T. E. Cecil Nagoya Math. J. Vol. 55 (1974), 5-31

GEOMETRIC APPLICATIONS OF CRITICAL POINT THEORY TO SUBMANIFOLDS OF COMPLEX PROJECTIVE SPACE

THOMAS E. CECIL

Section 0—Introduction.

In a recent paper, [6], Nomizu and Rodriguez found a geometric characterization of umbilical submanifolds $M^n \subset \mathbb{R}^{n+p}$ in terms of the critical point behavior of a certain class of functions L_p , $p \in \mathbb{R}^{n+p}$, on M^n . In that case, if $p \in \mathbb{R}^{n+p}$, $x \in M^n$, then $L_p(x) = (d(x, p))^2$, where d is the Euclidean distance function.

The result of Nomizu and Rodriguez can be expressed as follows. Let M^n $(n \ge 2)$ be a connected, complete Riemannian manifold isometrically immersed in \mathbb{R}^{n+p} . Suppose there exists a dense subset D on \mathbb{R}^{n+p} such that every function of the form L_p , $p \in D$, has index 0 or n at any of its non-degenerate critical points. Then M^n is an umbilical submanifold, that is M^n is embedded in \mathbb{R}^{n+p} as a Euclidean subspace, \mathbb{R}^n , or a Euclidean n-sphere, S^n .

Since the set of all points $p \in \mathbb{R}^{n+p}$ such that L_p is a Morse function is a dense subset of \mathbb{R}^{n+p} , the above theorem could also have been stated in terms of Morse functions of the form L_p .

In this paper, we prove results analogous to those of Nomizu and Rodriguez for submanifolds of complex projective space, $P^{m}(C)$, endowed with the standard Fubini-Study metric.

Let M^n be a complex *n*-dimensional submanifold of $P^{n+p}(C)$. For $p \in P^{n+p}(C)$, $x \in M^n$, the function $L_p(x)$ which we define is essentially the distance in $P^{n+p}(C)$ from p to x. In section 2, we define the concept of a focal point of (M^n, x) . We then prove an Index Theorem for L_p which states that the index of L_p at a non-degenerate critical point x is equal to the number of focal points of (M^n, x) on the geodesic in $P^{n+p}(C)$ from x to p.

Received July 9, 1973.

This research was partially supported by NSF grant GP 28419 A1.

THOMAS E. CECIL

In the process, we find that if $L_p(x) = \pi/2$, then L_p has a degenerate critical point at x. Because of this, it is impossible to state the following result in terms of Morse functions of the form L_p .

Our main result is the following. Let M^n $(n \ge 2)$ be a connected, complete, complex *n*-dimensional Kählerian manifold which is holomorphically and isometrically immersed in $P^{n+p}(C)$. Assume there exists a dense subset D of $P^{n+p}(C)$ such that every function of the form L_p , $p \in D$, has index 0 or n at any of its non-degenerate critical points. Then M^n is $P^n(C)$ or $Q^n(C)$. Here $P^n(C)$ denotes a totally geodesic submanifold of $P^{n+p}(C)$, and $Q^n(C)$ is the standard complex quadric hypersurface of a totally geodesic $P^{n+1}(C) \subset P^{n+p}(C)$.

In section 3, we prove the above result for co-dimension p = 1; and in section 4, we extend the result to arbitrary co-dimensions. Section 5 is devoted to a detailed study of the interesting special case $Q^n(C)$ $\subset P^{n+1}(C)$. We find, among other things, that the set of focal points is $P^{n+1}(R)$, a real (n + 1)-dimensional projective space naturally embedded in $P^{n+1}(C)$.

The author would like to express his sincere gratitude to his adviser, Katsumi Nomizu, for his assistance in his work.

Section 1—Preliminaries.

We first recall the construction of the Fubini-Study metric on $P^{m}(C)$ (see [4], vol. II, p. 273-78 and [7], p. 514-515, for more detail). We consider $P^{m}(C)$ endowed with the Fubini-Study metric of constant holomorphic sectional curvature 4 (we choose 4 instead of 1 for the curvature to make calculations easier).

Consider C^{m+1} with natural basis e_0, \dots, e_m . The natural Hermitian inner product on C^{m+1} is defined by

$$(z,w) = \sum_{k=0}^{m} z^k \overline{w}^k$$

where

$$z = \sum\limits_{k=0}^m z^k e_k$$
 and $w = \sum\limits_{k=0}^m w^k e_k$.

The Euclidean metric g on C^{m+1} is given by

$$g(z,w) = \operatorname{Re}(z,w)$$
 for $z, w \in C^{m+1}$.

The unit sphere

$$S^{2m+1} = \{z \in C^{m+1} | (z, z) = 1\}$$

is a principal fibre bundle over $P^m(C)$ with structure group S^1 and projection π . With the natural identification between vectors tangent to S^{2m+1} and vectors in C^{m+1} , one can show that for $z \in S^{2m+1}$, the tangent space to S^{2m+1} at z, which we denote as $T_z(S^{2m+1})$, is given by

$${T}_{z}(S^{2m+1}) = \{w \in {old C}^{m+1} | \, g(z,w) = 0\}$$
 .

If we define T'_z by

$$T'_{z} = \{w \in C^{m+1} | g(z, w) = g(iz, w) = 0\}$$
,

then T'_z is a subspace of $T_z(S^{2m+1})$ whose orthogonal complement is $\{iz\}$, the 1-dimensional subspace spanned by the vector iz. The distribution T' defines a connection in the principal fibre bundle $S^{2m+1}(P^m(\mathbf{C}), S^1)$, in that T'_z is complementary to the subspace $\{iz\}$ tangent to the fibre through z, and T' is invariant by the action of S^1 . Thus the projection π induces a linear isomorphism π_* of T'_z onto $T_{\pi(z)}(P^m(\mathbf{C}))$, and π_* maps $\{iz\}$ into 0 for each $z \in S^{2m+1}$.

We define the Fubini-Study metric, \tilde{g} , of constant holomorphic sectional curvature 4 by the equation

$$\tilde{g}(X, Y) = g(X', Y')$$

where $X, Y \in T_p(P^m(\mathbb{C}))$ and X', Y' are their respective horizontal lifts at z where $\pi(z) = p$. Since g is invariant by the action of S^1 , the definition is independent of the choice of z. The complex structure on T'_z defined by multiplication by i induces the canonical complex structure, J, on $P^m(\mathbb{C})$ by means of the isomorphism π_* . Finally, π_* induces the Kählerian connection, \tilde{V} , on $P^m(\mathbb{C})$ in the following way. Let X, Y be vector fields on $P^m(\mathbb{C})$, and let X', Y' be their respective horizontal lifts. Then for V' the covariant derivative on S^{2m+1} , the equation

$$\tilde{\mathcal{V}}_{X}Y = \pi_{*}(\mathcal{V}_{X'}'Y')$$

defines the Kählerian connection on $P^m(C)$.

Section 2—Focal points, the functions L_{v} , and the Index Theorem.

Let M^n be a connected, complex *n*-dimensional Kählerian manifold, and let *f* be a holomorphic and isometric immersion of M^n into $P^{n+p}(C)$. Let $N(M^n)$ denote the normal bundle of M^n . Any point of $N(M^n)$ can be represented by a pair $(x, r\xi)$ where $x \in M^n$, $r \in \mathbb{R}$, and ξ is a unitlength vector in $T_x^{\perp}(M^n)$, the normal space to M^n at f(x).

We define $\gamma(x,\xi,r)$, $-\infty < r < \infty$, to be the geodesic in $P^{n+p}(C)$ parametrized by arc-length parameter r such that

$$\gamma(x,\xi,0) = f(x) \text{ and } \vec{\gamma}(x,\xi,0) = \xi$$
.

In terms of the vector representation of $P^{n+p}(C)$, $\gamma(x,\xi,r)$ can be described as follows. Let $w \in S^{2(n+p)+1}$ such that $\pi(w) = f(x)$, and let $\xi' \in T'_w$ such that $\pi_*(\xi') = \xi$. Then

$$\gamma(x,\xi,r) = \pi(\cos r \, w + \sin r \, \xi') \; .$$

Of course, $\gamma(x,\xi,r)$ does not depend on the choice of w.

We define a map $F: N(M^n) \to P^{n+p}(C)$ by

$$F(x,r\xi)=\gamma(x,\xi,r) \ .$$

We note that for any values of x, ξ and r the following holds,

 $F(x,(r + \pi)\xi) = F(x,r\xi) .$

Thus we may restrict the range of values of r to $-\pi/2 \le r \le \pi/2$.

For $\xi \in T_x^{\perp}(M^n)$, let A_{ξ} denote the symmetric endomorphism of $T_x(M^n)$ corresponding to the second fundamental form of M^n at x in the direction of ξ . We first prove the following proposition.

PROPOSITION 1. Let $(x, r\xi) \in N(M^n)$. Then F_* , the Jacobian of F, is degenerate at $(x, r\xi)$ in precisely the following cases:

(i) If $r = \pm \pi/2$, then F_* is degenerate.

(ii) For $-\pi/2 \le r \le \pi/2$, there is a contribution of $\nu > 0$ to the nullity of F_* at $(x, r\xi)$ if

 $\cot r = k$

where k is an eigen-value of multiplicity ν of A_{ε} .

Proof. Fix the point $(x, r\xi) \in N(M^n)$; we want to examine the nullity of F_* at $(x, r\xi)$. We assume for the moment that $r \neq 0$, and by replacing ξ by $-\xi$ if necessary, we may assume r > 0.

Let U be a local co-ordinate neighborhood of x in M^n with local coordinates u^1, u^2, \dots, u^{2n} . Choose orthonormal normal vector fields ξ_1, \dots , $\xi_p, J\xi_1, \dots, J\xi_p$ on U such that $\xi_1(x) = \xi$. For ease in notation, we let $\xi_{p+j} = J\xi_j$ for $1 \le j \le p$. For $u \in U$, $\eta \in T_u^{\perp}(M^n)$, we can write

$$\eta = \mu \Bigl(\Bigl(1 - \sum\limits_{j=2}^{2p} {(t^j)^2} \Bigr)^{1/2} \xi_1 + t^2 \xi_2 + \, \cdots \, + \, t^{2p} \xi_{2p} \Bigr)$$

where $0 \le \mu < \infty$, $0 \le |t^j| \le 1$ for all *j*, and $\sum_{j=2}^{2p} (t^j)^2 \le 1$. The t^j are the direction cosines of η and $\mu = ||\eta||$. The co-ordinates $u^1, \dots, u^{2n}, \mu, t^2$, \dots, t^{2p} are local co-ordinates for N(U).

Let $w \in S^{2(n+p)+1}$. To avoid confusion, we will denote the map $\pi_*: T'_w \to T_{\pi(w)}(P^{n+p}(C))$ by $(\pi_*)_w$ when such precision is required.

Now let $w \in S^{2(n+p)+1}$ such that $\pi(w) = f(x)$. We define $z \in S^{2(n+p)+1}$ by the vector equation

$$z = \cos r \, w + \sin r \, \xi'$$

where $(\pi_*)_w(\xi') = \xi$. Then $F(x, r\xi) = \pi(z)$. For any $j, 2 \le j \le 2p$, the definition of F implies that

$$F_*\left(\frac{\partial}{\partial t^j}\right)\Big|_{(x,r\xi)} = (\pi_*)_z(\vec{\eta}(t^j))\Big|_{t^j=0}$$

where $\eta(t^j)$ is a curve on $S^{2(n+p)+1}$ defined by

$$\eta(t^j) = \cos r \, w + \sin r ((1 - (t^j)^2)^{1/2} \xi_1' + t^j \xi_j')$$

where ξ'_1, ξ'_j are the horizontal lifts of ξ_1, ξ_j respectively to T'_w . We see that $\eta(0) = z$ for any j.

If $r = \pm \pi/2$, we will show $F_*(\partial/\partial t^{p+1})|_{(x,r\xi)} = 0$. In that case, $\xi_{p+1} = J\xi_1$ and for $r = \pi/2$

$$ec{\eta}(t^{p+1})\left|_{t^{p+1}=0}=i\eta(0)=iz
ight.$$
 ,

and

$$F_*\!\left(rac{\partial}{\partial t^{p+1}}
ight)\Big|_{(x,\,r\,\epsilon)}=(\pi_*)_z(iz)=0\;.$$

The case $r = -\pi/2$ is handled similarly. This proves (i).

For $|r| < \pi/2$, a straight-forward calculation which we omit shows,

$$F_*\!\left(\!rac{\partial}{\partial t^j}
ight)\Big|_{\scriptscriptstyle (x,r\xi)} = \sin r \, (\pi_*)_{\scriptscriptstyle \mathcal{Z}}(\xi'_j)
eq 0 \;, \quad ext{ for } 2 \leq j \leq 2p \;,$$

and

THOMAS E. CECIL

$$F_*\left(\frac{\partial}{\partial\mu}\right)\Big|_{(x,r\xi)} = (\pi_*)_z(\sin r w + \cos r \xi'_1) \neq 0.$$

In fact, these computations show that if

$$V = a_1 \left(\frac{\partial}{\partial \mu} \right) + \sum_{j=2}^{2p} a_j \left(\frac{\partial}{\partial t^j} \right) \in T_{(x,r\xi)}(N(U)) ,$$

then $F_*(V) = 0$ only if $a_j = 0$ for all j. If we let

$$X = \sum_{j=1}^{2n} b_j \left(\frac{\partial}{\partial u^j} \right) \in T_{(x,r\xi)}(N(U))$$
 ,

we shall next compute $F_*(X)$. That computation and the above will show that

$$F_*(X+V) = 0$$
 only if $V = 0$.

(We remark that if r = 0, we must choose a slightly different co-ordinate system to obtain the same result.)

Consider a vector $X = \sum_{j=1}^{2n} b_j(\partial/\partial u^j) \in T_{(x,r\xi)}(N(U))$. If r = 0, one easily shows $F_*(X) = X$ and so F_* is non-degenerate at (x, 0). Assume again, then, that r > 0. Considering $T_{(x,r\xi)}(N(U))$ as $T_x(U) \oplus \mathbb{R}^{2p}$, we can write X = (Y, 0) where $Y \in T_x(U)$. To facilitate the computation of $F_*(X)$, we assume that the vector field ξ_1 defined above has been chosen so that

$$abla_{Y}^{\perp}\xi_{1}=0$$

where ∇^{\perp} is the connection in the normal bundle.

Locally, i.e. for some $\varepsilon > 0$, there is a curve $\beta(t)$, $-\varepsilon < t < \varepsilon$, in M^n such that $\beta(0) = x$ and $\bar{\beta}(0) = Y$. Let $\alpha(t)$ be the lift of $\beta(t)$ to $S^{2(n+p)+1}$ so that $\alpha(0) = w$, and $\pi(\alpha(t)) = f(\beta(t))$ for $-\varepsilon < t < \varepsilon$.

If we define the curve $\eta(t)$ in $S^{2(n+p)+1}$ by

$$\eta(t) = \cos r \, \alpha(t) + \sin r \, \xi_1'(\alpha(t)) ,$$

then $\eta(0) = z$, and

(1)
$$F_*(X) = (\pi_*)_z(\vec{\eta}(0))$$
.

We need to find the component of $\vec{\eta}(0)$ in T'_z . Considering $\eta(t)$ as a curve in C^{n+p+1} , we find

(2)
$$\vec{\eta}(t) = \cos r \, \vec{\alpha}(t) + \sin r \, D_{\vec{\alpha}(t)} \xi_1'$$

where D is the Euclidean covariant derivative in C^{n+p+1} . Since $g(\vec{\alpha}(t), \xi'_1(\alpha(t)) = 0$ for $-\varepsilon < t < \varepsilon$, we have $D_{\vec{\alpha}(t)}\xi'_1 = V'_{\vec{\alpha}(t)}\xi'_1$. Thus we have by evaluating (2) at t = 0,

(3)
$$\vec{\eta}(0) = \cos r \, \vec{\alpha}(0) + \sin r \, \vec{V}'_{\vec{\alpha}(0)} \xi'_1 \, .$$

One can show by a straight-forward calculation that

$$g(\vec{\eta}(0), z) = 0 = g(\vec{\eta}(0), iz)$$

and hence $\vec{\eta}(0) \in T'_z$. Since (π_*) is an isomorphism on T'_z , we have shown

(4)
$$(\pi_*)_{i} \vec{\eta}(0) = 0$$
 if and only if $\vec{\eta}(0) = 0$.

To find when $\vec{\eta}(0) = 0$, we proceed as follows. We displace the vector $\vec{\eta}(0) \in T'_z$ by Euclidean parallelism and consider $\vec{\eta}(0) \in T_w(S^{2(n+p)+1})$. Equation (3) shows that, in fact, $\vec{\eta}(0) \in T'_w$ since $\vec{\alpha}(t)$ and $\xi'_1(\alpha(t)) \in T'_{\alpha(t)}$ for all t. Now, applying the isomorphism $(\pi_*)_w$ we have

(5)
$$(\pi_*)_w(\vec{\alpha}(0)) = \vec{\beta}(0) = Y$$

$$(6) \qquad (\pi_*)_w (\mathcal{V}'_{\vec{a}(0)} \xi'_1) = \tilde{\mathcal{V}}_Y \xi_1 .$$

But $\tilde{\mathcal{V}}_{Y}\xi_{1} = -A_{\xi_{1}}Y + \mathcal{V}_{Y}^{\perp}\xi_{1}$, and since $\xi_{1}(x) = \xi$ and $\mathcal{V}_{Y}^{\perp}\xi_{1} = 0$, we have

(7)
$$\tilde{\mathcal{V}}_{Y}\xi_{1} = -A_{\varepsilon}Y$$

Thus, using (5), (6), (7) and applying $(\pi_*)_w$ to (3) we have

(8)
$$(\pi_*)_w \vec{\eta}(0) = \cos r \, Y - \sin r \, A_{\xi} Y$$

Since $\vec{\eta}(0) \in T'_w$, we know $(\pi_*)_w \vec{\eta}(0) = 0$ if and only if $\vec{\eta}(0) = 0$. From (8) we see that $\vec{\eta}(0) = 0$ if and only if $k = \cot r$ is an eigen-value of A_{ε} and Y is an eigen-vector of k. From (1) and (4) we see that this also gives necessary and sufficient conditions under which $F_*(X) = 0$. If $\cot r$ is an eigen-value of multiplicity ν , then it is clear that F_* vanishes on a ν -dimensional subspace of $T_{(x,r\xi)}N(M^n)$, i.e. F_* has nullity ν .

Q.E.D.

Since the degeneracies of F_* of type (i) in Proposition 1 depend only on $r = \pm \pi/2$ and not on M^n or the point $x \in M^n$, they provide no information about M^n itself. Thus such degeneracies will not be included in the following definition of a focal point of (M^n, x) . In the definition it is understood, as above, that ξ is a unit vector in $T_x^{\perp}(M^n)$ and $-\pi/2 \le r \le \pi/2$.

DEFINITION. A point $p \in P^{n+p}(C)$ is called a focal point of (M^n, x) of multiplicity ν if $p = F(x, r\xi)$ and $\cot r$ is an eigen-value of multiplicity $\nu > 0$ of A_{ξ} . (We say p is a focal point of M^n if p is a focal point of (M^n, x) for some $x \in M^n$.)

We now proceed to define the functions L_p . For $p, q \in P^{n+p}(C)$, and $z, w \in S^{2(n+p)+1}$ such that $\pi(z) = p$, $\pi(w) = q$, we define

$$L_p(q) = \cos^{-1}(|(z, w)|^2)$$

where $0 \le \cos^{-1}() \le \pi/2$. One easily checks that the definition of $L_p(q)$ is independent of the choice of z, w.

We remark that $L_p(q)$ is essentially d(p,q) the distance in $P^{n+p}(C)$ from p to q which is given by

$$d(p,q) = \cos^{-1}(|(z,w)|)$$
.

We use $L_p(q)$ rather than d(p,q) to gain differentiability at points q such that $L_p(q) = \pi/2$. i.e. (z, w) = 0.

For $p \in P^{n+p}(C)$, $x \in M^n$, we define $L_p(x) = L_p(f(x))$. If $p \notin f(M^n)$, then the restriction of L_p to M^n is a differentiable function on M^n . From this point on, we will only consider L_p such that $p \notin f(M^n)$. For such a point p, the following proposition describes the critical points of the function L_p on M^n .

PROPOSITION 2. Let $p \in P^{n+p}(C)$, and $x_0 \in M^n$ such that $f(x_0) \neq p$. Then x_0 may be a critical point of L_p in precisely the following 2 ways.

(i) If $L_p(x_0) = \pi/2$, then L_p has a degenerate maximum at x_0 .

(ii) If $L_p(x_0) < \pi/2$, L_p has a critical point at x_0 if and only if p can be expressed as $F(x_0, r\xi)$ where ξ is a unit vector in $T_{x_0}^{\perp}(M^n)$ and $0 < r < \pi/2$. In this case,

(a) x_0 is a degenerate critical point if and only if $\cot r$ is an eigenvalue of A_{ε} .

(b) The index of L_p at a non-degenerate critical point x_0 equals the number of eigen-values, k_i , of A_{ξ} such that $k_i > \cot r$. Each k_i is counted with its multiplicity.

Proof. Fix $x_0 \in M^n$, and let $p \in P^{n+p}(C)$. Fix $z_0 \in S^{2(n+p)+1}$ such that

 $\pi(z_0) = p$. Let X be a vector field on M^n , and let X' be the horizontal lift of X. For $x \in M^n$ and $w \in S^{2(n+p)+1}$ such that $\pi(w) = x$, we have

$$\begin{split} XL_p(x) &= (\pi_* X')L_p(x) = X'(L_p \circ \pi)(w) \\ &= X'(\cos^{-1}(|(z_0,w)|^2)) = X'(\cos^{-1}(g(z_0,w)^2 + g(z_0,iw)^2)) \\ &= \frac{-[2g(z_0,w)X'(g(z_0,w)) + 2g(z_0,iw)X'(g(z_0,iw))]}{(1 - [g(z_0,w)^2 + g(z_0,iw)^2]^{2})^{1/2}} \,. \end{split}$$

But $X'(g(z_0, w)) = g(z_0, X'_w)$, and we obtain

(9)
$$XL_p(x) = \frac{-2[g(z_0, w)g(z_0, X'_w) + g(z_0, iw)g(z_0, iX'_w)]}{(1 - [g(z_0, w)^2 + g(z_0, iw)^2]^2)^{1/2}}$$

In particular, to find $XL_p(x_0)$, we can choose $w_0 \in S^{2(n+p)+1}$ such that $\pi(w_0) = x_0$, and such that $g(z_0, iw_0) = 0$ and $0 \le g(z_0, w_0) < 1$. We know $g(z_0, w_0) < 1$ since $p \ne f(x_0)$. From (9) we then obtain,

(10)
$$XL_p(x_0) = \frac{-2[g(z_0, w_0)g(z_0, X'_{w_0})]}{(1 - g(z_0, w_0)^4)^{1/2}}.$$

From (10) we see that to have $XL_p(x_0) = 0$, we must have either,

- (i) $g(z_0, w_0) = 0$ or
- (ii) $g(z_0, X'_{w_0}) = 0.$

In case (i) x_0 is obviously a maximum of L_p since $L_p(x_0) = \pi/2$ which is the maximum value L_p attains on $P^{n+p}(C)$. A direct calculation of the Hessian of L_p at x_0 would show that the Hessian is degenerate, and hence x_0 is a degenerate maximum of L_p . We omit that argument here and appeal instead to the following geometric argument. The set of points

$$P^{n+p-1}(C) = \{q \in P^{n+p}(C) \,|\, L_p(q) = \pi/2\}$$

is a totally geodesic hypersurface of $P^{n+p}(C)$ given by the image under the projection π of $S^{2(n+p)-1}$ where

$$S^{2(n+p)-1} = S^{2(n+p)+1} \cap \{w \in C^{n+p+1} | (z_0, w) = 0\}$$
.

This $P^{n+p-1}(C)$ is the set of zeroes of an analytic function on $P^{n+p}(C)$. If $f(x_0) \in f(M^n) \cap P^{n+p-1}$, then in a neighborhood U of x_0 in M^n , the set $f(U) \cap P^{n+p-1}$ is the set of zeroes of an analytic function on U. It follows essentially from the Weierstrass Preparation Theorem (see [1], p. 37-43) that $f(U) \cap P^{n+p-1}(C)$ is a sub-variety of U of dimension j, where $j \ge n - 1$. For $n \ge 2$, this illustrates that x_0 is not an isolated maximum of L_p on M^n ; clearly then, x_0 is a degenerate maximum. This proves (i).

Now we assume $g(z_0, w_0) > 0$, i.e. $L_p(x_0) < \pi/2$. Since $L_p(x_0) \neq 0$, we know $g(z_0, w_0) < 1$; and so there exists r, $0 < r < \pi/2$, so that $\cos r = g(z_0, w_0)$. Then it is easy to show,

(11)
$$z_0 = \cos r \, w_0 + \sin r \, \xi'$$

where $\xi' \in T'_{w_0}$ and $\|\xi'\| = 1$. Then,

$$g(z_{\scriptscriptstyle 0}, X'_{w_{\scriptscriptstyle 0}}) = \sin r \ g(\xi', X'_{w_{\scriptscriptstyle 0}})$$

for X'_{w_0} the horizontal lift of $X \in T_{x_0}(M^n)$. This and (10) imply that if $L_p(x_0) < \pi/2$, then x_0 is a critical point of L_p if and only if $\pi_*(\xi') = \xi \in T^{\perp}_{x_0}(M^n)$; in that case, $p = F(x_0, r\xi)$ and we have proven (ii).

Now for $p = F(x_0, r\xi)$, $0 < r < \pi/2$, we wish to prove (a) and (b). We first compute the Hessian of L_p at x_0 . Let X, Y be vector fields on M^n and X', Y' their respective horizontal lifts. We have shown

(9)
$$XL_p(x) = \frac{-2[g(z_0, w)g(z_0, X'_w) + g(z_0, iw)g(z_0, iX'_w)]}{(1 - [g(z_0, w)^2 + g(z_0, iw)^2]^2)^{1/2}}$$

where $\pi(w) = x$.

We now find $YXL_p(x_0)$. For w_0 as chosen above,

$$g(z_0, X'_{w_0}) = g(z_0, iX'_{w_0}) = 0$$
 and $g(z_0, iw_0) = 0$.

We also know that

$$Y'(g(z_0, X'_w)) = g(z_0, D_{Y'}X')$$

where D is the Euclidean covariant derivative in C^{n+p+1} . Using these facts we differentiate (9) to find $YXL_p(x)$ and then evaluate at x_0 obtaining

(12)
$$YXL_{p}(x_{0}) = \frac{-2g(z_{0}, w_{0})g(z_{0}, D_{Y}X')|_{w_{0}}}{(1 - g(z_{0}, w_{0})^{4})^{1/2}}$$

But we know $g(z_0, w_0) = \cos r$ so

$$1 - g(z_0, w_0)^4 = 1 - \cos^4 r = \sin^2 r(1 + \cos^2 r)$$

and we re-write (12) as

14

(13)
$$YXL_p(x_0) = \frac{-2\cos r g(z_0, D_{Y'}X')|_{w_0}}{(1 + \cos^2 r)^{1/2}\sin r}$$

From well-known properties of the embedding of $S^{2(n+p)+1}$ in C^{n+p+1} , we know that for any $w \in S^{2(n+p)+1}$,

(14)
$$D_{Y'}X'|_{w} = \nabla'_{Y'}X'|_{w} - g(X',Y')w .$$

We can also write

(15)
$$\nabla'_{Y'}X' = W + \alpha'(X', Y')$$

where $\pi_*(W) = \mathcal{V}_Y X$, where \mathcal{V} is the covariant derivative on M^n , and

$$\pi_*(\alpha'(X', Y')) = \alpha(X, Y)$$
,

where $\alpha(X, Y)$ is the second fundamental form of the immersion f. Now since $\pi_*(\xi') \in T^{\perp}_{x_0}(M^n)$, we have $g(\xi', W) = 0$. Since $\xi', W \in T'_{w_0}$, we know

$$g(w_0, \xi') = 0 = g(w_0, W)$$
.

Thus (11), (14), and (15) yield,

(16)
$$g(z_0, D_{Y'}X')|_{w_0} = \sin r \, g(\xi', \alpha'(X', Y'))|_{w_0} - \cos r \, g(X', Y')|_{w_0}.$$

But

$$egin{aligned} g(\xi',lpha'(X',\,Y')) \,|_{w_0} &= \, ilde{g}(\xi,lpha(X,\,Y)) \,|_{x_0} \ &= \, ilde{g}(A_\xi X,\,Y) \,|_{x_0} \;. \end{aligned}$$

Thus (16) becomes

$$g(z_0, D_{Y'}X')|_{w_0} = \sin r \, \tilde{g}(A_{\xi}X, Y) - \cos r \, \tilde{g}(X, Y)|_{x_0}$$

and (13) becomes

(17)
$$YXL_{p}(x_{0}) = \frac{2\cos r}{(1+\cos^{2}r)^{1/2}}\tilde{g}((-A_{\varepsilon}+\cot r\,I)X,Y)|_{x_{0}}$$

where I is the identity endomorphism on $T_{x_0}(M^n)$.

From this expression for the terms of the Hessian of L_p at x_0 , we conclude that x_0 is a degenerate critical point of L_p , if and only if $\cot r = k$ for k an eigen-value of A_{ϵ} . This proves (a).

The index of L_p at a non-degenerate critical point x_0 is defined to be the number of negative eigen-values of the Hessian of L_p at x_0 . For cot $r \neq k_i$ for any eigen-value k_i of A_{ϵ} , we see from (17) that the index of L_p at x_0 is the number of k_i such that $k_i > \cot r$. This proves (b). Q.E.D.

Propositions (1) and (2) yield immediately the following theorem:

THEOREM 1 (Index Theorem for L_p). Let $p = F(x, r\xi)$ for $0 < r < \pi/2$. Suppose L_p has a non-degenerate critical point at x. Then the index of L_p at x equals the number of focal points of (M^n, x) which lie on the geodesic in $P^{n+p}(C)$ from f(x) to p. Each focal point is counted with its multiplicity.

Section 3—A Characterization of $P^n(C)$ and $Q^n(C)$.

We now proceed to the main result of this article which we state here.

THEOREM 2. Let M^n $(n \ge 2)$ be a connected, complete, complex ndimensional Kählerian manifold which is holomorphically and isometrically immersed in $P^{n+p}(\mathbf{C})$. If there exists a dense subset D of $P^{n+p}(\mathbf{C})$ such that every function of the form L_p , $p \in D$, has index 0 or n at any of its non-degenerate critical points, then M^n is embedded in $P^{n+p}(\mathbf{C})$ as $P^n(\mathbf{C})$ or $Q^n(\mathbf{C})$.

In the above statement, $P^n(C)$ stands for a totally geodesic submanifold of $P^{n+p}(C)$, and $Q^n(C)$ is the standard complex quadric hypersurface of some totally geodesic $P^{n+1}(C)$. In $P^{n+1}(C)$ has homogeneous co-ordinates (z_0, \dots, z_{n+1}) , then $Q^n(C)$ is defined by the equation

$$z_0^2 + \cdots + z_{n+1}^2 = 0$$

In the remainder of this section we assume that M^n satisfies the hypotheses of Theorem 2. To begin the proof of Theorem 2, we state the following proposition. Its proof, which we omit here, depends on Propositions 1 and 2. With minor changes, the proof is identical to the corresponding proposition for submanifolds of R^m proven by Nomizu and Rodriguez ([6], p. 199).

PROPOSITION 3. Let D be a dense subset of $P^{n+p}(C)$. Assume that for $p \in P^{n+p}(C)$, L_p has a non-degenerate critical point of index j at $x \in M^n$. Then there exists $q \in D$, $y \in M^n$ such that L_q has a non-degenerate critical point of index j at y (q and y may be chosen as close to p and x, respectively, as desired). Using Proposition 3 and the Index Theorem, we now prove the following proposition which is sufficient to complete the proof of Theorem 2 for the case of co-dimension p = 1.

PROPOSITION 4. Let $x \in M^n$ and ξ be a unit-length vector in $T_x^{\perp}(M^n)$. Then there exists $\lambda \geq 0$ such that $A_{\xi}^2 = \lambda^2 I$ on $T_x(M^n)$.

Proof. Fix $x \in M^n$ and ξ a unit-length vector in $T_x^{\perp}(M^n)$. If A_{ξ} has no non-zero eigen-values, then $A_{\xi} = 0$ and the proof is complete.

Suppose A_{ε} has at least one non-zero eigen-value. It is known that A_{ε} must have the form

when diagonalized for $k_i \ge 0$, $1 \le i \le n$. Let λ be the largest of the eigen-values. If $k_i = \lambda$ for $1 \le i \le n$, then $A_{\varepsilon}^2 = \lambda^2 I$ and the proof is finished. If $k_i \ne \lambda$ for some *i*, let $\beta \ge 0$ be the second largest of the non-negative eigen-values. Choose $r, 0 < r < \pi/2$, such that $\beta < \cot r < \lambda$. For $p = F(x, r\xi)$, Proposition 2 implies that L_p has a non-degenerate critical point of index *j* at *x* where $0 < j \le 2n$. Since $\lambda > \cot r > k_i$, for any $k_i \ne \lambda$, Proposition 2 also implies that *j* equals the multiplicity of λ .

For D as in Theorem 2, Proposition 3 implies that there exists $q \in D$ and $y \in M^n$ such that L_q has a non-degenerate critical point of index jat y. Since j > 0, the hypothesis on the index of $L_q, q \in D$, at a nondegenerate critical point implies that j = n. Thus λ has multiplicity equal to n, and again we conclude $A_{\xi}^2 = \lambda^2 I$. Q.E.D.

Remark 1. For the case when M^n is a hypersurface of $P^{n+1}(C)$, Proposition 4 yields the proof of Theorem 2 in the following way.

The condition that $A_{\varepsilon}^{2} = \lambda^{2}I$ for any $\xi \in T_{x}^{\perp}(M^{n})$ and any $x \in M^{n}$ implies that M^{n} is an Einstein manifold. This is clear from the following

equation (see [8], p. 253). For S(X, Y), the Ricci tensor of M^n , it is true that

$$\begin{split} S(X,Y) &= -2 ilde{g}(A^2_{arepsilon}X,Y) + 2(n+1) ilde{g}(X,Y) \ &= 2(n+1-\lambda^2) ilde{g}(X,Y) \;. \end{split}$$

Since the real dimension of M^n exceeds 2, a classical theorem (see [4], Vol. I, p. 292) implies that $2(n + 1 - \lambda^2)$ is indeed constant on M^n . Thus M^n is an Einstein manifold. Theorem 2 then follows from the following result of Brian Smyth ([8], p. 265).

THEOREM (Smyth). For $n \ge 2$, $P^n(C)$ and $Q^n(C)$ are the only complex hypersurfaces of $P^{n+1}(C)$ which are complete and Einstein.

(end of Remark 1).

Section 4-Reducing the co-dimension.

To complete the proof of Theorem 2 for arbitrary co-dimensions, we will show that under the hypotheses of Theorem 2, M^n is actually a hypersurface of a totally geodesic $P^{n+1}(C) \subset P^{n+p}(C)$.

We first must introduce the concept of the first normal space of M^n at $x \in M^n$.

DEFINITION. For $x \in M^n$, the first normal space, $N_1(x)$, is the orthogonal complement in $T^{\perp}_x(M^n)$ of the set

$$N_0(x) = \{\xi \in T_x^\perp(M^n) \,|\, A_{\varepsilon} = 0\} \ .$$

We define a new inner product, \langle , \rangle , on $N_1(x)$ by

$$\langle \xi, \eta \rangle = \operatorname{trace} A_{\xi} A_{\eta} \quad \text{for } \xi, \eta \in N_1(x) .$$

One easily checks that \langle , \rangle is a positive definite inner product on $N_1(x)$, and that for $\xi, \eta \in N_1(x)$,

(18)
$$\langle J\xi, J\eta \rangle = \langle \xi, \eta \rangle$$

and

(19)
$$\langle \xi, J\xi \rangle = 0$$
.

For $\xi \in N_1(x)$, Proposition 4 implies $A_{\xi}^2 = \lambda^2 I$ for $\lambda > 0$. Then it is easy to see that $T_x(M^n)$ can be decomposed as

$$T_x(M^n) = T_{\varepsilon}^+ \oplus T_{\varepsilon}^-$$

18

where

$$T_{\xi}^{+} = \{X \in T_{x}(M^{n}) | A_{\xi}X = \lambda X\}$$

and

$$T_{\varepsilon}^{-} = \{X \in T_x(M^n) | A_{\varepsilon}X = -\lambda X\}$$
.

It is a simple matter to show that if $X \in T_{\ell}^+$, then $JX \in T_{\ell}^-$; and if $X \in T_{\ell}^-$, then $JX \in T_{\ell}^+$. We employ the inner product \langle , \rangle in the following proposition to prove that $N_1(x)$ has complex dimension no larger than 1 for all $x \in M^n$.

PROPOSITION 5. Let $x \in M^n$ and let k be the complex dimension of $N_1(x)$. Then $k \leq 1$.

Proof. Assume $k \ge 1$. Choose ξ_1, \dots, ξ_k so that with respect to the inner product \langle , \rangle , the vectors ξ_1, \dots, ξ_k , $J\xi_1, \dots, J\xi_k$ from an orthonormal basis for $N_1(x)$.

We know there is a positive function λ on $N_1(x)$ such that $A_{\xi}^2 = \lambda^2(\xi)I$ for any $\xi \in N_1(x)$. If e_1, \dots, e_n are an orthonormal basis for $T^+ = T_{\xi_1}^+$, then Je_1, \dots, Je_n are an orthonormal basis for $T^- = T_{\xi_1}^-$. With respect to the basis Ω for $T_x(M^n)$,

$$\Omega = \{e_1, \cdots, e_n, Je_1, \cdots, Je_n\},\$$

the endomorphism A_{ξ_1} is represented by the matrix

(20)
$$A_{\xi_1} = \begin{bmatrix} \lambda(\xi_1)I_n & 0\\ 0 & -\lambda(\xi_1)I_n \end{bmatrix}$$

where I_n is an $n \times n$ identity matrix.

Fix $j, 2 \le j \le k$. Consider $X \in T^+$, and suppose $A_{\varepsilon_j}X = Y + Z$ where $Y \in T^+$, $Z \in T^-$. First of all, we have

(21)
$$A_{\xi_1+\xi_j}^2 X = \lambda^2 (\xi_1 + \xi_j) X$$

But also we find,

(22)

$$A_{\xi_{1}+\xi_{j}}^{2}X = A_{\xi_{1}+\xi_{j}}A_{\xi_{1}+\xi_{j}}X = A_{\xi_{1}}^{2}X + (A_{\xi_{1}}A_{\xi_{j}} + A_{\xi_{j}}A_{\xi_{1}})X + A_{\xi_{j}}^{2}X$$

$$= \lambda^{2}(\xi_{1})X + \lambda^{2}(\xi_{j})X + \lambda(\xi_{1})(Y - Z) + \lambda(\xi_{1})(Y + Z)$$

$$= (\lambda^{2}(\xi_{1}) + \lambda^{2}(\xi_{j}))X + 2\lambda(\xi_{1})Y.$$

Then (21) and (22) yield

(23)
$$Y = \mu X$$
, where $\mu = [\lambda^2(\xi_1 + \xi_j) - \lambda^2(\xi_1) - \lambda^2(\xi_j)]/2\lambda(\xi_1)$.

Since we see that μ does not depend on the choice of X, we have shown that for any $X \in T^+$,

(24)
$$A_{\epsilon_f}X = \mu X + Z$$
 where $Z \in T^-$.

From (24) we can also compute for $X \in T^+$,

(25)
$$A_{\epsilon j}JX = -JA_{\epsilon j}X = -J(\mu X + Z) = -\mu JX - JZ.$$

Equations (24) and (25) and the fact that A_{ε_j} is symmetric imply that with respect to the basis $\Omega, A_{\varepsilon_j}$ has the form

(26)
$$A_{\xi_f} = \begin{bmatrix} \mu I_n & {}^tB \\ B & -\mu I_n \end{bmatrix}$$

where B is an $n \times n$ matrix.

Since ξ_1 and ξ_j are orthogonal with respect to \langle , \rangle , we know

(27)
$$\operatorname{trace} A_{\xi_1} A_{\xi_2} = 0 \; .$$

However, equations (20) and (26) imply that with respect to the basis Ω ,

(28)
$$A_{\xi_1}A_{\xi_j} = \begin{bmatrix} \lambda(\xi_1)\mu I_n & {}^tB \\ B & \lambda(\xi_1)\mu I_n \end{bmatrix}.$$

From (28) we compute trace $A_{\xi_i}A_{\xi_j} = 2n\lambda(\xi_1)\mu$. Comparing this with (27), we conclude $\mu = 0$, since $\lambda(\xi_1) > 0$. Hence (26) becomes

(29)
$$A_{ij} = \begin{bmatrix} 0 & {}^{t}B \\ B & 0 \end{bmatrix}.$$

From the fact that \tilde{P} is a Kählerian connection, one easily shows that $A_{J\epsilon_j} = JA_{\epsilon_j}$. From (29), we see that as a matrix,

$$A_{J\xi_j} = JA_{\xi_j} = \begin{bmatrix} 0 & -I_n \\ I_n & 0 \end{bmatrix} \begin{bmatrix} 0 & {}^tB \\ B & 0 \end{bmatrix} = \begin{bmatrix} -B & 0 \\ 0 & {}^tB \end{bmatrix}.$$

This shows that $A_{J\xi}$, maps T^+ into T^+ and T^- into T^- . This fact and computations similar to those leading to (23) show that for $X \in T^+$,

$$A_{J\xi_j}X=\nu X\,,$$

where

$$\nu = [\lambda^2(\xi_1 + J\xi_j) - \lambda^2(\xi_1) - \lambda^2(J\xi_j)]/2\lambda(\xi_1)$$

Thus we can represent $A_{J\xi_i}$ as,

(30)
$$A_{J\xi_{j}} = \begin{bmatrix} \nu I_{n} & 0\\ 0 & -\nu I_{n} \end{bmatrix}.$$

Now equations (20) and (30) imply that $A_{\xi_1}A_{J\xi_j} = \lambda(\xi_1)\nu I$ on $T_x(M^n)$, and (31) trace $A_{\xi_1}A_{J\xi_j} = 2n\lambda(\xi_1)\nu$.

But $\langle \xi_1, J\xi_j \rangle = 0$, and so trace $A_{\xi_1}A_{J\xi_j} = 0$. Comparing this with (31), we conclude $\nu = 0$. Then (30) implies $A_{J\xi_j} = 0$ which implies $A_{\xi_j} = 0$, and $\xi_j \notin N_1(x)$. This is true for $2 \leq j \leq k$, and we have obtained a contradiction if we assume k > 1. Thus, $k \leq 1$. Q.E.D.

We first want to make it clear that we have no further use for the inner product \langle , \rangle . Any subsequent references to metric properties such as orthogonality are made with respect to the metrics g or \tilde{g} .

We now begin to reduce the co-dimension. The argument is similar to that used by Cartan to show that an umbilical submanifold of \mathbb{R}^m which is not totally geodesic must be a Euclidean sphere embedded in \mathbb{R}^m (see [2], p. 231).

Proposition 5 enables us to define a function λ on M^n in the following way. Let $\alpha(X, Y)$ be the second fundamental form of M^n in $P^{n+p}(C)$. If $\alpha(X, Y) = 0$ at $x \in M^n$, we set $\lambda(x) = 0$. If $\alpha(X, Y) \neq 0$ at $x \in M^n$, then by Proposition 5, $N_1(x)$ has complex dimension 1. We define $\lambda(x)$ to be the well-defined positive number such that $A_{\xi}^2 = \lambda^2(x)I$ for any unit vector ξ in $N_1(x)$. It is easy to show from the obvious dependence of λ on $\alpha(X, Y)$ that λ is continuous on M^n . We omit that proof here, however, and next prove the following.

PROPOSITION 6. Let $x \in M^n$ and suppose the second fundamental form $\alpha(X, Y) \neq 0$ at x. Then there is a neighborhood U of x in M^n on which the function λ is constant.

Proof. Let U be a neighborhood of x on which $\alpha(X, Y) \neq 0$. Then by Proposition 5, $N_1(u)$ has constant dimension 1 on U. It is easy to show, then, that there exists a unit-length vector field ξ_1 , on U such that

 $N_1(u) = \operatorname{span} \{\xi_1, J\xi_1\}$ for every $u \in U$.

Let ξ_2, \dots, ξ_p be unit-length normal vector fields on U such that $\xi_1, \xi_2, \dots, \xi_p, J\xi_1, \dots, J\xi_p$ are an orthonormal basis for $T_u^{\perp}(M^n)$ for any $u \in U$.

Fix an arbitrary point $u \in U$. The following equation defines the tensors s_{kj} and t_{kj} on $T_u(M^n)$,

(32)
$$V_{\overline{X}} \xi_j = \sum_{k=1}^p s_{kj}(X) \xi_k + \sum_{k=1}^p t_{kj}(X) J \xi_k \quad \text{for } X \in T_u(M^n) .$$

The fact that V^{\perp} is a Kählerian connection readily implies

$$(33) s_{kj}(X) = -s_{jk}(X)$$

and

(34)
$$t_{kj}(X) = t_{jk}(X)$$
.

Now we know $A_{\epsilon_j} = A_{J\epsilon_j} = 0$ for $2 \le j \le p$. This fact and (33) imply that Codazzi's equation for A_{ϵ_1} reduces to

(35)
$$(\nabla_X A_{\xi_1})(Y) - t_{11}(X)JA_{\xi_1}(Y) = (\nabla_Y A_{\xi_1})(X) - t_{11}(Y)JA_{\xi_1}(X) .$$

Let $X, Y \in T^+ = T^+_{\xi_1}(u)$ such that X, Y are linearly independent, and suppose

$$egin{array}{ll} V_XY = X_1 + X_2 & ext{for} \ X_1 \in T^+, X_2 \in T^- \ , \ V_YX = Y_1 + Y_2 & ext{for} \ Y_1 \in T^+, Y_2 \in T^- \ . \end{array}$$

Using the above equations and recalling the following equations,

$$egin{aligned} &A_{\mathfrak{k}_1}Z = \lambda Z & ext{ for } Z \in T^+ ext{ ,} \ &A_{\mathfrak{k}_1}Z = -\lambda Z & ext{ for } Z \in T^- \end{aligned}$$

we find after some calculation that (35) becomes

(36)
$$(X\lambda)Y + 2\lambda X_2 + t_{11}(X)\lambda JY = (Y\lambda)X + 2\lambda Y_2 + t_{11}(Y)\lambda JX$$

But X_2, Y_2, JX, JY are in T⁻, and the component of (36) in T⁺ is,

$$(37) (X\lambda)Y = (Y\lambda)X .$$

The linear independence of X and Y implies that $X\lambda = 0$. This is true for any $X \in T^+$. A similar calculation shows $X\lambda = 0$ for any $X \in T^-$. So we have $X\lambda = 0$ for any $X \in T_u(M^n)$ for any $u \in U$. This is implies λ is constant on U. Q.E.D.

Proposition 6 enables us to prove that $N_1(x)$ has constant dimension on M^n as follows.

PROPOSITION 7. $N_1(x)$ has constant dimension on M^n .

Proof. If the second fundamental form $\alpha(X, Y) = 0$ for all $x \in M^n$, then $N_1(x)$ has constant dimension 0; and the proof is complete.

Suppose $\alpha(X, Y) \neq 0$ at $x_0 \in M^n$. Consider the set S defined by

$$S = \{x \in M^n \,|\, \lambda(x) = \lambda(x_0)\} \;.$$

Since λ is continuous on M^n , we know S is closed. However Proposition 6 implies S is open. Since $x_0 \in S$, we know $S \neq \phi$; so the connectedness of M^n implies $S = M^n$. Hence $\lambda = \lambda(x_0)$ on M^n , and $N_1(x)$ has constant dimension 1 on M^n . Q.E.D.

In the case where $N_1(x)$ has constant dimension 0, M^n is totally geodesic, and hence $M^n = P^n(C)$. To complete the proof of Theorem 2, we must show that when $N_1(x)$ has constant dimension 1, we can reduce the co-dimension to 1.

Let U be any co-ordinate neighborhood of M^n . As before we choose orthonormal vector fields ξ_1, \dots, ξ_p so that $\xi_1, \dots, \xi_p, J\xi_1, \dots, J\xi_p$ span $T_u^{\perp}(M^n)$ for any $u \in U$, and such that $\xi_1, J\xi_1$ span $N_1(u)$ for any $u \in U$. We then prove, .

PROPOSITION 8. For any $x \in U$ and $X \in T_x(M^n)$ the following equations are true:

(i) $V_X^{\perp}\xi_1 = t_{11}(X)J\xi_1$

(ii) For $j \ge 2$, $\nabla_{\overline{x}} \xi_j$ and $\nabla_{\overline{x}} J \xi_j \in \text{span} \{\xi_k, J \xi_k | 2 \le k \le p\}$, i.e. $N_1(x)$ and $N_0(x)$ are invariant with respect to ∇^{\perp} .

Proof. For ease of notation, let $A_j = A_{\varepsilon_j}$, $1 \le j \le p$. For any fixed $j, 2 \le j \le p$, Codazzi's equation says the following,

$$(\nabla_X A_j)(Y) - \sum_{k=1}^p s_{kj}(X)A_k(Y) - \sum_{k=1}^p t_{kj}(X)JA_k(Y)$$

is symmetric in X and Y.

Since $A_j = 0$, then $(V_x A_j) = 0$ and Codazzi's equation can be written as:

(38)
$$s_{1j}(X)A_1(Y) + t_{1j}(X)JA_1(Y) = s_{1j}(Y)A_1(X) + t_{1j}(Y)JA_1(X)$$
.

Choose X, Y linearly independent vectors in $T^+_{\xi_1}(x)$; then since $A_1(X) = \lambda X$ and $A_1(Y) = \lambda Y$, (38) becomes

(39)
$$s_{1j}(X)\lambda Y + t_{1j}(X)\lambda JY = s_{1j}(Y)\lambda X + t_{1j}(Y)\lambda JX$$

But X, Y, JX, JY are linearly independent, so (39) implies

(40)
$$s_{1j}(X) = t_{1j}(X) = 0$$
, $2 \le j \le p$.

A similar calculation shows that (40) holds for $X \in T_{\xi_1}^-(x)$, and hence (40) holds for all $X \in T_x(M^n)$. We recall that for $1 \le j \le p$,

(32)
$$\nabla^{\perp}_{X} \xi_{j} = \sum_{k=1}^{p} s_{kj}(X) \xi_{j} + \sum_{k=1}^{p} t_{kj}(X) J \xi_{k} .$$

Then $s_{kj} = -s_{jk}$ and $t_{kj} = t_{jk}$ and (40) imply that for j = 1, (32) becomes

$$(41) \nabla_{\overline{X}}^{\perp} \xi_1 = t_{11}(X) J \xi_1$$

proving (i). For the same reasons, for j > 1, (32) becomes

(42)
$$V_{\overline{X}} \xi_j = \sum_{k=2}^p s_{kj}(X) \xi_k + \sum_{k=2}^p t_{kj}(X) J \xi_k .$$

Then $\nabla_{\overline{x}} J \xi_j = J(\nabla_{\overline{x}} \xi_j)$ and (42) prove (ii). Q.E.D.

Finally Proposition 8 and the fact that $N_1(x)$ has constant complex dimension 1 will imply that $f(M^n) \subset P^{n+1}(C)$ after we prove the following proposition. We note that J. Erbacher, [3], has proven a corresponding result for real submanifolds of real space forms. With minor changes, the following proposition can be proven for submanifolds of C^{n+p} and the complex hyperbolic space form, $H^{n+p}(C)$.

PROPOSITION 9. Let $f: M^n \to P^{n+p}(\mathbb{C})$ be a holomorphic and isometric immersion of a connected, complete, complex n-dimensional Kählerian manifold M^n into $P^{n+p}(\mathbb{C})$. Suppose the first normal space $N_1(x)$ has constant dimension k, and is parallel with respect to the normal connection. Then there is a totally geodesic (n + k)-dimensional submanifold, $P^{n+k}(\mathbb{C})$, such that $f(M^n) \subset P^{n+k}(\mathbb{C})$.

Proof. We first remark that since $N_1(x)$ is parallel with respect to V^{\perp} , so is its complement $N_0(x)$. Let U be a co-ordinate neighborhood of M^n and fix $x_0 \in U$.

Choose $\xi_1, \dots, \xi_p \in T^{\perp}_{x_0}(M^n)$ so that the following equations hold for $x = x_0$,

(43)
$$N_{i}(x) = \operatorname{span} \{\xi_{j}, J\xi_{j} | 1 \le j \le k\}$$

and

(44)
$$N_0(x) = \operatorname{span} \{\xi_j, J\xi_j | k+1 \le j \le p\}$$

Extend ξ_1, \dots, ξ_p to vector fields on U by parallel translation with respect to \mathcal{V}^{\perp} along geodesics of M^n . Then (43) and (44) hold for any $x \in U$.

Let ξ'_j denote the horizontal lift to T'_w of $\xi_j(\pi(w))$ where $\pi(w) \in U$. Fix $w_0 \in S^{2(n+p)+1}$ so that $\pi(w_0) = x_0$. Let V_{w_0} be the real affine subspace of C^{n+p+1} through w_0 given by

$$V_{w_0} = \operatorname{span} \left\{ \xi'_j(w_0), i\xi'_j(w_0) \, | \, k+1 \le j \le p \right\} \,.$$

Let W_{w_0} be the real affine space through w_0 of real dimension 2(n + k + 1)which is orthogonal to V_{w_0} . Since the vector $-w_0 \in W_{w_0}$, we know that the affine space W_{w_0} passes through the origin in C^{n+p+1} . Hence the set

$$S^{2(n+k)+1} \equiv W_{w_0} \cap S^{2(n+p)+1}$$

is a great (2(n + k) + 1)-dimensional sphere in $S^{2(n+p)+1}$. The set $P^{n+k}(C) = \pi(S^{2(n+k)+1})$ is an (n + k)-dimensional totally geodesic submanifold of $P^{n+p}(C)$. We will show that $f(M^n) \subset P^{n+k}(C)$.

We first prove $f(U) \subset P^{n+k}(C)$. Fix $u \in U$, and let x(t), $0 \le t \le t_0$, be a curve in f(U) from $f(x_0)$ to f(u). Let w(t) be the lift of x(t) to $S^{2(n+p)+1}$ so that $w(0) = w_0$ and $\pi(w(t)) = x(t)$, $0 \le t \le t_0$.

We know that for $0 \le t \le t_0$ we have

$$\widetilde{\mathcal{V}}_{ec{x}(t)}\xi_j = \pi_*(\mathcal{V}'_{ec{w}(t)}\xi'_j) \qquad ext{for } 1 \leq j \leq p \;.$$

We also know

$$\tilde{\mathcal{V}}_{\vec{x}(t)}\xi_j = -A_{\xi_j}(\vec{x}(t)) + \mathcal{V}_{\vec{x}(t)}^{\perp}\xi_j \; .$$

For j > k, however, $A_{\xi_j} = 0$ and

$$abla^{\perp}_{ec x(t)} \xi_j \in ext{span}\left\{ \xi_m, J \xi_m \,|\, k+1 \leq m \leq p
ight\}$$
 ,

and thus

$$\widetilde{\mathcal{V}}_{ec{x}(t)}\xi_{j} \in ext{span}\left\{\xi_{m}, J\xi_{m} \mid k+1 \leq m \leq p
ight\}$$
 .

A similar result holds for $\tilde{\mathcal{V}}_{\vec{x}(t)}J\xi_j$. If we let

$$V_t = \text{span} \{ \xi'_m(w(t)), i \xi'_m(w(t)) | k + 1 \le m \le p \},\$$

then by the isomorphism π_* , we have for each t,

(45)
$$\nabla'_{\vec{w}(t)}\xi'_j$$
 and $\nabla'_{\vec{w}(t)}i\xi'_j \in V_t$.

THOMAS E. CECIL

Since $g(w(t), \xi'_j) = 0$, for $0 \le t \le t_0$, we have $D_{\vec{w}(t)}\xi'_j = \overline{\nu}'_{\vec{w}(t)}\xi'_j$, where D is the Euclidean covariant derivative in C^{n+p+1} .

This fact and (45) imply that for all t, and for $k + 1 \le j \le p$,

 $D_{\vec{w}(t)}\xi'_j$ and $D_{\vec{w}(t)}i\xi'_j \in V_t$.

Thus V_t is a parallel Euclidean subspace along w(t), i.e. for each t, V_t is parallel to V_{w_0} in the sense of Euclidean parallelism.

For each t, let W_t be the 2(n + k + 1)-dimensional real affine space through w(t) which is orthogonal to V_t . Since V_t is parallel to V_{w_0} for each t, W_t is parallel to W_{w_0} for each t, in the Euclidean sense of parallelism. However, for each t, $-w(t) \in W_t$, and thus W_t passes through the origin for each t. Hence we conclude $W_t = W_{w_0}$ for $0 \le t \le t_0$.

Since $\vec{w}(t)$ is orthogonal to V_t for all t, we have $\vec{w}(t) \in W_t = W_{w_0}$. Since $w(0) \in W_{w_0}$, this shows that $w(t) \in W_{w_0}$ for all t; and so $w(t) \in W_{w_0}$ $\cap S^{2(n+p)+1} = S^{2(n+k)+1}$ for $0 \leq t \leq t_0$. Applying π , we get $x(t) \in P^{(n+k)}(C)$ for all t. In particular, $f(u) = x(t_0) \in P^{n+k}(C)$. Since $u \in U$ was arbitrary, we have shown $f(U) \subset P^{n+k}(C)$.

To prove the global result we use the connectedness of M^n . Let U_1 , U_2 be co-ordinate neighborhoods of M^n such that $U_1 \cap U_2 \neq \phi$. We have shown above that there exist 2 totally geodesic (n + k)-dimensional submanifolds of $P^{n+p}(C)$, call them P_1^{n+k} and P_2^{n+k} , such that $f(U_1) \subset P_1^{n+k}$ and $f(U_2) \subset P_2^{n+k}$.

Suppose $P_1^{n+k} \neq P_2^{n+k}$. Then, $P_1^{n+k} \cap P_2^{n+k} = P^{n+k-1}$, a totally geodesic (n + k - 1)-dimensional submanifold of $P^{n+p}(C)$, and $f(U_1 \cap U_2) \subset P^{n+k-1}$. This implies that for $z \in U_1 \cap U_2$, the first normal space $N_1(z)$ has dimension k - 1. This contradicts the assumption that $N_1(x)$ has constant dimension k on M^n . Thus we conclude $P_1^{n+k} = P_2^{n+k} = P^{n+k}(C)$. Using this, one easily proves from the connectedness of M^n that $f(M^n) \subset P^{n+k}(C)$. Q.E.D.

Now Propositions 7, 8, and 9 combine to imply that under the hypotheses of Theorem 2, $f(M^n) \subset P^{n+1}(C)$, a totally geodesic (n + 1)-dimensional submanifold of $P^{n+p}(C)$. The proof of Theorem 2 then follows from Remark 1.

Section 5—The Special Case $Q^n \subset P^{n+1}(C)$.

In this section we make a detailed study of the case $Q^n \subset P^{n+1}(C)$. The main results are contained in Theorem 3. We first discuss some

26

necessary preliminaries.

Consider C^{n+2} with natural basis e_0, \dots, e_{n+1} . We denote by H(z, w) the complex bi-linear form defined by

$$H(z,w) = \sum_{k=0}^{n+1} z^k w^k$$
, where $z = \sum_{k=0}^{n+1} z^k e_k$ and $w = \sum_{k=0}^{n+1} w^k e_k$.

Then Q^n is defined as

$$Q^n = \{\pi(z) \mid z \in S^{2(n+1)+1} \text{ and } H(z,z) = 0\},\$$

where π is the projection from $S^{2(n+1)+1}$ to $P^{n+1}(C)$. We continue to assume that $P^{n+1}(C)$ has constant holomorphic sectional curvature 4.

Let $q \in Q^n$ and ξ be a unit-length vector in $T_q^{\perp}(Q^n)$. Then Smyth ([8], p. 263-265) shows that A_{ξ} has the following form when diagonalized,

$$A_{\varepsilon} = \begin{bmatrix} I_n & 0 \\ 0 & -I_n \end{bmatrix}$$
,

where again I_n is an $n \times n$ identity matrix.

With these remarks aside, we first prove the following elementary proposition.

PROPOSITION 10. Let $z = \sum_{k=0}^{n+1} z^k e_k \in S^{2(n+1)+1}$. Then H(z, z) = 1 if and only if z^k is real for $0 \le k \le n + 1$.

Proof. $H(z,z) = \sum_{k=0}^{n+1} (z^k)^2$; and if each z^k is real, then $H(z,z) = ||z||^2$ = 1. Conversely, suppose H(z,z) = 1. Then letting $\overline{z} = \sum_{k=0}^{n+1} \overline{z}^k e_k$, we have

(46)
$$|(z,\bar{z})|^2 = \left|\sum_{k=0}^{n+1} (z^k)^2\right| = 1 = ||z||^2 \cdot ||\bar{z}||^2.$$

The Schwarz inequality for the inner product (,) implies that (46) can be true only if $\bar{z} = cz$ for some $c \in C$.

But then since (z, z) = 1,

$$1 = \sum_{k=0}^{n+1} z^k ar{z}^k = \sum_{k=0}^{n+1} z^k c z^k = c \sum_{k=0}^{n+1} (z^k)^2 = c \; .$$

Hence c = 1 and so $\overline{z} = z$ and z is real, i.e. z^k is real for $0 \le k \le n + 1$. Q.E.D.

Let \mathbb{R}^{n+2} denote the real vector space spanned by e_0, \dots, e_{n+1} . Then S^{n+1} , defined by $S^{n+1} = \mathbb{R}^{n+2} \cap S^{2(n+1)+1}$, is an (n + 1)-dimensional Euclidean

sphere. The projection π takes the antipodal points z and $-z \in S^{n+1}$ onto the same point $p = \pi(z) \in P^{n+1}(C)$. This is the only identification on S^{n+1} induced by π , and we see that $\pi(S^{n+1}) = P^{n+1}(R)$, a real (n + 1)-dimensional projective space naturally embedded in $P^{n+1}(C)$. Let $p \in P^{n+1}(R)$, and let $z \in S^{n+1}$ such that $\pi(z) = p$. We define a set S_p^n by

$$S_p^n = \left\{ \pi \Big(rac{x+iz}{\sqrt{2}} \Big) \, \Big| \, x \in S^{n+1}, \, g(x,z) = 0
ight\}$$

One easily shows that S_p^n is independent of the choice of z.

PROPOSITION 11. Let $p \in P^{n+1}(\mathbf{R})$, then S_p^n is the image of a Euclidean *n*-sphere of radius $1/\sqrt{2}$ isometrically embedded in $P^{n+p}(\mathbf{C})$.

Proof. Let $z \in S^{n+1}$ such that $\pi(z) = p$. We define \mathbb{R}^{n+1} by

$$\mathbf{R}^{n+1} = \{ w \in \mathbf{R}^{n+2} | g(z, w) = 0 \} .$$

Let $\overline{\mathbf{R}}^{n+2} \equiv \mathbf{R}^{n+1} \times \{iz\}$ where $\{iz\}$ is the 1-dimensional real subspace spanned by the vector iz. Then

$$ar{S}^{n+1}\equivar{R}^{n+2}\cap S^{2(n+1)+1}$$

is a Euclidean (n + 1)-sphere of radius 1. Then

$$S \equiv \left\{ rac{x+iz}{\sqrt{2}} \left| x \in S^{n+1}, g(x,z) = 0
ight\} \subset ar{S}^{n+1}
ight.$$

In fact, it is easy to see that S is a small-sphere of dimension n with center $iz/\sqrt{2}$ and radius $1/\sqrt{2}$ contained in \overline{S}^{n+1} . One checks that no two points of S are identified under the projection π . Thus π is a one-to-one isometry on S, and $\pi(S) = S_p^n$ is the image of a Euclidean *n*-sphere of radius $1/\sqrt{2}$ isometrically embedded in $P^{n+p}(C)$. Q.E.D.

The following theorem describes the focal point behavior for $Q^n \subset P^{n+1}(C)$.

THEOREM 3. (i) The set of focal points of $Q^n \subset P^{n+1}(C)$ is $P^{n+1}(R)$. (ii) Let $p \in P^{n+1}(R)$; then

 $\{q \in Q^n | p \text{ is a focal point of } (Q^n, q)\} = S_p^n$.

Proof. To prove (i), we first show that the set of focal points of Q^n is contained in $P^{n+1}(\mathbf{R})$.

Let $p \in P^{n+1}(C)$ be a focal point of (Q^n, q) for some $q \in Q^n$. By

Proposition 1, $p = F(q, r\xi)$ where ξ is a unit-length vector in $T_q^{\perp}(Q^n)$ and $\cot r = \lambda$ for some eigen-value λ of A_{ξ} . As we remarked at the beginning of this section, $\lambda = \pm 1$ for any such q and ξ . Choosing the sign of ξ properly we may assume $\cot r = 1$, and then

$$F\left(q, \frac{\pi}{4}\xi\right) = \pi\left(\frac{w}{\sqrt{2}} + \frac{\xi'}{\sqrt{2}}\right)$$
 where $\pi(w) = q$ and $\pi_*(\xi') = \xi$

It is known (see [4], Vol. II, p. 279) that there exist unique real vectors x, y of length $1/\sqrt{2}$, with g(x, y) = 0, such that w = x + iy. Then $T_q^{\perp}(Q^n)$ is spanned by $\pi_*(ix + y)$ and $\pi_*(-x + iy)$. Thus we can express ξ' as

 $\xi' = \cos \phi(ix + y) + \sin \phi(-x + iy)$ for some $\phi, 0 \le \phi \le 2\pi$.

Thus $p = \pi(z)$ where

$$z = \frac{1}{\sqrt{2}} (w + \cos \phi (ix + y) + \sin \phi (-x + iy))$$

= $\frac{x}{\sqrt{2}} [(1 - \sin \phi) + i \cos \phi] + \frac{y}{\sqrt{2}} [\cos \phi + (1 + \sin \phi)i].$

Using the defining properties of x and y, we compute

$$H(z,z) = -\sin\phi + i\cos\phi = e^{i(\phi+\pi/2)}.$$

Let $z' = e^{-i(\phi + \pi/2)/2}z$; then $\pi(z') = p$, but

$$H(z', z') = e^{-i(\phi + \pi/2)}H(z, z) = 1$$
.

Thus by Proposition 10, z' is real, and so $p \in P^{n+1}(\mathbf{R})$.

Conversely, suppose $p = \pi(z)$ where $z \in S^{n+1}$. Let $x \in S^{n+1}$ such that g(x, z) = 0. Let $w = (x + iz)/\sqrt{2}$. Then,

$$H(w,w) = 0$$
, and $q = \pi(w) \in Q^n$.

One easily shows that $\xi' = (-x + iz)/\sqrt{2} \in T'_w$ and $\pi_*(\xi') \in T^{\perp}_q(Q^n)$. If we let

$$z'=rac{1}{\sqrt{2}}\Big(rac{x+iz}{\sqrt{2}}\Big)+rac{1}{\sqrt{2}}\Big(rac{-x+iz}{\sqrt{2}}\Big)=iz$$
 ,

then by Proposition 1, $\pi(z')$ is a focal point of (Q^n, q) . But $\pi(z') = \pi(iz) = p$, and so the proof of (i) is complete.

To prove (ii) we let $p = \pi(z)$ for $z \in S^{n+1}$. Let

•

THOMAS E. CECIL

$$S = \{(x + iz)/\sqrt{2} \mid x \in S^{n+1}, g(x, z) = 0\}$$

and

$$T = \{q \in Q^n | p \text{ is a focal point of } (Q^n, q)\}.$$

By definition $S_p^n = \pi(S)$, and in the above proof of (i) we showed that $S_p^n \subset T$. To complete the proof of (ii), we show $T \subset S_p^n$.

Suppose $q \in T$. Let $w \in S^{2(n+1)+1}$ such that $\pi(w) = q$. Then $w = (x + iy)/\sqrt{2}$ for a unique choice of $x, y \in S^{n+1}$ such that g(x, y) = 0. By (i) we know $p \in P^{n+1}(\mathbb{R})$, so there is $z \in S^{n+1}$ such that $\pi(z) = p$. We first show

$$z = \cos \alpha x + \sin \alpha y$$
 for some $\alpha, 0 \le \alpha \le 2\pi$.

We know that $T_q^{\perp}(Q^n)$ is spanned by

$$\pi_*igg(rac{-x+iy}{\sqrt{2}}igg) \quad ext{and} \quad \pi_*igg(rac{ix+y}{\sqrt{2}}igg) \; .$$

By Proposition 1, any focal point of (Q^n, q) can be expressed as $\pi(u)$ where

(47)
$$u = \frac{1}{\sqrt{2}} \left(\frac{x+iy}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}} \left(\cos \phi \left(\frac{-x+iy}{\sqrt{2}} \right) + \sin \phi \left(\frac{ix+y}{\sqrt{2}} \right) \right)$$

for some $\phi, 0 \leq \phi \leq 2\pi$.

Since $\pi(z) = p$ is a focal point of (Q^n, q) , we must have $z = e^{i\beta}u$ for some u as in (47), and for some β , $0 \le \beta \le 2\pi$. This implies that z is a real linear combination of x, y, ix and iy. Since x, y and z are all real, we must have

(48)
$$z = \cos \alpha x + \sin \alpha y$$
 for some $\alpha, 0 \le \alpha \le 2\pi$.

Consider $w' = (\sin \alpha + i \cos \alpha)[(x + iy)/\sqrt{2}]$. Then $\pi(w') = \pi(w) = q$. But from (48) we see

$$w' = \frac{1}{\sqrt{2}} [(\sin \alpha x - \cos \alpha y) + i(\cos \alpha x + \sin \alpha y)]$$
$$= \frac{1}{\sqrt{2}} [(\sin \alpha x - \cos \alpha y) + iz].$$

Thus $w' \in S$, and $q \in \pi(S) = S_p^n$. This is true for any $q \in T$, and we have $T \subset S_p^n$. Q.E.D.

30

CRITICAL POINT THEORY

BIBLIOGRAPHY

- L. Bers, Introduction to Several Complex Variables, Courant Institute of Mathematical Sciences, New York University, New York, 1964.
- [2] E. Cartan, Lecons sur la geometrie des espaces de Riemann, deuxième edition, Gauthier-Villars, Paris, 1946.
- [3] J. Erbacher, Reduction of the codimension of an isometric immersion, J. Differential Geometry 5 (1971), 333-340.
- [4] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I-II, John Wiley and Sons, Inc., New York, 1963, 1969.
- [5] J. Milnor, Morse Theory, Ann. of Math. Studies, No. 51, Princeton University Press, 1963.
- [6] K. Nomizu and L. Rodriguez, Umbilical Submanifolds and Morse Functions, Nagoya Math. J. 48 (1972), 197-201.
- [7] K. Nomizu and B. Smyth, Differential Geometry of Complex Hypersurfaces II, J. Math. Soc. Japan 20 (1968), 498-521.
- [8] B. Smyth, Differential Geometry of Complex Hypersurfaces, Ann. of Math. 85 (1967), 246-266.

Vassar College