HIROTAKA FUJIMOTO

§ 1. Introduction.

In 1921, G. Pólya showed that non-constant meromorphic functions φ and ψ of finite genera on the complex plane C are necessarily equal if there are distinct five values $a_{i}(1 \leqq i \leqq 5)$ such that $\varphi(z)-a_{i}$ and $\psi(z)-a_{i}$ have the same zeros of the same multiplicities for each i ([8]). Afterwards, R. Nevanlinna obtained the same conclusion for arbitrary φ and ψ satisfying $\varphi^{-1}\left(a_{i}\right)=\psi^{-1}\left(a_{i}\right)(1 \leqq i \leqq 5)$ regardless of multiplicities. And, some other results relating to this were given by H. Cartan ([2], [3]), E. M. Schmid ([9]) and others. The purpose of this paper is to give some types of generalizations of these results to the case of meromorphic maps into the N-dimensional complex projective space $P_{N}(C)$.

We consider q hyperplanes H_{i} in $P_{N}(C)$ located in general position and two non-constant meromorphic maps f and g of C^{n} into $P_{N}(C)$ with $f\left(C^{n}\right) \not \subset H_{i}, g\left(C^{n}\right) \not \subset H_{i}$ such that $\nu\left(f, H_{i}\right)=\nu\left(g, H_{i}\right)$ for any i, where $\nu\left(f, H_{i}\right)$ and $\nu\left(g, H_{i}\right)$ denote the pull-back of the divisors $\left(H_{i}\right)$ on $P_{N}(C)$ by f and g respectively (c, f., Definition 3.1).

The first main result is the following
Theorem I. If $q=3 N+1$, there is a projective linear transformation L of $P_{N}(\boldsymbol{C})$ such that $L \cdot f=g$.

And, we shall prove also
Theorem II. If $q=3 N+2$ and either f or g is non-degenerate, i.e., the image does not included in any hyperplane in $P_{N}(C)$, then $f=g$.

Moreover, we shall give some other results on the uniqueness problem in the case $q=3 N+1$ under suitable assumptions. From this we shall

[^0]show that, if $N=2$, Theorem II remains valid under weaker assumption that $q=7(=3 N+1)$. For the case $N \geqq 3$, the author does not know if the number of given hyperplanes in Theorem II can be replaced by an integer smaller than $3 N+2$. It is a very interesting problem to seek the smallest integer $q(N)$ for each N such that Theorem II holds for arbitrarily given $q(N)$ hyperplanes in general position.

These results will be proved by the use of the classical theorem of E. Borel ([1]) and some combinatorial lemmas given in § 2.

For a domain B and a thin analytic subset S of B we shall study also meromorphic maps defined on $B-S$ which have essential singularities of special type along S (c.f., Definition 5.5) and give some theorems similar to the above Theorems I and II. Moreover, meromorphic maps f and g into $P_{2}(C)$ will be studied more precisely in the last section.

§ 2. Combinatorial lemmas.

Let G be a torsion free abelian group and consider a q-tuple $A=$ $\left(a_{1}, a_{2}, \cdots, a_{q}\right)$ of elements a_{i} in G. For the subgroup \tilde{A} of G generated by $a_{1}, a_{2}, \cdots, a_{q}$, we can take a basis $\left\{b_{1}, b_{2}, \cdots, b_{t}\right\}$ of \tilde{A}, because \tilde{A} is a free abelian group. Then, each $a_{i}(1 \leqq i \leqq q)$ can be uniquely represented as

$$
\begin{equation*}
a_{i}=b_{1}^{\epsilon_{i 1}} b_{2}^{\epsilon_{i 2}} \cdots b_{t}^{\epsilon_{i t}} \tag{2.1}
\end{equation*}
$$

with suitable integers $\ell_{i_{\tau}}$.
(2.2) For integers $\ell_{i_{\tau}}(1 \leqq i \leqq q, 1 \leqq \tau \leqq t)$, it is possible to choose integers $p_{1}, p_{2}, \cdots, p_{t}$ satisfying the condition that, for integers

$$
\ell_{i}:=\ell_{i_{1}} p_{1}+\ell_{i 2} p_{2}+\cdots+\ell_{i t} p_{t} \quad(1 \leqq i \leqq q),
$$

if $\ell_{i}= \pm \ell_{j}$, then

$$
\left(\ell_{i_{1}}, \ell_{i_{2}}, \cdots, \ell_{i t}\right)= \pm\left(\ell_{j_{1}}, \ell_{j 2}, \cdots, \ell_{j t}\right)
$$

This is shown by induction on t. The case $t=1$ is trivial. Assume that there exist p_{1}, \cdots, p_{t-1} with the property that

$$
\left(\ell_{i 1}, \ell_{i 2}, \cdots, \ell_{i t-1}\right)= \pm\left(\ell_{j_{1}}, \ell_{j 2}, \cdots, \ell_{j t-1}\right)
$$

if $\ell_{i}^{*}= \pm \ell_{j}^{*}$ for integers $\ell_{i}^{*}:=\ell_{i 1} p_{1}+\cdots+\ell_{i t-1} p_{t-1}$. Then, it is easy to show that there are only finitely many integers p_{t} such that p_{1}, p_{2}, \cdots, p_{t} do not satisfy the desired condition.

Definition 2.3. We shall call integers $p_{1}, p_{2}, \cdots, p_{t}$ with the property (2.2) to be generic with respect to $\ell_{i_{\tau}}$ and the integers $\ell_{i}=\sum_{\tau=1}^{t} \ell_{i_{\tau}} p_{\tau}$ to be representations of $a_{i}(1 \leqq i \leqq q)$.

We have
(2.4) If $a_{i_{1}}^{m_{1}} a_{i_{2}}^{m_{2}} \cdots a_{i r}^{m_{r}}=a_{j_{1}}^{m_{1}^{\prime}} a_{j_{2}}^{m_{2}} \cdots a_{j_{s}}^{m_{s}^{\prime}}$, it holds that

$$
m_{1} \ell_{i_{1}}+m_{2} \ell_{i_{2}}+\cdots+m_{r} \ell_{i_{r}}=m_{1}^{\prime} \ell_{j_{1}}+m_{2}^{\prime} \ell_{j_{2}}+\cdots+m_{s}^{\prime} \ell_{j_{s}} .
$$

In fact, substituting the identity (2.1) into both sides, we see

$$
b_{1}^{n_{1}} b_{2}^{n_{2}} \cdots b_{t}^{n_{t}}=b_{1}^{n_{1}^{\prime}} b_{2}^{n_{2}^{\prime}} \cdots b_{t}^{n_{t}^{\prime}}
$$

for integers $n_{\tau}:=\sum_{x=1}^{r} m_{\varepsilon} \ell_{i_{\varepsilon \tau}}$ and $n_{\tau}^{\prime}:=\sum_{k=1}^{s} m_{\varepsilon}^{\prime} \ell_{j_{\varepsilon} \cdot} \quad$ Since $b_{1}, b_{2}, \cdots, b_{t}$ are linearly independent in $G, n_{\tau}=n_{\tau}^{\prime}$ for any $\tau(1 \leqq \tau \leqq t)$. Therefore,

$$
\begin{aligned}
\sum_{\kappa=1}^{\tau} m_{\kappa} \ell_{i_{\varepsilon}} & =\sum_{k=1}^{r} \sum_{\tau=1}^{t} m_{\kappa} \ell_{i_{\kappa}} p_{\tau} \\
& =\sum_{\tau=1}^{t} n_{\tau} p_{\tau} \\
& =\sum_{\tau=1}^{t} n_{\tau}^{\prime} p_{\tau} \\
& =\sum_{k=1}^{s} m_{\varepsilon}^{\prime} \ell_{j_{\kappa}} .
\end{aligned}
$$

Now, we give
DEFINITION 2.5. Let $q \geqq r>s \geqq 1$. We shall call a q-tuple $A=$ $\left(a_{1}, a_{2}, \cdots, a_{q}\right)$ of elements a_{i} in G to have the property ($P_{r, s}$) if any chosen r elements $a_{t(1)}, a_{\iota(2)}, \cdots, a_{\iota(r)}$ in A satisfy the condition that, for any given $i_{1}, i_{2}, \cdots, i_{s}\left(1 \leqq i_{1}<\cdots<i_{s} \leqq r\right)$, there exist some other j_{1}, j_{2}, $\cdots, j_{s}\left(1 \leqq j_{1}<\cdots<j_{s} \leqq r,\left\{i_{1}, i_{2}, \cdots, i_{s}\right\} \neq\left\{j_{1}, j_{2}, \cdots, j_{s}\right\}\right)$ such that

$$
a_{\iota\left(i_{1}\right)} a_{\iota\left(i_{2}\right)} \cdots a_{\iota\left(i_{s}\right)}=a_{\iota\left(j_{1}\right)} a_{\iota\left(j_{2}\right)} \cdots a_{\iota\left(j_{s}\right)} .
$$

Let us study relations among a_{i} for a q-tuple $A=\left(a_{1}, a_{2}, \cdots, a_{q}\right)$ with the property $\left(P_{r, s}\right)$. To this end, we take representations $\ell_{1}, \ell_{2}, \cdots, \ell_{q}$ of $a_{1}, a_{2}, \cdots, a_{q}$ for suitably chosen basis and generic integers. Changing indices i of a_{i} if necessary, we assume

$$
\ell_{1} \leqq \ell_{2} \leqq \cdots \leqq \ell_{q}
$$

Lemma 2.6. In the above situation, it holds that

$$
\ell_{s}=\ell_{s+1}=\cdots=\ell_{s+u}
$$

and so

$$
a_{s}=a_{s+1}=\cdots=a_{s+u}
$$

for $u:=q-r+1$.
Proof. Assume that

$$
\ell_{1} \leqq \cdots \leqq \ell_{s}=\ell_{s+1}=\cdots=\ell_{s+v}<\ell_{s+v+1} \leqq \cdots \leqq \ell_{q}
$$

for some v with $v<u(=q-r+1)$. Among $a_{i}(1 \leqq i \leqq q)$, we choose r elements

$$
a_{\iota(1)}=a_{1}, \cdots, a_{\iota(s)}=a_{s}, a_{\iota(s+1)}=a_{s+u}, a_{t(s+2)}=a_{s+u+1}, \cdots, a_{\iota(r)}=a_{q}
$$

By the assumption, considering the case $i_{1}=1, i_{2}=2, \cdots, i_{s}=s$ in Definition 2.4, we can take some $j_{1}, j_{2}, \cdots, j_{s}\left(1 \leqq j_{1}<\cdots<j_{s} \leqq r,\left\{j_{1}, j_{2}\right.\right.$, $\left.\cdots, j_{s}\right\} \neq\{1,2, \cdots, s\}$) such that

$$
a_{\iota\left(j_{1}\right)} a_{\iota\left(j_{2}\right)} \cdots a_{\iota\left(j_{s}\right)}=a_{1} a_{2} \cdots a_{s}
$$

Then, by (2.4), we have

$$
\begin{aligned}
\ell_{c\left(j_{1}\right)} & +\ell_{c\left(j_{2}\right)}+\cdots+\ell_{c\left(j_{s}\right)}-\left(\ell_{1}+\ell_{2}+\cdots+\ell_{s}\right) \\
& =\left(\ell_{c\left(j_{1}\right)}-\ell_{1}\right)+\left(\ell_{c\left(j_{2}\right)}-\ell_{2}\right)+\cdots+\left(\ell_{c\left(j_{s}\right)}-\ell_{s}\right) \\
& =0 .
\end{aligned}
$$

On the other hand, we see easily $\kappa=i_{\varepsilon} \leqq \iota\left(j_{\varepsilon}\right)$ and so $\ell_{c\left(j_{k}\right)}-\ell_{\kappa} \geqq 0$ for any $\kappa(1 \leqq \kappa \leqq s)$. This implies that

$$
\ell_{1}=\ell_{c\left(j_{1}\right)}, \quad \ell_{2}=\ell_{c\left(j_{2}\right)}, \cdots, \ell_{s}=\ell_{c\left(j_{s}\right)}
$$

By the assumption, $\ell_{i}<\ell_{c(j)}$ for any i, j if $1 \leqq i \leqq s$ and $s+1 \leqq j \leqq r$. We have necessarily $j_{\kappa}=\kappa(1 \leqq \kappa \leqq s)$. This is a contradiction. We conclude thus $v \geqq u$. The proof of Lemma 2.6 is completed.

For the case $r=2 s$, we can give more precise conclusion.
Lemma 2.7. In the same situation as in Lemma 2.6, if $r=2 s$ $(s>2), a_{i}=1$ ($=$ the unit element of G) for any i with $s \leqq i \leqq q-s+$ $1, a_{s-1} \neq 1, a_{q-s+2} \neq 1$ and $a_{q-s+2} \neq a_{q-s+3}$, then $a_{s-1} a_{q-s+2}=1$.

Proof. By Lemma 2.6,

$$
\begin{aligned}
\ell_{1} \leqq & \cdots \leqq \ell_{s-2} \leqq \ell_{s-1}<\ell_{s}=\cdots \\
& =\ell_{q-s+1}=0<\ell_{q-s+2}<\ell_{q-s+3} \leqq \cdots \leqq \ell_{q} .
\end{aligned}
$$

Considering the case $\iota(1)=1, \cdots, \iota(s+1)=s+1, \iota(s+2)=q-s+2$, $\cdots, \ell(2 s)=q$ and $i_{1}=1, i_{2}=2, \cdots, i_{s-1}=s-1$ and $i_{s}=s+2$ in Defini-
tion 2.5, we can take indices $j_{1}, j_{2}, \cdots j_{s}\left(1 \leqq j_{1}<\cdots<j_{s}<2 s\right.$, $\left\{j_{1}, j_{2}\right.$, $\left.\cdots, j_{s}\right\} \neq\{1,2, \cdots, s-1, s+2\}$) such that

$$
a_{t\left(j_{1}\right)} a_{t\left(j_{2}\right)} \cdots a_{\iota\left(j_{s}\right)}=a_{\iota(1)} a_{t(2)} \cdots a_{\iota(s-1)} a_{t(s+2)},
$$

whence

$$
\begin{equation*}
\ell_{\iota\left(j_{1}\right)}+\ell_{\iota\left(j_{2}\right)}+\cdots+\ell_{\iota\left(j_{s}\right)}=\ell_{1}+\ell_{2}+\cdots+\ell_{s-1}+\ell_{q-s+2} \tag{2.8}
\end{equation*}
$$

by (2.4). We define the number k by the condition that

$$
\iota\left(j_{1}\right)<\iota\left(j_{2}\right)<\cdots<\iota\left(j_{k-1}\right)<s \leqq \iota\left(j_{k}\right)<\cdots<\iota\left(j_{s}\right)
$$

and put

$$
\left\{m_{1}, m_{2}, \cdots, m_{s-k}\right\}=\{1,2, \cdots, s-1\}-\left\{\iota\left(j_{1}\right), \iota\left(j_{2}\right), \cdots, \iota\left(j_{k-1}\right)\right\} .
$$

Here, $s>k$. In fact, if not, $\iota\left(j_{1}\right)=1, \cdots, \iota\left(i_{s-1}\right)=s-1$ and so $\ell_{q-s+2}=$ $\ell_{\iota\left(j_{s}\right)}$, which contradicts the assumption. Canceling $\ell_{\iota\left(j_{k}\right)}(1 \leqq \kappa \leqq k-1)$ from the both sides of (2.8), we obtain

$$
\ell_{\varepsilon\left(j_{k}\right)}+\ell_{c\left(j_{k+1}\right)}+\cdots+\ell_{c\left(j_{s}\right)}=\ell_{m_{1}}+\ell_{m_{2}}+\cdots+\ell_{m_{s-k}}+\ell_{q-s+2} .
$$

If $\iota\left(j_{s}\right) \geqq q-s+2$, then we get inequalities

$$
\begin{aligned}
0 & \leqq \ell_{\iota\left(j_{k}\right)}+\ell_{c\left(j_{k+1}\right)}+\cdots+\ell_{\iota\left(j_{s-1}\right)} \\
& =\ell_{m_{1}}+\ell_{m_{2}}+\cdots+\ell_{m_{s-k}}+\left(\ell_{q-s+2}-\ell_{\iota\left(j_{s} s\right.}\right) \\
& \leqq \ell_{m_{1}}+\ell_{m_{2}}+\cdots+\ell_{m_{s-k}}<0
\end{aligned}
$$

which is a contradiction. Therefore, $j_{s} \leqq s+1$. Then, we have necessarily $\iota\left(j_{s-1}\right)=s$ and $\iota\left(j_{s}\right)=s+1$. By the relation (2.8), we conclude $\ell_{s-1}+\ell_{q-s+2}=0$, whence $h_{s-1} h_{q-s+2}=1$. This completes the proof.

§ 3. Two meromorphic maps with the same inverse images of hyperplanes.

Let f be a meromorphic map of a domain D in C^{n} into $P_{N}(C)$. For arbitrarily fixed homogeneous coordinates $w_{1}: w_{2}: \cdots: w_{N+1}$ on $P_{N}(\boldsymbol{C})$, we can write

$$
f(z)=f_{1}(z): f_{2}(z): \cdots: f_{N+1}(z)
$$

on a neighborhood U of every point a in D with holomorphic functions $f_{i}(z)(1 \leqq i \leqq N+1)$ on U, where they can be chosen so as to satisfy the condition

$$
\operatorname{codim}\left\{f_{1}(z)=f_{2}(z)=\cdots=f_{N+1}(z)=0\right\} \geqq 2
$$

In the following, such a representation of f is referred to as an admissible representation of f on U. If D is a Cousin-II domain, then f has an admissible representation on the totality of D.

Let us take a hyperplane

$$
H: a^{1} w_{1}+a^{2} w_{2}+\cdots+a^{N+1} w_{N+1}=0
$$

in $P_{N}(C)$ with $f(D) \not \subset H$. For any $a=\left(a_{1}, a_{2}, \cdots a_{n}\right) \in D$, taking an admissible representation $f=f_{1}: f_{2}: \cdots: f_{N+1}$ on a neighborhood U of a, we define a holomorphic function

$$
F=a^{1} f_{1}+a^{2} f_{2}+\cdots+a^{N+1} f_{N+1}
$$

on U and expand it as a compactly convergent series

$$
F\left(u_{1}+a_{1}, \cdots, u_{n}+a_{n}\right)=\sum_{m=0}^{\infty} P_{m}\left(u_{1}, u_{2}, \cdots, u_{n}\right)
$$

around a, where P_{m} is either identically zero or a homogeneous polynomial of degree m.

Definition 3.1. We define

$$
\nu(f, H)(a)=\min \left\{m: P_{m}(u) \not \equiv 0\right\},
$$

which is obviously determined independently of any choice of homogeneous coordinates and admissible representations.

Now, let us consider two non-constant meromorphic maps f and g of D into $P_{N}(C)$ and $q(\geqq 2 N+2)$ hyperplanes $H_{i}(1 \leqq i \leqq q)$ in $P_{N}(C)$ located in general position. Suppose that $f\left(D^{n}\right) \not \subset H_{i}, g\left(D^{n}\right) \not \subset H_{i}$ and $\nu\left(f, H_{i}\right)=\nu\left(g, H_{i}\right)$ for any i. Let H_{i} be given as

$$
\begin{equation*}
H_{i} ; a_{i}^{1} w_{1}+a_{i}^{2} w_{2}+\cdots+a_{i}^{N+1} w_{N+1}=0 . \tag{3.2}
\end{equation*}
$$

For an arbitrarily given Cousin-II subdomain U of D, we take admissible representations $f=f_{1}: f_{2}: \cdots: f_{N+1}$ and $g=g_{1}: g_{2}: \cdots: g_{N+1}$ on U. We define holomorphic functions

$$
F_{i}^{f}=a_{i}^{1} f_{1}+a_{i}^{2} f_{2}+\cdots+a_{i}^{N+1} f_{N+1}
$$

and

$$
F_{i}^{q}=a_{i}^{1} g_{1}+a_{i}^{2} g_{2}+\cdots+a_{i}^{N+1} g_{N+1}
$$

on U and put

$$
\begin{equation*}
h_{i}(z)=\frac{F_{i}^{g}(z)}{F_{i}^{f}(z)} \quad(1 \leqq i \leqq q) . \tag{3.3}
\end{equation*}
$$

By the assumption, each h_{i} is a nowhere zero holomorphic function on U. As is easily seen, the ratios $h_{i}: h_{j}$ are uniquely determined independently of any choices of homogeneous coordinates, representations (3.2) and admissible representations. Therefore, we can consider the well-defined holomorphic map

$$
\begin{equation*}
h=h_{1}: h_{2}: \cdots: h_{q} \tag{3.4}
\end{equation*}
$$

of D into $P_{q-1}(C)$. If D itself is a Cousin-II domain, h has an admissible representation on the totality of D with functions $h_{i}(z)$ on D defined by (3.3).

We shall study the case $q=2 N+2$. By \mathscr{I} we denote the set of all combinations $I=\left(i_{1}, i_{2}, \cdots, i_{N+1}\right)\left(1 \leqq i_{1}<\cdots<i_{N+1} \leqq 2 N+2\right)$ of indices $1,2, \cdots, 2 N+2$. For a point $u=u_{1}: u_{2}: \cdots: u_{2 N+2} \in P_{2 N+1}(C)$ and $I=\left(i_{1}, i_{2}, \cdots, i_{N+1}\right) \in \mathscr{I}$, we put $u_{I}=u_{i_{1}} u_{i_{2}} \cdots u_{i_{N+1}}$ and consider the map Φ of $P_{2 N+1}(C)$ into $P_{M-1}(C)$ defined as

$$
\Phi(u)=\left(u_{I}: I \in \mathscr{I}\right) \in P_{M-1}(C),
$$

where $\quad M=\binom{2 N+2}{N+1}$.
Proposition 3.5. In the above situation, non-zero constants $A_{I}(I \in \mathscr{I})$ can be chosen independently of each f and g such that, for the maps h defined by (3.4),

$$
\Phi \cdot h(D) \subset H^{*}:=\left\{u \in P_{M-1}(C): \sum_{I \in I} A_{I} u_{I}=0\right\}
$$

Proof. Without loss of generality, we may assume that D is a Cousin-II domain. For, by the theorem of identity, Proposition 3.5 is true if it is shown that $\Phi \cdot h(U) \subset H^{*}$ for some non-empty open subset U of D. Let $H_{i}(1 \leqq i \leqq 2 N+2)$ be given by (3.2). By the assumption, any minor of degree $N+1$ of the matrix $\left(a_{j}^{i} ; \begin{array}{l}1 \leq i \leq N \leq 1 \\ 1 \leq j \leq 2 N+1\end{array}\right)$ does not vanish. Taking admissible representations $f=f_{1}: f_{2}: \cdots f_{N+1}$ and $g=g_{1}: g_{2}$: $\cdots: g_{N+1}$, we rewrite the definition (3.3) of $h_{i}(1 \leqq i \leqq 2 N+2)$ as
(3.6) $a_{i}^{1} f_{1}+a_{i}^{2} f_{2}+\cdots+a_{i}^{N+1} f_{N+1}=h_{i}\left(a_{\imath}^{1} g_{1}+a_{i}^{2} g_{2}+\cdots+a_{i}^{N+1} g_{N+1}\right)$.

From these $2 N+2$ identities eliminating $2 N+2$ functions $f_{1}, f_{2}, \cdots, f_{N+1}$, $g_{1}, g_{2}, \cdots, g_{N+1}$, we get

$$
\begin{equation*}
\Psi:=\operatorname{det}\left(a_{i}^{1}, \cdots, a_{i}^{N+1}, a_{i}^{1} h_{i}, \cdots, a_{i}^{N+1} h_{i} ; 1 \leqq i \leqq 2 N+2\right)=0 . \tag{3.7}
\end{equation*}
$$

For any combination $I=\left(i_{1}, i_{2}, \cdots, i_{N+1}\right) \in \mathscr{I}$, we take $J=\left(j_{1}, j_{2}, \cdots, j_{N+1}\right) \in \mathscr{I}$ such that

$$
\left\{i_{1}, i_{2}, \cdots, i_{N+1}, j_{1}, j_{2}, \cdots, j_{N+1}\right\}=\{1,2, \cdots, 2 N+2\}
$$

And, put

$$
A_{I}=(-1)^{(N+1)(N+2) / 2+i_{1}+\cdots+i_{N+1}} \operatorname{det}\left(a_{i r}^{j} ;{ }_{1 \leq j \leq N+1}^{1 \leq r \leq N+1}\right) \operatorname{det}\left(a_{j_{j}}^{k} ; \frac{1 \leq k \leq N+1}{1 \leq s \leq N+1}\right),
$$

Then, by the Laplace expansion formula,

$$
\Psi=\sum_{\left(i_{1} \cdots i_{N+1}\right) \in S} A_{\left(i_{1} \cdots i_{N+1}\right)} h_{i_{1}} h_{i_{2}} \cdots h_{i_{N+1}}
$$

Since $A_{I} \neq 0$ for any $I \in \mathscr{I}$ by the assumption, this gives Proposition 3.5.

§ 4. Some consequences of E. Borel's theorem.

In the following, we shall study mainly functions and maps defined on $D:=C^{n}$ or a domain D which is given as $D:=B-S$ for a subdomain B of C^{n} and its irreducible analytic subset S. We denote by \mathscr{H}^{*} the set of all nowhere zero holomorphic functions on D and by \mathscr{C} the set of all constant functions for the case $D=C^{n}$ and of all holomorphic functions on D which can be meromorphically continuable to the totality of B for the case $D=B-S$. Moreover, we put $\mathscr{C}^{*}=\mathscr{C} \cap \mathscr{H}^{*}$. Then, as is easily seen, the multiplicative group $G=\mathscr{H}^{*} / \mathscr{C}^{*}$ is a torsion free abelian group. For two elements h and h^{*} in \mathscr{H}^{*}, we mean by the notation

$$
h \sim h^{*}
$$

that $h / h^{*} \in \mathscr{C}^{*}$.
Now, we recall the following theorem of E. Borel ([1]).
THEOREM 4.1. If functions $h_{1}, h_{2}, \cdots, h_{p}$ in \mathscr{H}^{*} satisfy the condition that $h_{i} \nsim h_{j}$ for any $i, j(\neq)$, then they are linearly independent over \mathscr{C}, i.e., a relation

$$
a^{1} h_{1}+a^{2} h_{2}+\cdots+a^{p} h_{p}=0
$$

$\left(a^{i} \in \mathscr{C}\right)$ implies always $a^{1}=a^{2}=\cdots=a^{p}=0$.
For the proof, see [5], Theorem 3.5 and Theorem 4.1.

Corollary 4.2. If $a^{1} h_{1}+a^{2} h_{2}+\cdots+a^{p} h_{p}=0$ for functions $h_{i} \in \mathscr{H}^{*}$ and $a^{i} \in \mathscr{C}$, then there exists a partition of indices

$$
\{1,2, \cdots, p\}=I_{1} \cup I_{2} \cup \cdots \cup I_{k}
$$

$\left(I_{\ell} \cap I_{m}=\varnothing, I_{\ell} \neq \varnothing\right)$ such that

$$
\sum_{i \in I} a^{i} h_{i}=0
$$

for any ℓ and $h_{i} \sim h_{j}$ for any $i, j \in I_{\ell}$.
Remark. In Corollary 4.2, if $a^{i} \neq 0$ for any i, each I_{ℓ} contains obviously at least two indices. This shows that, for any h_{i}, there exists some $h_{j}(i \neq j)$ with $h_{i} \sim h_{j}$.

Proof of Corollary 4.2. Consider the partition $\{1,2, \cdots, p\}=I_{1} \cup$ $\ldots \cup I_{k}$ such that i and j are in the same class if and only if $h_{i} \sim h_{j}$. Then, we can write

$$
\sum_{i=1}^{p} a^{i} h_{i}=\sum_{\ell=1}^{k} \sum_{i \in I_{\ell}} a^{i} h_{i}=\sum_{\ell=1}^{k} c^{c} h_{i_{\ell}}=0
$$

for some $c^{\ell} \in \mathscr{C}$ and any fixed $i_{\ell} \in I_{\ell}$. By Theorem 4.1, $c^{\ell}=0$ for any ℓ, which yields Corollary 4.2.

After these preliminaries, we give
Proposition 4.3. Let D be a domain given as the above and assume that it is a Cousin-II domain. If meromorphic maps f and g of D into $P_{N}(C)$ satisfy the condition that $f\left(D^{n}\right) \not \subset H_{i}, g\left(D^{n}\right) \not \subset H_{i}$ and $\nu\left(f, H_{i}\right)=\nu\left(g, H_{i}\right)$ for $q(\geqq 2 N+2)$ hyperplanes $H_{i}(1 \leqq i \leqq q)$ in general position, then the q-tuple of the canonical images of the functions h_{i} defined by (3.3) into $G=\mathscr{H}^{*} / \mathscr{C}^{*}$ has the property $\left(P_{2 N+2, N+1}\right)$ (c.f., Definition 2.5).

Proof. We choose $2 N+2$ functions, say $h_{1}, h_{2}, \cdots, h_{2 N+2}$, among h_{i}. With each combination $I=\left(i_{1}, i_{2}, \cdots, i_{N+1}\right)$ of indices $1,2, \cdots, 2 N+2$ associate the nowhere zero holomorphic functions $h_{I}=h_{i_{1}} h_{i_{2}} \cdots h_{i_{N+1}}$ on D. By Proposition 3.5, they satisfy the identity

$$
\sum_{I} A_{I} h_{I}=0
$$

for non-zero constants A_{I}. Then, by Remark to Corollary 4.2, we have easily Proposition 4.3.

Since any one of h_{i} may be assumed to be the constant 1 by a suit-
able change of admissible representations, Lemma 2.6 and Lemma 2.7 imply immediately

Corollary 4.4. Under the same assumption of Proposition 4.3, $q-2 N$ functions $h_{k_{1}}, h_{k_{2}}, \cdots, h_{k_{q-2 N}}$ can be chosen such that $h_{k_{m}} \sim 1$ $(1 \leqq m \leqq q-2 N)$. And, furthermare, if $h_{i} \nsim 1$ for any other i, then there exist some i, j with $i \neq j$ and $i, j \neq k_{m}(1 \leqq m \leqq q-2 N)$ such that $h_{i} \sim h_{j}$ or $h_{i} h_{j} \sim 1$.

Remark. Theorem 4.1 remains valid under the weaker assumption that each h_{i} can be written as $h_{i}=f_{i}^{d}$ with a not identically zero holomorphic function f_{i} on D such that, for any $i, j(\neq), f_{i} / f_{j} \neq$ const, in the case $D=C^{n}$ and f_{i} / f_{j} has essential singularities along S in the case $D=B-S$ if $d>p(p-2)$ (c.f., [5], Remark 3.7, (ii)). By the same argument as the above, we can prove Proposition 4.3 under the assumption

$$
\nu\left(f, H_{i}\right) \equiv \nu\left(g, H_{i}\right) \quad(\bmod d)
$$

for a sufficiently large d depending only on N instead of the assumption $\nu\left(f, H_{i}\right)=\nu\left(g, H_{i}\right)$. And, many of the results in the following sections remain valid under these weaker conditions. We omit here the details in this direction.

We shall give now another application of E. Borel's theorem.
Proposition 4.5. Let $P\left(X_{1}, X_{2}, \cdots, X_{t}\right)$ be a polynomial of t variables with coefficients in \mathscr{C}. If

$$
P\left(h_{1}, h_{2}, \cdots, h_{t}\right)=0
$$

for some $h_{1}, h_{2}, \cdots, h_{t}$ in \mathscr{H}^{*} such that $h_{1}^{\nu_{1}} h_{2}^{\nu_{2}} \cdots h_{t}^{\nu_{t}} \notin \mathscr{C}^{*}$ for any integers $\left(\nu_{1}, \nu_{2}, \cdots, \nu_{t}\right) \neq(0,0, \cdots, 0)$,

$$
P\left(X_{1}, X_{2}, \cdots, X_{t}\right) \equiv 0
$$

Namely, all coefficients of P are equal to zero.
Proof. We write

$$
P\left(X_{1}, \cdots, X_{t}\right)=\sum_{\nu_{1}, \nu_{2}, \cdots, \nu_{t} \geq 0} a_{\nu_{1} \nu_{2} \cdots \nu_{t}} X_{1}^{\nu_{1}} X_{2}^{\nu_{2}} \cdots X_{t}^{\nu_{t}}
$$

($a_{\nu_{1} \nu_{2} \cdots \nu_{t}} \in \mathscr{C}$) and assume that $\alpha_{\nu_{1} \nu_{2} \cdots \nu_{t}} \neq 0$ for some $\nu_{1}^{0}, \nu_{2}^{0}, \cdots, \nu_{t}^{0}$. Since

$$
\sum_{\nu_{1}, \nu_{2}, \cdots, \nu_{t}} a_{\nu_{1} \nu_{2} \cdots \nu_{t}} h_{1}^{\nu_{1}} h_{2}^{\nu_{2}} \cdots h_{t}^{\nu_{t}}=0
$$

and $h_{1}^{\nu_{1}} h_{2}^{\nu_{2}} \cdots h_{t}^{\nu_{t}} \in \mathscr{H}^{*}$, we can conclude by Remark to Corollary 4.2 that there exist some $\mu_{1}^{0}, \mu_{2}^{0}, \cdots, \mu_{t}^{0}$ with $\left(\nu_{1}^{0}, \nu_{2}^{0}, \cdots, \nu_{t}^{0}\right) \neq\left(\mu_{1}^{0}, \mu_{2}^{0}, \cdots, \mu_{t}^{0}\right)$ such that

$$
h_{1}^{\nu_{1}^{0}} h_{2}^{\nu 0} \cdots h_{t}^{\nu 0} \sim h_{1}^{\mu_{1}^{0}} h_{2}^{\mu_{2}^{0}} \cdots h_{t}^{\mu_{i}^{0}}
$$

and so $h_{1}^{\nu 1}-\mu_{1}^{0} h_{2}^{\nu 0}-\mu_{2}^{0} \cdots h_{t}^{\nu--\mu_{t}^{0}} \in \mathscr{C}^{*}$. This contradicts the assumption. We have Proposition 4.5.

§ 5. Uniqueness theorems of meromorphic maps.

As in the previous sections, we consider two meromorphic maps f and g of D into $P_{N}(C)$ and $q(\geqq 2 N+2)$ hyperplanes H_{i} in $P_{N}(C)$ located in general position such that $f(D) \not \subset H_{i}, g(D) \not \subset H_{i}$ and $\nu\left(f, H_{i}\right)=\nu\left(g, H_{i}\right)$ $(1 \leqq i \leqq q)$. We study first the case $D=C^{n}$.

Theorem 5.1. If $q \geqq 3 N+1$, then it is possible to choose homogeneous coordinates $w_{1}: w_{2}: \cdots: w_{N+1}$ on $P_{N}(\boldsymbol{C})$ such that

$$
\begin{equation*}
g_{1}=c_{1} f_{1}, \quad g_{2}=c_{2} f_{2}, \quad g_{N+1}=c_{N+1} f_{N+1} \tag{5.2}
\end{equation*}
$$

for suitable admissible representations $f=f_{1}: f_{2}: \cdots: f_{N+1}$ and $g=g_{1}$: $g_{2}: \cdots: g_{N+1}$, where c_{i} are some non-zero constants.

Proof. As in §3, we define by (3.3) a nowhere zero holomorphic function h_{i} for each H_{i}. According to Corollary 4.4, we may assume that $N+1(=(3 N+1)-2 N)$ functions among them, which we say c_{1} : $=h_{1}, \cdots, c_{N+1}:=h_{N+1}$, are of constants. Since the ratios $h_{1}: h_{2}: \cdots: h_{3 N+1}$ are determined independently of a choice of homogeneous coordinates, each $H_{i}(1 \leqq i \leqq N+1)$ may be assumed to be given as

$$
H_{i}: w_{i}=0 .
$$

We have then Theorem 5.1 by the definition (3.3) of h_{i}.
Proof of Theorem I. Theorem I stated in $\S 1$ is an immediate consequence of Theorem 5.1. In fact, it suffices to take a linear transformation

$$
L: w_{i}^{\prime}=c_{i} w_{i} \quad 1 \leqq i \leqq N+1
$$

for constants c_{i} in Theorem 5.1.
Proof of Theorem II. In this case, $c_{i}:=h_{i}(1 \leqq i \leqq N+2)$ may be assumed to be of constants and each $H_{i}(1 \leqq i \leqq N+2)$ may be given as

$$
H_{i}: w_{i}=0 \quad 1 \leqq i \leqq N+1
$$

and

$$
H_{N+2}: w_{1}+w_{2}+\cdots+w_{N+1}=0 .
$$

For admissible representations $f=f_{1}: f_{2}: \cdots: f_{N+1}$ and $g=g_{1}: g_{2}: \cdots$: g_{N+1}, we have the relation (5.2) and

$$
g_{1}+g_{2}+\cdots+g_{N+1}=c_{N+2}\left(f_{1}+f_{2}+\cdots+f_{N+1}\right) .
$$

Therefore,

$$
\left(c_{1}-c_{N+2}\right) f_{1}+\left(c_{2}-c_{N+2}\right) f_{2}+\cdots+\left(c_{N+1}-c_{N+2}\right) f_{N+1}=0 .
$$

Since f may be assumed to be non-degenerate, we conclude

$$
c_{1}=c_{2}=\cdots=c_{N+1}=c_{N+2} .
$$

This shows that $f=g$.
Here, we cannot conclude $f=g$ without the assumption of nondegeneracy of f or g in Theorem 5.1 even if any large number of hyperplanes H_{i} in general position with $\nu\left(f, H_{i}\right)=\nu\left(g, H_{i}\right)$ are given. We give an example. For an arbitrarily given $q(\geqq 6)$, take a matrix

$$
M=\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & a_{5} & a_{6} & \cdots & a_{q} \\
1 & b_{5} & b_{6} & \cdots & b_{q}
\end{array}\right)
$$

such that any minor of M does not vanish and

$$
\left|\begin{array}{ll}
a_{5}\left(a_{i}-1\right) & a_{i}\left(a_{5}-1\right) \tag{5.3}\\
b_{5}\left(b_{i}-1\right) & b_{i}\left(b_{5}-1\right)
\end{array}\right|=0 \quad(6 \leqq i \leqq q)
$$

and consider hyperplanes

$$
\begin{array}{ll}
H_{i}: w_{i}=0 & 1 \leqq i \leqq 3 \\
H_{4}: w_{1}+w_{2}+w_{3}=0 & \\
H_{j}: w_{1}+a_{j} w_{2}+b_{j} w_{3}=0 & 5 \leqq j \leqq q
\end{array}
$$

As is easily seen by (5.3), we can choose non-zero constants $c_{1}, c_{2}, c_{3}, d_{i}$ ($5 \leqq i \leqq q$) such that $c_{1} \neq 1$ and

$$
\frac{1-c_{3}}{1-d_{i}}=\frac{c_{1}-c_{3}}{a_{i}\left(c_{1}-d_{i}\right)}=\frac{c_{2}-c_{3}}{b_{i}\left(c_{2}-d_{i}\right)} \quad(5 \leqq i \leqq q) .
$$

If we take meromorphic maps $f=f_{1}: f_{2}: f_{3}$ on C^{n} into $P_{2}(C)$ with $f\left(C^{n}\right) \not \subset H_{i}(1 \leqq i \leqq q)$ and

$$
\left(1-c_{3}\right) f_{1}+\left(c_{1}-c_{3}\right) f_{2}+\left(c_{2}-c_{3}\right) f_{3}=0
$$

and $g=f_{1}: c_{1} f_{2}: c_{2} f_{3}$, then we see easily $f \neq g$ and $\nu\left(f, H_{i}\right)=\nu\left(g, H_{i}\right)$ for any $i(1 \leqq i \leqq q)$.

Consider next the case $D=B-S$, where B is a domain in C^{n} and S is an irreducible analytic subset of B. Let f be a meromorphic map of D into $P_{N}(C)$. Using inhomogeneous coordinates $u_{i}:=w_{i} / w_{N+1}$ $(1 \leqq i \leqq N)$ for homogeneous coordinates $w_{1}: w_{2}: \cdots: w_{N+1}$ with $f(D) \not \subset$ $\left\{w_{N+1}=0\right\}$, we can write

$$
f=\left(\varphi_{1}^{f}, \varphi_{2}^{f}, \cdots, \varphi_{N}^{f}\right),
$$

where φ_{i}^{f} are meromorphic functions on D.
THEOREM 5.4. Let f, g be meromorphic maps of D into $P_{N}(C)$ such that $f(D) \not \subset H_{i}, g(D) \not \subset H_{i}$ and $\nu\left(f, H_{i}\right)=\nu\left(g, H_{i}\right)$ for $3 N+1$ hyperplanes $H_{i}(1 \leqq i \leqq 3 N+1)$ in general position. Then, it is possible to choose inhomogeneous coordinates $u_{1}, u_{2}, \cdots, u_{N}$ such that, for representations $f=\left(\varphi_{1}^{f}, \varphi_{2}^{f}, \cdots, \varphi_{N}^{f}\right)$ and $g=\left(\varphi_{1}^{q}, \varphi_{2}^{q}, \cdots, \varphi_{N}^{q}\right)$,

$$
\varphi_{1}^{g}=\alpha_{1} \varphi_{1}^{f}, \varphi_{2}^{f}=\alpha_{2} \varphi_{2}^{f}, \cdots, \varphi_{N}^{g}=\alpha_{N} \varphi_{N}^{f},
$$

where α_{i} are meromorphic functions on the totality of B.
Proof. Take a regular point x in S arbitrarily. We can choose a neighborhood U of x such that

$$
U=\left\{\left|z_{1}\right|<1,\left|z_{2}\right|<1, \cdots,\left|z_{n}\right|<1\right\}
$$

and

$$
U^{*}=U \cap D=\left\{0<\left|z_{1}\right|<1,\left|z_{2}\right|<1, \cdots,\left|z_{n}\right|<1\right\}
$$

for suitably chosen local coordinates $z_{1}, z_{2}, \cdots, z_{n}$ with $x=(0,0, \cdots, 0)$. Since U^{*} is a Cousin-II domain, we can apply Corollary 4.4. By the same argument as in the proof of Theorem 5.1, for functions h_{i} on U^{*} defined by (3.3), we may assume that $h_{1}, h_{2}, \cdots, h_{N+1}$ have meromorphic continuations to U. And, we can find easily inhomogeneous coordinates on $P_{N}(C)$ such that $\alpha_{i}:=\varphi_{i}^{g} / \varphi_{i}^{f}(1 \leqq i \leqq N)$ are meromorphically continuable to U for representations $f=\left(\varphi_{1}^{f}, \cdots, \varphi_{N}^{f}\right)$ and $g=\left(\varphi_{1}^{g}, \cdots, \varphi_{N}^{g}\right)$. Then, by the classical E. E. Levi's theorem, α_{i} are meromorphic on the totality
of B. This completes the proof.
We want to get an analogy to Theorem II. To this end, we give
DEFINITION 5.5. We shall call a meromorphic map $f=\left(\varphi_{1}^{f}, \varphi_{2}^{f}, \cdots, \varphi_{N}^{f}\right)$ of $D(=B-S)$ into $P_{N}(C)$ to have essential singularities of type (E) along S if $\alpha^{1} \varphi_{1}^{f}+\alpha^{2} \varphi_{2}^{f}+\cdots+\alpha^{N} \varphi_{N}^{f}$ is not meromorphically continuable to S for any meromorphic functions $\alpha_{i}(1 \leqq i \leqq N)$ on B except the case $\alpha^{1} \equiv \alpha^{2} \equiv$ $\ldots \equiv \alpha^{N} \equiv 0$.

THEOREM 5.6. Let f, g be meromorphic maps satisfying the same conditions as in Theorem 5.3 for $3 N+2$ hyperplanes H_{i} in general position. If f or g has essential singularities of type (E) along S, then $f=g$.

Proof. For a regular point x of S, as in the proof of Theorem 5.4, taking a neighborhood U of x, we may assume that $h_{i}(1 \leqq i \leqq N$ +2) are well-defined and meromorphic on U. Moreover, choosing suitable homogeneous coordinates and an admissible representation $f=f_{1}$: $f_{2}: \cdots: f_{N+1}$ on $U^{*}=U \cap D$, we have by the similar manner as in the proof of Theorem II

$$
\left(h_{1}-h_{N+2}\right) f_{1}+\left(h_{2}-h_{N+2}\right) f_{2}+\cdots+\left(h_{N+1}-h_{N+2}\right) f_{N+1}=0
$$

Therefore,

$$
\left(\alpha_{1}-1\right) \varphi_{1}^{f}+\left(\alpha_{2}-1\right) \varphi_{2}^{f}+\cdots+\left(\alpha_{N}-1\right) \varphi_{N}^{f}+\left(\alpha_{N+1}-1\right)=0
$$

for well-defined meromorphic functions $\varphi_{i}^{f}:=f_{i} / f_{N+1}(1 \leqq i \leqq N)$ and α_{j} : $=h_{j} / h_{N+2}(1 \leqq j \leqq N+1)$ which are also meromorphic on B by E . E . Levi's theorem. By the assumption,

$$
\alpha_{1}=\alpha_{2}=\cdots=\alpha_{N+1}=1
$$

This completes the proof.

§ 6. The case that $3 N+1$ hyperplanes are given.

Let f, g be meromorphic maps of a domain D stated in $\S 4$ into $P_{N}(C)$ and assume that, for $3 N+1$ hyperplanes $H_{i}(1 \leqq i \leqq 3 N+1)$, $f(D) \not \subset H_{i}, g(D) \not \subset H_{i}$ and $\nu\left(f, H_{i}\right)=\nu\left(g, H_{i}\right)$. Under these assumption, we shall give more precise informations in the previous section.

Theorem 6.1. (i) In the case $D=C^{n}$, if f or g is non-degenerate,
then each c_{i} of Theorem 5.1 can be chosen to be +1 or -1 , and, moreover, if $N \geqq 2$, it is impossible that exactly one c_{i} is equal to 1.
(ii) In the case $D=B-S$, if f or g has essential singularities of the type (E) along S, then each α_{i} in Theorem 5.4 can be chosen to be of constant +1 or -1 and, moreover, if $N \geqq 2$, it is impossible that $\alpha_{i} \equiv-1$ for any $i(1 \leqq i \leqq N+1)$.

Proof. For the proof of the case $D=B-S$, it may be assumed that $B=\left\{\left|z_{1}\right|<1, \cdots,\left|z_{n}\right|<1\right\}$ and $S=\left\{z_{1}=0\right\} \cap B$ as in the proof of Theorem 5.4. In the following, we mean $D=C^{n}$ or $D=B-S$ for the above B and S and by $\mathscr{H}^{*}, \mathscr{C}, \mathscr{C}^{*}$ and h_{i} the ones defined as in $\S 4$ for such a domain D. By Corollary 4.4, we may assume that at least $N+1 h_{i}$'s are in \mathscr{C}^{*} and, moreover, $h_{i} \notin \mathscr{C}^{*}$ for the other h_{i} because, if $h_{i} \in \mathscr{C}^{*}$ for mutually distinct $N+2 i$'s, $f=g$ by the same reason as in the proof of Theorem II. For convenience' sake, assume $h_{i} \notin \mathscr{C}^{*}$ $(1 \leqq i \leqq 2 N)$ and $\alpha_{j}:=h_{j} \in \mathscr{C}^{*}(2 N+1 \leqq j \leqq 3 N+1)$. Let each H_{i} $(1 \leqq i \leqq 3 N+1)$ be given as (3.2). We may assume here $a_{2 N+j}^{i}=\delta_{j}^{i}$ ($1 \leqq i, j \leqq N+1$) by a suitable change of homogeneous coordinates. Then, any minor of the matrix

$$
\left(a_{j}^{i} ; 1 \leq i \leq j \leqq N+1\right)
$$

does not vanish. Take now functions $\eta_{1}, \eta_{2}, \cdots, \eta_{t}$ in \mathscr{H}^{*} whose canonical images into $G=\mathscr{H}^{*} / \mathscr{C}^{*}$ constitute a basis of the subgroup \tilde{A} of G generated by the canonical images of $h_{1}, h_{2}, \cdots, h_{3 N+1}$ into G. Then, we can write uniquely as

$$
\begin{equation*}
h_{i}=\alpha_{i} \eta_{1}^{\varepsilon_{i 1}} \eta_{2}^{\varepsilon_{2}} \cdots \eta_{t}^{\varepsilon_{i t}} \quad(1 \leqq i \leqq 3 N+1) \tag{6.2}
\end{equation*}
$$

for some $\alpha_{i} \in \mathscr{C}^{*}$ and integers $\ell_{i_{\tau}}$. Choose here integers $p_{1}, p_{2}, \cdots, p_{t}$ which are generic with respect to $\ell_{i_{\tau}}$ and put $\ell_{i}:=\sum_{\tau=1}^{t} \ell_{i \tau} p_{\tau}(1 \leqq i \leqq 3 N+1)$.

Now, let us take a combination $I=\left(i_{1}, i_{2}, \cdots, i_{2 N+2}\right)\left(1 \leqq i_{1}<\cdots<i_{2 N+2}\right.$ $\leqq 3 N+1$) arbitrarily. As in the proof of Proposition 3.5, considering admissible representations $f=f_{1}: f_{2}: \cdots: f_{N+1}$ and $g=g_{1}: g_{2}: \cdots: g_{N+1}$ related as (3.6), we obtain

$$
\begin{equation*}
\operatorname{det}\left(a_{i}^{1}, \cdots, a_{i}^{N+1}, a_{i}^{1} h_{i}, \cdots, a_{i}^{N+1} h_{i} ; i=i_{1}, i_{2}, \cdots, i_{2 N+2}\right)=0 \tag{6.3}
\end{equation*}
$$

Substitute the identities (6.2) into (6.3). Then, we can rewrite (6.3) as

$$
P_{I}\left(\eta_{1}, \eta_{2}, \cdots, \eta_{t}\right)=0
$$

where $P_{I}\left(X_{1}, X_{2}, \cdots, X_{t}\right)$ is a polynomial of t variables with coefficients in \mathscr{C}. And, by Proposition 4.5, we have

$$
\begin{equation*}
P_{I}\left(X_{1}, X_{2}, \cdots, X_{t}\right) \equiv 0 \tag{6.4}
\end{equation*}
$$

Consider a rational function

$$
Q_{I}(\zeta)=P\left(\zeta^{p_{1}}, \zeta^{p_{2}}, \cdots, \zeta^{p_{t}}\right)
$$

of ζ, which is identically zero because of (6.4). On the other hand, $Q_{I}(\zeta)$ is also obtained by substituting $h_{i}=\alpha_{i} \zeta^{\ell_{i}}$ into (6.3). We have thus
(6.5) $Q_{I}(\zeta)=\operatorname{det}\left(a_{i}^{1}, \cdots, a_{i}^{N+1}, \alpha_{i} \zeta^{\ell_{i}} a_{i}^{1}, \cdots, \alpha_{i} \zeta^{\ell_{i}} a_{i}^{N+1} ; i=i_{1}, \cdots, i_{2 N+2}\right)=0$.

Particularly, for a combination $I_{0}=(1,2, \cdots, 2 N+2)$, we observe the coefficients of terms of $Q_{I_{0}}(\zeta)$ of the highest degree and of the lowest degree. To this end, we may assume by Lemma 2.6

$$
\ell_{1} \leqq \ell_{2} \leqq \cdots \leqq \ell_{N}<\ell_{2 N+1}=\cdots=\ell_{3 N+1}=0<\ell_{N+1} \leqq \cdots \leqq \ell_{2 N}
$$

Then, we have easily

$$
\operatorname{det}\left(\begin{array}{ll}
0 & A_{1} \\
A_{2} & 0 \\
A_{3} & A_{3}^{*}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}
A_{1} & 0 \\
0 & A_{2} \\
A_{3} & A_{3}^{*}
\end{array}\right)=0
$$

where

$$
\begin{aligned}
& A_{1}=\left(a_{j}^{i} ; \underset{1 \leq j \leq N \leq N+1}{1 \leq i \leq N}, \quad A_{2}=\left(a_{j}^{i} ; \frac{1 \leq i \leq N+1}{N+1 \leq j \leq 2 N}\right)\right. \\
& A_{3}=\left(\begin{array}{lllll}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0
\end{array}\right)
\end{aligned}
$$

and

$$
A_{3}^{*}=\binom{\alpha_{2 N+1}, 0,0, \cdots, 0}{0, \alpha_{2 N+2}, 0, \cdots, 0} .
$$

By the Laplace expansion formula, we conclude

$$
\alpha_{2 N+1} D_{1}-\alpha_{2 N+2} D_{2}=\alpha_{2 N+1} D_{2}-\alpha_{2 N+2} D_{1}=0
$$

where

$$
D_{1}=\operatorname{det}\binom{A_{1}}{e_{1}} \operatorname{det}\binom{A_{2}}{e_{2}} \text { and } D_{2}=\operatorname{det}\binom{A_{1}}{e_{2}} \operatorname{det}\binom{A_{2}}{e_{1}}
$$

for $e_{1}=(1,0,0, \cdots, 0)$ and $e_{2}=(0,1,0, \cdots, 0)$. Since H_{i} are in general position, we know $D_{1} \neq 0$ and $D_{2} \neq 0$. Hence, $\alpha_{2 N+1}^{2}=\alpha_{2 N+2}^{2}$. The same arguments are available for the other α_{i} 's among $\alpha_{2 N+1}, \cdots, \alpha_{3 N+1}$. Thus, we can conclude $\alpha_{i}= \pm 1(2 N+1 \leqq i \leqq 3 N+1)$, because we may assume $\alpha_{2 N+1}=1$.

To complete the proof, assume that exactly one among $\alpha_{i}(2 N+1$ $\leqq i \leqq 3 N+1$) is equal to -1 , e.g., $\alpha_{2 N+1}=\alpha_{2 N+2}=\cdots=\alpha_{3 N}=1$ and $\alpha_{3 N+1}=-1$. We shall prove first that there are at most $N-1$ indices $i(1 \leqq i \leqq 2 N)$ such that $\alpha_{i} \neq 1$. Suppose that $\alpha_{j} \neq 1$ for some mutually distinct $j_{1}, j_{2}, \cdots, j_{N}\left(1 \leqq j_{m} \leqq 2 N\right)$. Here, changing η_{τ} if necessary, we may assume that $\alpha_{j_{N+1}}=1$ for some j_{N+1} with $j_{N+1} \neq j_{m}(1 \leqq m \leqq N)$ and $1 \leqq j_{N+1} \leqq 2 N$. Putting $j_{N+2}=2 N+1, \cdots, j_{2 N+2}=3 N+1$, we consider the identity (6.5) for a combination $I_{1}=\left(j_{1}, j_{2}, \cdots, j_{2 N+2}\right)$. Particularly, substituting $\zeta=1$, we get

$$
\begin{aligned}
\operatorname{det} & \left(a_{j_{m}}^{1}, \cdots, a_{j_{m}}^{N+1}, \alpha_{j_{m}} a_{j_{m}}^{1}, \cdots, \alpha_{j_{m}} a_{j_{m}}^{N+1} ; 1 \leqq m \leqq 2 N+2\right) \\
& =\operatorname{det}\left(\begin{array}{ll}
B_{1} & B_{1}^{*} \\
B_{2} & 0 \\
e_{N+1} & -2 e_{N+1}
\end{array}\right) \\
& = \pm 2\left(\alpha_{j_{1}}-1\right) \cdots\left(\alpha_{j_{N}}-1\right) \operatorname{det}\left(B_{2}\right) \operatorname{det}\binom{B_{1}}{e_{N+1}} \\
& =0,
\end{aligned}
$$

where

$$
\left.\begin{array}{l}
B_{1}=\left(a_{j_{m}}^{i} ; \begin{array}{l}
1 \leq i \leq N+1 \\
1 \leq m \leq N
\end{array}\right), \quad B_{1}^{*}=\left(\left(\alpha_{j_{m}}-1\right) a_{j_{m}}^{i} ; \frac{1 \leq i \leq N+1}{i \leq m \leqq N}\right) \\
B_{2}=\left(a_{j_{m}}^{i} ; 1 \leq N+1 \leq m \leq 2 N+1\right.
\end{array}\right)
$$

and $e_{N+1}=(0,0, \cdots, 0,1)$. This is a contradiction, because

$$
\operatorname{det}\left(B_{2}\right) \neq 0 \quad \text { and } \quad \operatorname{det}\binom{B_{1}}{e_{N+1}} \neq 0
$$

by the assumption. Therefore, we can choose $N+1(=2 N-(N-1))$ indices $i_{1}, i_{2}, \cdots, i_{N+1}\left(1 \leqq i_{m} \leqq 2 N\right)$ with $\alpha_{i_{m}}=1$.

Take now an index μ such that

$$
\left|\ell_{i_{\mu}}\right|=\max \left(\ell_{i_{1}}, \ell_{i_{2}}, \cdots, \ell_{i_{N+1}}\right) .
$$

Then, $\left|\ell_{i_{\mu}}\right|=\left|\ell_{i_{\mu^{\prime}}}\right|$ for some $\mu^{\prime}(\neq \mu)$. In fact, if not, substitute an $\ell_{i_{\mu}}$-th primitive root of unity into the identity (6.5) for a combination $I_{2}:=$ $\left(i_{1}, i_{2}, \cdots, i_{N+1}, 2 N+1, \cdots, 3 N+1\right)$. We have then a contradiction by the same argument as the above. The fact $\left|\ell_{i_{\mu}}\right|=\left|\ell_{i_{\mu^{\prime}}}\right|$ means that $h_{i_{\mu^{\prime}}}$ $=h_{i \mu}^{m}$ for $m= \pm 1$. For admissible representations $f=f_{1}: f_{2}: \cdots: f_{N+1}$ and $g=g_{1}: g_{2}: \cdots: g_{N+1}$, we know $g_{i}=f_{i}(1 \leqq i \leqq N)$ and $g_{N+1}=-f_{N+1}$. We may assume here $a_{j_{\mu}}^{i}=1(1 \leqq i \leqq N+1)$ by a change of homogeneous coordinates and put $b^{i}:=a_{j_{\mu^{\prime}}}^{i}$. Then,

$$
\begin{aligned}
& \left(f_{1}+f_{2}+\cdots+f_{N+1}\right)^{-m}\left(b^{1} f_{1}+b^{2} f_{2}+\cdots+b^{N+1} f_{N+1}\right) \\
& \quad=\left(f_{1}+f_{2}+\cdots+f_{N}-f_{N+1}\right)^{-m}\left(b^{1} f_{1}+b^{2} f_{2}+\cdots+b^{N} f_{N}-b^{N+1} f_{N+1}\right),
\end{aligned}
$$

whence

$$
\left(b^{N+1}-m b^{1}\right) f_{1}+\left(b^{N+1}-m b^{2}\right) f_{2}+\cdots+\left(b^{N+1}-m b^{N}\right) f_{N}=0 .
$$

Since f may be assumed to be non-degenerate,

$$
b^{N+1}-m b^{1}=b^{N+1}-m b^{2}=\cdots=b^{N+1}-m b^{N}=0 .
$$

Then, $b^{i}=b^{j}$ for some $i, j(\neq)$ in the case $N \geqq 2$, which is a contradiction. This completes the proof of Theorem 6.1.

Corollary 6.6. Under the same assumption of Theorem 6.1, if $N=2$, then, $f=g$.

Proof. For the case $D=C^{n}$, Theorem 6.1 implies that $c_{1}=c_{2}=c_{3}$ $=1$ or $c_{1}=c_{2}=c_{3}=-1$. In any case, we have $f=g$. Similarly, for the case $D=B-S$ too, we conclude also $f=g$.

THEOREM 6.7. Let f, g be meromorphic maps of C^{n} into $P_{N}(C)$ such that $f\left(C^{n}\right) \not \subset H_{i}, g\left(C^{n}\right) \not \subset H_{i}$ and $\nu\left(f, H_{i}\right)=\nu\left(g, H_{i}\right)$ for $3 N+1$ hyperplanes $H_{i}(1 \leqq i \leqq 3 N+1)$ in general position. If the image of f is not included in any subvariety of $P_{N}(C)$ which is defined as the zero set of a homogeneous polynomial of degree $\leqq 2$, then $f=g$.

Proof. Let H_{i} be given as (3.2). By Theorem 6.1, we may put $g_{i}=$ $c_{i} f_{i}(1 \leqq i \leqq N+1)$ for admissible representations $f=f_{1}: f_{2}: \cdots: f_{N+1}$, where $c_{i}:=h_{i}= \pm 1$. Moreover, by Corollary 4.4, if $f \neq g$, we may assume that $h_{N+2} h_{N+3} \sim 1$ or $h_{N+2} \sim h_{N+3}$, i.e., $h_{N+3}=d h_{N+2}^{m}$ for $m= \pm 1$ and $d \in \mathscr{C}^{*}$. As in the proof of Theorem 6.1,

$$
\begin{aligned}
& \left(a_{2 N+1}^{1} f_{1}+\cdots+a_{2 N+1}^{N+1} f_{N+1}\right)^{-m}\left(a_{2 N+2}^{1} f_{1}+\cdots+a_{2 N+2}^{N+1} f_{N+1}\right) \\
& \quad-d\left(a_{2 N+1}^{1} c_{1} f_{1}+\cdots+a_{2 N+1}^{N+1} c_{N+1} f_{N+1}\right)^{-m}\left(a_{2 N+2}^{2} c_{1} f_{1}+\cdots+a_{2 N+2}^{N+1} c_{1} f_{N+1}\right)=0
\end{aligned}
$$

By the assumption, the left hand side vanishes identically as a polynomial of $N+1$ indeterminates $f_{1}, f_{2}, \cdots, f_{N+1}$. By simple calculations, we can conclude $f=g$.

§ 7. Meromorphic maps into $\boldsymbol{P}_{2}(\boldsymbol{C})$.

Let us consider in this section two meromorphic maps f and g of C^{n} into $P_{2}(C)$ such that $f\left(C^{n}\right) \not \subset H_{i}, g\left(C^{n}\right) \not \subset H_{i}$ and $\nu\left(f, H_{i}\right)=\nu\left(g, H_{i}\right)$ for six hyperplanes $H_{i}(1 \leqq i \leqq 6)$ in general position. We shall study relations between the functions h_{i} defined by (3.3). By the equivalence relation $h_{i} \sim h_{j}$, i.e., $h_{i} / h_{j} \equiv$ const., we classify the set $\left\{h_{1}, h_{2}, \cdots, h_{6}\right\}$ into the subclasses $J_{1}, J_{2}, \cdots, J_{k}$. By M we denote the maximum of the numbers of elements in $J_{\ell}(1 \leqq \ell \leqq k)$.

We study first the case $M=2$. To this end, take functions η_{1}, η_{2}, \cdots, η_{t} in \mathscr{H}^{*} whose canonical images to $G=\mathscr{H}^{*} / \mathscr{C}^{*}$ constitute a basis of the subgroup of G generated by the canonical images of $h_{i}(1 \leqq i \leqq 6)$ into G. Writing each h_{i} as

$$
h_{i} \sim \eta_{1}^{\ell_{1} \eta_{2}^{\ell_{i 2}}} \cdots \eta_{t}^{\ell_{i t}}
$$

we choose integers $p_{1}, p_{2}, \cdots, p_{t}$ which are generic with respect to $\ell_{i_{\tau}}$ and put $\ell_{i}:=\sum_{r=1}^{t} \ell_{i_{\tau}} p_{\tau}$. By Lemma 2.6 and Proposition 4.3, it may be assumed that

$$
\ell_{1} \leqq \ell_{2}<\ell_{3}=\ell_{4}=0<\ell_{5} \leqq \ell_{6}
$$

after a suitable change of indices. Let us assume $\ell_{1}<\ell_{2}$ and $\ell_{5}<\ell_{6}$. Then, by Corollary 4.4, we see $-\ell_{2}=\ell_{5}$. Moreover, exchanging each η_{t} by η_{T}^{-1} if necessary, we may assume $\ell_{1}+\ell_{6} \geqq 0$. By Proposition 4.3, we can take indices $i, j, k(1 \leqq i<j<k \leqq 6,\{i, j, k\} \neq\{1,5,6\})$ such that $h_{i} h_{j} h_{k} \sim h_{1} h_{5} h_{6}$. Then, $\ell_{i}+\ell_{j}+\ell_{k}=\ell_{1}+\ell_{5}+\ell_{6}$ by (2.4). Let $l_{1}+l_{6}>0$. If $k \leqq 5$, we have a contradiction that

$$
\ell_{i}+\ell_{j}+\ell_{k} \leqq \ell_{3}+\ell_{4}+\ell_{5}=\ell_{5}<\ell_{1}+\ell_{5}+\ell_{6}
$$

Therefore, $k=6, i \geqq 2, j \leqq 4$, and so $h_{1} h_{5}=h_{i} h_{j}$ for some i, j ($2 \leqq$ $i<j \leqq 4$). In conclusion, there are two possible cases (i) $h_{1} h_{6} \sim 1$ and (ii) $h_{1} h_{5} \sim h_{2}$. For the case (i), changing notations, we have the type

$$
\begin{equation*}
\left(h_{1}, h_{2}, \cdots, h_{\varepsilon}\right)=\left(c_{1} h^{*-1}, c_{2} h^{-1}, 1, c_{3}, h, h^{*}\right) \tag{I}
\end{equation*}
$$

where $h, h^{*} \in \mathscr{H}^{*}$ with $h \not \not 1, h^{*} \nprec 1, h \nsim h^{*}$ and $h h^{*} \nprec 1$ and $c_{1} \in C^{*}$.
For the case (ii), if we put $h:=h_{5}$, then $h_{1} \sim h^{-2}$. Observe the types of functions $h_{r} h_{s} h_{t}(r<s<t,\{r, s, t\} \neq\{1,2,6\})$ such that $h_{r} h_{s} h_{t} \sim h_{1} h_{2} h_{6}$. Using the assumption $\ell_{5}<\ell_{6}$, we can easily conclude $h_{6} \sim h^{\ell}$ for $\ell=2$, 3 or 4 . The case $\ell=2$ can be reduced to the type (I). For the case $\ell=3$, we have the type

$$
\begin{equation*}
\left(h_{1}, h_{2}, \cdots, h_{6}\right)=\left(c_{1} h^{-2}, c_{2} h^{-1}, 1, c_{3}, h, c_{4} h^{3}\right) \tag{II}
\end{equation*}
$$

where $h \nsim 1$.
On the other hand, we can prove that the case $\ell=4$ is impossible. In fact, suppose that

$$
\begin{equation*}
\left(h_{1}, h_{2}, \cdots, h_{6}\right)=\left(c_{1} h^{-2}, c_{2} h^{-1}, 1, c_{3}, h, c_{4} h^{4}\right) \tag{7.1}
\end{equation*}
$$

for some $h \in \mathscr{H}^{*}$ with $h \sim 1$ and $c_{i} \in \mathscr{C}^{*}$. For fixed admissible represetations of f and g we consider the identity (3.7) as in the proof of Proposition 3.5. Substituting (7.1) into them, we have a relation

$$
P(h)=0,
$$

where $P(X)$ is polynomial of degree $\leqq 8$ with constant coefficients. According to Proposition 4.4, the coefficients of $P(h)$ are all zeros. Thus, we get nine relations among unknowns c_{i} and $a_{j}^{i}(1 \leqq i \leqq 3,1 \leqq j \leqq 6)$. By elementary computations, it is possible to conclude that all solutions contradicts the assumption that H_{i} are in general position.

Consider next the case $M=2$ and $\ell_{1}=\ell_{2}$. If $\ell_{5}=\ell_{6}$, then we get the type

$$
\begin{equation*}
\left(h_{1}, h_{2}, \cdots, h_{6}\right)=\left(h, c_{1} h, 1, c_{2}, h^{*}, c_{3} h^{*}\right), \tag{III}
\end{equation*}
$$

where $h \nsim 1, h^{*} \nsim 1$ and $h \nsim h^{*}$.
Suppose that $\ell_{5}<\ell_{6}$. In this case, by Lemma 2.7, we see $h_{1} h_{5} \sim h_{2} h_{5}$ ~ 1. Observe the possible types of functions $h_{i} h_{j} h_{k}(i<j<k,\{i, j, k\} \neq$ $\{1,2,6\}$) such that $h_{i} h_{j} h_{k} \sim h_{1} h_{2} h_{6}$. Putting $h:=h_{5}$, we have easily $h_{6} \sim$ h^{m} for $m=2$ or 3 . Therefore, we have one of the types

$$
\begin{equation*}
\left(h_{1}, h_{2}, \cdots, h_{6}\right)=\left(c_{1} h^{-1}, c_{2} h^{-1}, 1, c_{3}, h, c_{4} h^{2}\right) \tag{IV}
\end{equation*}
$$

(V)

$$
\left(h_{1}, h_{2}, \cdots, h_{6}\right)=\left(c_{1} h^{-1}, c_{2} h^{-1}, 1, c_{3}, h, c_{4} h^{3}\right)
$$

where $h \nsim 1$.
For the case $M=2$ and $\ell_{5}=\ell_{6}$, we have also one of the types (III), (IV) and (V), because this case can be reduced to the above by exchanging each η_{τ} by $\eta_{\tau}^{-1}(1 \leqq \tau \leqq t)$.

Now, let us study the case $M=3$. Without loss of generality, we may assume $h_{1} \sim h_{2} \sim h_{3} \sim 1$. Observe all possible types of functions $h_{i} h_{j} h_{k}$ such that $h_{i} h_{j} h_{k} \sim h_{1} h_{2} h_{3}$, where $i<j<k$ and $\{i, j, k\} \neq\{1,2,3\}$. There are two possible subcases (a) $h_{i} h_{j} \sim 1(4 \leqq i<j \leqq 6)$ and (b) $h_{4} h_{5} h_{6}$ ~ 1. We consider first the subcase (a). Changing indices if necessary, we may write

$$
\begin{equation*}
\left(h_{1}, h_{2}, \cdots, h_{6}\right)=\left(1, c_{1}, c_{2}, h, c_{3} h^{-1}, h^{*}\right) \tag{7.2}
\end{equation*}
$$

where $h, h^{*} \in \mathscr{H}^{*}$ with $h \not \not 1, h^{*} \nsim 1$ and $c_{i} \in \mathscr{C}^{*}$. If we substitute (7.2) into the identity (3.7), we have a relation

$$
\begin{equation*}
A_{1} h^{2} h^{*}+A_{2} h^{2}+A_{3} h h^{*}+A_{4} h+A_{5} h^{*}+A_{6}=0 \tag{7.3}
\end{equation*}
$$

where $A_{i}(1 \leqq i \leqq 6)$ are some constants. If $h \not \nsim h^{*}, h^{2} \nsim h^{*}, h^{2} h^{*} \nsim 1$ and $h \sim h^{*}$, then $A_{s}=0$ for any s because of Proposition 4.5. This means that (7.3) vanishes identically as a polynomial of h and h^{*}. By substituting $h=h^{*}=1$, we have easily $c_{1}=1, c_{2}=1$ or $c_{3}=1$. In any case, it is not difficult to conclude that (7.3) has no solution. On the other hand, if $h^{2} \sim h^{*}, h^{2} h^{*} \sim 1$ or $h \sim h^{*}$, by exchanging h by h^{-1} and indices if necessary, we have one of the types

$$
\begin{equation*}
\left(h_{1}, h_{2}, \cdots, h_{6}\right)=\left(1, c_{2}, c_{3}, h, c_{4} h^{-1}, c_{5} h\right) \tag{VI}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(h_{1}, h_{2}, \cdots, h_{6}\right)=\left(1, c_{2}, c_{3}, h, c_{4} h^{-1}, c_{5} h^{2}\right), \tag{VII}
\end{equation*}
$$

where $h \nsim 1$.
We study next the subcase (b). Put

$$
\left(h_{1}, h_{2}, \cdots, h_{6}\right)=\left(1, c_{2}, c_{3} h, h^{*}, c_{4}\left(h h^{*}\right)^{-1}\right)
$$

for $h, h^{*} \in \mathscr{H}^{*}$ with $h \not \not 1, h^{*} \nsim 1$ and $h h^{*} \nsim 1$. As the above, by the use of (3.7), we have a relation

$$
\begin{equation*}
B_{1} h^{2} h^{* 2}+B_{2} h^{2} h^{*}+B_{3} h h^{* 2}+B_{4} h h^{*}+B_{5} h+B_{6} h^{*}+B_{7}=0 \tag{7.4}
\end{equation*}
$$

where B_{i} are some constants. If $h^{2} h^{*} \nsim 1, h h^{* 2} \nsim 1$ and $h \nsim h^{*}$, then $B_{i}=0$ for any i by Proposition 4.5. In this case too, we can show easily that (7.4) has no solution. On the other hand, if $h^{2} h^{*} \sim 1, h h^{* 2} \sim 1$ or $h \sim h^{*}$, we can reduce all possible cases to the type

$$
\begin{equation*}
\left(h_{1}, h_{2}, \cdots, h_{6}\right)=\left(1, c_{2}, c_{3}, h, c_{4} h, c_{5} h^{-2}\right), \tag{VIII}
\end{equation*}
$$

where $h \nsim 1$.
For the case $M \geqq 4$, we may assume $h_{1} \sim h_{2} \sim h_{3} \sim h_{4}$. By the similar way as above, we have the only cases $(\alpha) h_{5} \sim h_{6} \sim 1$, $(\beta) h_{5} h_{6} \sim 1\left(h_{5} \nsim 1\right)$, (γ) $h_{5} \nsim 1$ and $h_{6} \nsim 1$ and (δ) $h_{5} \sim h_{6} \sim 1$. But, for the case (β), we see always $f\left(C^{n}\right) \subset H_{6}$, which contradicts the assumption. Thus, we obtain one of the following types;

$$
\begin{equation*}
\left(h_{1}, h_{2}, \cdots, h_{6}\right)=\left(1, c_{2}, c_{3}, c_{4}, h, c_{5} h\right) \tag{IX}
\end{equation*}
$$

$$
\begin{equation*}
\left(h_{1}, h_{2}, \cdots, h_{6}\right)=\left(1, c_{2}, c_{3}, c_{4}, h, c_{5} h^{-1}\right) \tag{X}
\end{equation*}
$$

(XI)

$$
\left(h_{1}, h_{2}, \cdots, h_{6}\right)=\left(1, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}\right),
$$

where $h \nsim 1$.
As is easily seen, one of these eleven types cannot be constructed from the others by changing indices $1,2, \cdots, 6$, by multiplying all h_{i} by a common function in \mathscr{H}^{*} or by choosing other generators h, h^{*}. And, it is not difficult to find concrete examples of meromorphic maps f and g and hyperplanes of these types.

Summalizing them, we give
THEOREM 7.5. Let f, g be meromorphic maps of C^{n} into $P_{2}(C)$ such that $f\left(\boldsymbol{C}^{n}\right) \not \subset H_{i}, g\left(C^{n}\right) \not \subset H_{i}$ and $\nu\left(f, H_{i}\right)=\nu\left(g, H_{i}\right)$ for six hyperplanes H_{i} in general position. Then, after a suitable change of indices, the functions h_{i} defined by (3.3) as in §3 are related with one of the above types (I) $\sim(X I)$.

As a consequences of this, we can prove
Corollary 7.6. Uuder the same assumption of Theorem 7.5, it is possible to choose homogeneous coordinates $w_{1}: w_{2}: w_{3}$ such that, for suitable admissible representations $f=f_{1}: f_{2}: f_{3}$ and $g=g_{1}: g_{2}: g_{3}, f$ and g are related with

$$
\begin{align*}
& g_{1}=f_{1} \\
& g_{2}=c f_{2} \tag{7.7}\\
& g_{3}=P\left(f_{1}, f_{2}, f_{3}\right) / Q\left(f_{1}, f_{2}, f_{3}\right)
\end{align*}
$$

where $P\left(w_{1}, w_{2}, w_{3}\right)$ and $Q\left(w_{1}, w_{2}, w_{3}\right)$ are homogeneous polynominals of degree $\leqq 3$ and $\leqq 2$ respectively and c is a non-zero constant.

Proof. Let each H_{i} be given as (3.2). Assume that $\left\{h_{i}\right\}$ is of type (I). Without loss of generality, we may assume $a_{3}^{1}=a_{4}^{2}=a_{5}^{3}=1, a_{3}^{2}=a_{3}^{3}$ $=a_{4}^{1}=a_{4}^{3}=a_{5}^{1}=a_{5}^{2}=0$. We have then

$$
g_{3}\left(a_{2}^{1} f_{1}+a_{2}^{2} c_{3} f_{2}+a_{2}^{3} g_{3}\right)=f_{3}\left(a_{2}^{1} f_{1}+a_{2}^{2} f_{2}+a_{2}^{3} f_{3}\right)
$$

by the identities (3.6) for $i=2,3,4,5$, and

$$
\begin{aligned}
& \left(a_{1}^{1} f_{1}+a_{1}^{2} c_{3} f_{2}+a_{1}^{3} g_{3}\right)\left(a_{6}^{1} f_{1}+a_{6}^{2} c_{3} f_{2}+a_{6}^{3} g_{3}\right) \\
& \quad=c_{1}\left(a_{1}^{1} f_{1}+a_{1}^{3} f_{2}+a_{1}^{3} f_{3}\right)\left(a_{6}^{1} f_{1}+a_{6}^{2} f_{2}+a_{6}^{3} f_{3}\right)
\end{aligned}
$$

by (3.6) for $i=1,3,4,6$. From these two relations we can conclude easily the relations of the type (7.7). In the same manner, it is easy to obtain the desired relations for the other types of $\left\{h_{i}\right\}$. We have thus Corollary 7.6.

References

[1] E. Borel, Sur les zéros des fonctions entières, Acta Math., 20 (1897), 357-396.
[2] H. Cartan, Sur les systèmes de fonctions holomorphes a variétés linéaire lacunaires et leurs applications, Ann. E. N. S., 45 (1928), 255-346.
[3] H. Cartan, Sur les zéros des combinaisons linéaires de p fonctions holomorphes données, Mathematica 7 (1933), 5-31.
[4] H. Fujimoto, Extension of the big Picard's theorem, Tôhoku Math. J., 24 (1972), 415-422.
[5] H. Fujimoto, On meromorphic maps into the complex projective space, J. Math. Soc. Japan, 26 (1974), 272-288.
[6] M. L. Green, Holomorphic maps into complex projective space omitting hyperplanes, Trans. A. M. S., 169 (1972), 89-103.
[7] R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta Math., 48 (1926), 367-391.
[8] G. Pólya, Bestimmung einer ganzen Funktion endlichen Geschlechts durch viererlei Stellen, Math. Tidsskrift B, K ϕ benhavn 1921, 16-21.
[9] E. M. Schmid, Some theorems on value distributions of meromorphic functions, Math. Z., 120 (1971), 61-92.

Nagoya University

[^0]: Received May 20, 1974.

