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GEOMETRIC APPLICATIONS OF CRITICAL POINT THEORY
TO SUBMANIFOLDS OF COMPLEX PROJECTIVE SPACE

THOMAS E. CECIL

Section 0—Introduction.

In a recent paper, [6], Nomizu and Rodriguez found a geometric
characterization of umbilical submanifolds Mn c Rn+P in terms of the
critical point behavior of a certain class of functions Lp, peRn+p, on Mn.
In that case, if peRn+p, xeMn, then Lp(x) = (d(x,p))2, where d is the
Euclidean distance function.

The result of Nomizu and Rodriguez can be expressed as follows.
Let Mn (n > 2) be a connected, complete Riemannian manifold isometri-
cally immersed in Rn+p, Suppose there exists a dense subset D on Rn+P

such that every function of the form Lp, p e D, has index 0 or n at any
of its non-degenerate critical points. Then Mn is an umbilical submani-
fold, that is Mn is embedded in Rn+P as a Euclidean subspace, Rn, or a
Euclidean ^-sphere, Sn.

Since the set of all points peRn+p such that Lp is a Morse function
is a dense subset of Rn+P, the above theorem could also have been stated
in terms of Morse functions of the form Lp.

In this paper, we prove results analogous to those of Nomizu and
Rodriguez for submanifolds of complex projective space, Pm(C), endowed
with the standard Fubini-Study metric.

Let Mn be a complex ^-dimensional submanifold of Pn+p(C). For
pePn+p(C), xeMn, the function Lp(x) which we define is essentially the
distance in Pn+p(C) from p to x. In section 2, we define the concept of
a focal point of (Mn,x). We then prove an Index Theorem for Lp which
states that the index of Lp at a non-degenerate critical point x is equal
to the number of focal points of (Mn,x) on the geodesic in Pn+p(C) from
x to p.
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In the process, we find that if Lp(x) = τr/2, then Lp has a degenerate
critical point at x. Because of this, it is impossible to state the follow-
ing result in terms of Morse functions of the form Lv.

Our main result is the following. Let Mn in >2) be a connected,
complete, complex ^-dimensional Kahlerian manifold which is holomor-
phically and isometrically immersed in Pn+p(C). Assume there exists a
dense subset D of Pn+p(C) such that every function of the form Lp, peD,
has index 0 or n at any of its non-degenerate critical points. Then Mn

is Pn(C) or Qn(C). Here Pn(C) denotes a totally geodesic submanifold of
Pn+p(C), and Qn(C) is the standard complex quadric hypersurface of a
totally geodesic Pn+1(C) c Pn+p(C).

In section 3, we prove the above result for co-dimension p = 1
and in section 4, we extend the result to arbitrary co-dimensions. Section
5 is devoted to a detailed study of the interesting special case Qn(C)
c Pn+ι(C). We find, among other things, that the set of focal points
is Pn+1(R), a real (n + l)-dimensional protective space naturally embedded
in Pn+ί(C).

The author would like to express his sincere gratitude to his adviser,
Katsumi Nomizu, for his assistance in his work.

Section 1—Preliminaries.

We first recall the construction of the Fubini-Study metric on Pm(C)
(see [4], vol. II, p. 273-78 and [7], p. 514-515, for more detail). We
consider Pm(C) endowed with the Fubini-Study metric of constant
holomorphic sectional curvature 4 (we choose 4 instead of 1 for the
curvature to make calculations easier).

Consider Cm+1 with natural basis eOf ,βm. The natural Hermitian
inner product on Cm+1 is defined by

TO

(z, w) = 2 zkwk

where
TO TO

z = 2] zkek and w = 2 w*efc .

The Euclidean metric g on Cm+1 is given by

g(z, w) = Re (z, w) for z,w e Cm+1 .
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The unit sphere

is a principal fibre bundle over Pm(C) with structure group S1 and

projection π. With the natural identification between vectors tangent to

S2 m + 1 and vectors in Cm + 1, one can show that for zeS2m+\ the tangent

space to S2m+1 at z, which we denote as T2(S2m+1), is given by

Tz(S2m+1) = {we Cm+11 g(z, w) = 0} .

If we define T'z by

Tz = {w e Cm+11 flr(«, w) = g(iz, w) = 0} ,

then Γ̂  is a subspace of Γ2(S2m+1) whose orthogonal complement is {iz},

the 1-dimensional subspace spanned by the vector iz. The distribution

T defines a connection in the principal fibre bundle S2m+KPmdO9S
1)9 in

that Tz is complementary to the subspace {iz} tangent to the fibre

through z9 and T is invariant by the action of S\ Thus the projection

7Γ induces a linear isomorphism π* of Tz onto Tπ(z)(Pm(C))9 and TΓ* maps

{̂ } into 0 for each z e S*m+1.

We define the Fubini-Study metric, g, of constant holomorphic sectional

curvature 4 by the equation

where I J e T2?(PW(C)) and X',Ύf are their respective horizontal lifts at

z where π(z) = p. Since g is invariant by the action of S1, the definition

is independent of the choice of z. The complex structure on T'z defined

by multiplication by i induces the canonical complex structure, /, on

Pm(C) by means of the isomorphism TΓ*. Finally, π^ induces the Kahlerian

connection, F, on Pm(C) in the following way. Let X, Y be vector fields

on Pm(C), and let X', Yf be their respective horizontal lifts. Then for

P the covariant derivative on S2m+1, the equation

VXY = π^P^YO

defines the Kahlerian connection on Pm(C).

Section 2—Focal points, the functions Lp9 and the Index Theorem.

Let Mn be a connected, complex ^-dimensional Kahlerian manifold,

and let / be a holomorphic and isometric immersion of Mn into Pn+p(C).
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Let N(Mn) denote the normal bundle of Mn. Any point of N(Mn)
can be represented by a pair (x, rξ) where x e Mn, reR, and ξ is a unit-
length vector in T^(Mn), the normal space to Mn at fix).

We define γix,ξ,r), —oo<r<oo, to be the geodesic in Pn+viC)
parametrized by arc-length parameter r such that

r(χ, ξ, 0) = f(x) and fix, ξ, 0) = ξ .

In terms of the vector representation of Pn+p(C), γix, ξ, r) can be described
as follows. Let weS2in+p)+1 such that π(w) = fix), and let ξ'eT'w such
that π+iξO = ξ. Then

r(χ> ζfr) — π(cos r w + sin r ξ') .

Of course, γix,ζ,r) does not depend on the choice of w.
We define a map F: N(Mn) -> Pn+p(C) by

Fix, rξ) = rix, ξ, r) .

We note that for any values of x,ξ and r the following holds,

r + π)ξ) = Fix,rξ) .

Thus we may restrict the range of values of r to —τr/2 < r < π/2.
For ξ e T^iMn)y let Aξ denote the symmetric endomorphism of TxiM

n)
corresponding to the second fundamental form of Mn at x in the direction
of ξ. We first prove the following proposition.

PROPOSITION 1. Let ix,rξ)eNiMn). Then F*, the Jacobian of F, is
degenerate at ix9rξ) in precisely the following cases:

( i ) If r — ±π/2, then F^. is degenerate.
(ii) For — π/2<r <π/2, there is a contribution of v>0 to the

nullity of F^ at ix9rξ) if

cot r = k

where k is an eigen-value of multiplicity v of Aξ.

Proof. Fix the point ix, rξ) e NiMn) we want to examine the nullity
of F^ at (x,rξ). We assume for the moment that r Φ 0, and by replac-
ing ξ by — ξ if necessary, we may assume r > 0.

Let U be a local co-ordinate neighborhood of x in Mn with local co-
ordinates u\u2, ,u2n. Choose orthonormal normal vector fields ξlf ,
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ξp>Jξi> '9Jζp on U such that ξλ(x) = ξ. For ease in notation, we let

ξp+j = Jξj for 1 < < p. For u e Z7, 9 e Γ^(MW), we can write

l/2

where 0 < μ < oo, 0 < \tj\ < 1 for all j , and Σ?=2 (*O2 < 1. The V are

the direction cosines of η and // = \\rj\\. The co-ordinates w1, ,u2n,μ,t2,

• -*,t2p are local co-ordinates for N(U).

Let w eS2in+p)+1. To avoid confusion, we will denote the map

π*: T'w —> Γjr(W7)(PTO+ί)(C)) by (TΓ^)^ when such precision is required.

Now let weS2(n+p)+1 such that π(w) = /(x). We define zeS 2 ( w + ί ) ) + 1

by the vector equation

2 = cos r w + sin r £'

where (^#)w(£0 = £. Then F(x,rξ) = τr(^). For any /, 2<j< 2p, the

definition of F implies that

ί7*

where η{tj) is a curve on SUn+p)+1 defined by

η(tj) = cos r w + sin r((l - (^)2)1/2?ί + t'?,) ,

where fί, ξ) are the horizontal lifts of ξ19 ξj respectively to T'M. We see

that η(ϋ) — z for any j .

If r = ±τr/2, we will show F*(d/dtp+1) \{Xtrξ) = 0. In that case, fp+1 =

Jfi and for r = π/2

and

The case r = —π/2 is handled similarly. This proves (i).

For \r\ < π/2, a straight-forward calculation which we omit shows,

= s i n r (**).Φ) ̂  ° ' for 2

and
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/ d \ I

FΛ——) = (TΓ^/sin r .w + cos rξζ)Φθ.
\ dμ I kχ,rξ)

In fact, these computations show that if

then F#(Y) = 0 only if a5 = 0 for all j . If we let

we shall next compute F^(X). That computation and the above will
show that

F*(X + V) = 0 only if 7 = 0 .

(We remark that if r = 0, we must choose a slightly different co-ordinate
system to obtain the same result.)

Consider a vector X = ]Γf=1 bj(d/duj) e Γ(a.,re)(N(t7)). If r = 0, one
easily shows F^(X) = Z and so F^ is non-degenerate at (#, 0). Assume
again, then, that r > 0. Considering TiXtrξ)(N(U)) as Γ̂CZT) θ R2p, we
can write Z = (Γ,0) where Ye TX(U). To facilitate the computation of
F*(X), we assume that the vector field ξt defined above has been chosen
so that

ξx = 0

where VL is the connection in the normal bundle.
Locally, i.e. for some ε > 0, there is a curve β(t), —ε<t<ε, in Mn

such that β(0) = x and j8(0) = Y. Let a(t) be the lift of β(t) to S2in+P)+1

so that α(0) = w, and π:(α(t)) = /(]8(t)) for -ε < t < e.
If we define the curve η(t) in S2(n+P)+1 by

27(t) = cos ra(t)

then J?(0) = «, and

(1) (̂JSO = K

We need to find the component of (̂0) in ΓJ. Considering ^(t) as a
curve in c t t + p + 1, we find

( 2) 7(t) = cos r a(t) + sin
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where D is the Euclidean covariant derivative in cn+p+1. Since g(ά(t),

ξ[(a(t)) = 0 for - ε < t < ε, we have D^t)ξ{ = F'S(ί)£. Thus we have by

evaluating (2) at t = 0,

( 3 ) η(0) = cos r a(0) + sin r F£(0)£ί .

One can show by a straight-forward calculation that

g(ftθ),z) = 0 = g(y(P),iz) ,

and hence j?(0) e T'n. Since (TΓ*) is an isomorphism on T'z, we have shown

( 4 ) Gr*),$(O) = 0 if and only if ψff) = 0 .

To find when η(0) = 0, we proceed as follows. We displace the vector

η(0) e T'z by Euclidean parallelism and consider η(0) e Tw(S2{n+p)+ι). Equa-

tion (3) shows that, in fact, τ?(0) e T'w since S(t) and ξ[(a(t)) e T'aW for all

t. Now, applying the isomorphism (π*)w we have

( 5 ) 0r*U3(0)) = j&(0) - Y

and

( 6 ) (O«(^(0)ίί) = Prfi

But FF?! = — AeιY + F ^ ! , and since ξx{x) = ξ and V±ξx = 0, we have

( 7 ) P Γ £ 1 = - A e y .

Thus, using (5), (6), (7) and applying (π#)w to (3) we have

( 8 ) 0r*)^(0) = cos r Y - sin r AξY .

Since η(0) e T'w9 we know (^^^(O) = 0 if and only if ^(0) = 0. From

(8) we see that 3?(0) = 0 if and only if k = cot r is an eigen-value of Aξ

and Y is an eigen-vector of k. From (1) and (4) we see that this also

gives necessary and sufficient conditions under which FJJK) — 0. If

cot r is an eigen-value of multiplicity v, then it is clear that F* vanishes

on a v-dimensional subspace of T(Xyrξ)N(Mn), i.e. F^ has nullity v.

Q.E.D.

Since the degeneracies of F^. of type (i) in Proposition 1 depend

only on r = ±π/2 and not on Mn or the point xeMn, they provide no

information about Mn itself. Thus such degeneracies will not be included

in the following definition of a focal point of (Mn>x). In the definition
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it is understood, as above, that ξ is a unit vector in T^(Mn) and

-π/2<r <π/2.

DEFINITION. A point p e Pn+p(C) is called a focal point of (Mn, x) of

multiplicity v if p = F(#, rf) and cot r is an eigen-value of multiplicity

v > 0 of A f. (We say p is a focal point of Mn if p is a focal point of

(Mn,x) for some # e M \ )

We now proceed to define the functions Lp. For p,qePn+p(C), and

z,weS2(n+p)+1 such that πO) = p, π(w) = tf, we define

where 0 < cos"1 ( ) < π/2. One easily checks that the definition of Lp(q)

is independent of the choice of z9w.

We remark that Lp(q) is essentially d(p,q) the distance in Pn+p(C)

from p to q which is given by

d(p,q) = cos"1 (|(z,w)|) .

We use Lp(q) rather than d(py q) to gain differentiability at points q such

that Lp(q) = π/2. i.e. (z,w) = 0.

For p e Pw+ί>(C), a? e Mw, we define Lp(x) = Lp(f(x)). If p e f(Mn), then

the restriction of Lp to Mn is a difϊerentiable function on Mn. From

this point on, we will only consider Lp such that pgf(Mn). For such

a point p, the following proposition describes the critical points of the

function Lp on Mn.

PROPOSITION 2. Let p e Pn+p(C), and x0 e Mn such that f(x0) Φ p.

Then x0 may be a critical point of Lp in precisely the following 2 ways.

( i ) // Lp(x0) = π/2, then Lp has a degenerate maximum at x0.

(ii) // Lp(x0) < π/2, Lp has a critical point at x0 if and only if p can

be expressed as F(x0, rξ) where ξίs a unit vector in T^0(Mn) and 0 < r < π/2.

In this case,

(a) xQ is a degenerate critical point if and only if cot r is an eigen-

value of Av

(b) The index of Lp at a non-degenerate critical point xQ equals the

number of eigen-values, ki9 of Aξ such that kt > cot r. Each kt is counted

with its multiplicity.

Proof. Fix xQeMn, and let pePn+p(C). Fix zQeS2(n+p)+1 such that
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π(zQ) = p. Let X be a vector field on Mn, and let Xf be the horizontal

lift of X. For xeMn and weS2(n+p)+1 such that π(w) = #, we have

XLp(x) = (^XO

= X'ίcos"1 (|(z0, w)|2)) = ^(cos- 1 (g(zo,w)2 + g(zo,iw)2))

_ - EflrQg,, w)X'(g(z0, w)) + 2# (;?0, iw)X'(g(z0, iw))]

(1 - [g(zo,wy + g(zo,iw)2]ψ2

But X'(iK2o,w)) = #O0>Zw)> and we obtain

ί 9) XL (x) =

In particular, to find XLp(x0), we can choose w 0eS 2 ( n + ί > ) + 1 such that

π(w0) = x0, and such that g(z0Jiw0) = 0 and 0 < g(zo,wo) < 1. We know

ί/(2o> Wo) < 1 since p ^ f(xQ). From (9) we then obtain,

(10)

From (10) we see that to have XLp(x0) = 0, we must have either,

( i ) g(z0, w0) = 0 or

(ii) g(z09X'wJ = 0.

In case (i) x0 is obviously a maximum of Lp since Lp(x0) = r̂/2 which

is the maximum value Lp attains on Pn+p(C). A direct calculation of

the Hessian of Lp at x0 would show that the Hessian is degenerate,

and hence x0 is a degenerate maximum of Lp. We omit that argument

here and appeal instead to the following geometric argument. The set

of points

pn+P-i(c) = {qePn+p(C)\Lp(q) = π/2}

is a totally geodesic hypersurface of Pn+p(C) given by the image under

the projection π of S2in+p)~1 where

g2(» + p)-i = S2(n + P) + i Π { w e Cn + P + 1\(ZQ,W) = 0} .

This Pn+p-\C) is the set of zeroes of an analytic function on Pn+p(C).

If f(xQ) e f(Mn) Π Pn+p-\ then in a neighborhood U of x0 in Mn, the set

/([/) Π p^+ί*-1 is the set of zeroes of an analytic function on U. It

follows essentially from the Weierstrass Preparation Theorem (see [1],

p. 37-43) that f(Jΰ) ίΊ Pn+p~\O is a sub-variety of U of dimension j ,
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where j > n — 1. For n > 2, this illustrates that x0 is not an isolated

maximum of Lp on Mn clearly then, xQ is a degenerate maximum. This

proves (i).

Now we assume g(zQ,wQ) > 0, i.e. Lp(x0) < π/2. Since Lp(xQ) Φ 0, we

know g(zo,wo) < 1 ; and so there exists r, 0 < r < π/2, so that cosr =

0(Zo>wo). Then it is easy to show,

(11) z0 = cos rwo + sin r f'

where ξ' e T'WQ and ||f'|l = 1. Then,

for Zςo the horizontal lift of XeTXo(Mn). This and (10) imply that if

Lp(x0) < ττ/2, then x0 is a critical point of Lp if and only if π*(ξf) =

feT^/M 7 1); in that case, p = F(xo,rξ) and we have proven (ii).

Now for p = F(x09rξ), 0 < r < π/2, we wish to prove (a) and (b).

We first compute the Hessian of Lp at x0. Let X, Y be vector fields on

Mn and Xf, Y' their respective horizontal lifts. We have shown

( 9) XL (x) = -^giz^u^giz^X'n) + g(zQ,iw)g(z0,iX'w)]
(l - [g(zQ,wy + g(zo,iwγγy/2

where πiw) = x.

We now find YXLp(x0). For ^ 0 as chosen above,

flf(«0, ̂ Co) = 0(Zf» iX'w) = ° a n d ^(«o» Wo) = 0 .

We also know that

where D is the Euclidean covariant derivative in cn+p+1. Using these

facts we differentiate (9) to find YXLp(x) and then evaluate at x0 obtaining

(12) YXL (x0) = - 2 ^fa> WotoOgp, DY,X') \m ^
p (l ~ g(zQ, w0yy/2

But we know g(zQ, wQ) — cos r so

1 — #(zo> Wo)4 = 1 — cos4 r = sin2 r( l + cos2 r) ,

and we re-write (12) as
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(13) YXLpίx«) = -2 cos rg(z»DY,X')\ao _
(1 + cos2 r)1/2 sm r

From well-known properties of the embedding of SUn+p)+1 in Cn+p+\
we know that for any w eS2(n+p)+1,

(14) ΌY,X' \w = V'r.X' U - g(X', Y')w .

We can also write

(15) V'Y,X' = W + a'(Xf

9 ΓO

where π*(W) = F r Z, where F is the covariant derivative on Mn, and

7r>'(X', YO) = α(Z, Y) ,

where a(X, Y) is the second fundamental form of the immersion / . Now
since ^ ( f ) 6 T^βίn)9 we have g(ξ'9 W) = 0. Since £', TΓ e Γςo, we know

Thus (11), (14), and (15) yield,

(16) g(zQ, DY,X') \Wo = sin r g(ξ\ a'(X\ YO) Uo - cos V g(X', YO Uo .

But

g{ξ>, a'(X', YO) |Wβ = 9(ξ, a(X, Y)) |,0

Thus (16) becomes

^r( 0̂, DY,X') \WQ = sin r 0(AfX, Y) - cos r g(X, Y) U

and (13) becomes

2cos
cos2r)1

(17) YXLp(x0) = „ J^/99((-Aξ + cot r I)X, Y) \Xo

where / is the identity endomorphism on TXo(Mn).
From this expression for the terms of the Hessian of Lp at xQ, we

conclude that x0 is a degenerate critical point of Lp9 if and only if cot r
= k for k an eigen-value of Aξ. This proves (a).

The index of Lp at a non-degenerate critical point #0 is defined to
be the number of negative eigen-values of the Hessian of Lp at x0. For
cotr Φ kt for any eigen-value ki of Aξ9 we see from (17) that the index
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of Lp at x0 is the number of fci such that fc* > cotr. This proves (b).

Q.E.D.

Propositions (1) and (2) yield immediately the following theorem:

THEOREM 1 (Index Theorem for Lp). Let p = F(x, rξ) forO<r< π/2.

Suppose Lp has a non-degenerate critical point at x. Then the index of

Lp at x equals the number of focal points of (Mn,x) which lie on the

geodesic in Pn+p(C) from fix) to p. Each focal point is counted with

its multiplicity.

Section 3—A Characterization of Pn{C) and Qn(C).

We now proceed to the main result of this article which we state

here.

THEOREM 2. Let Mn (n>2) be a connected, complete, complex n-

dimensional Kdhlerίan manifold which is holomorphίcally and isometri-

cally immersed in Pn+p(C). If there exists a dense subset D of Pn+p(C)

such that every function of the form Lp, p e D, has index 0 or n at any

of its non-degenerate critical points, then Mn is embedded in Pn+p(C) as

Pn(C) or Qn(C).

In the above statement, Pn(C) stands for a totally geodesic submani-

fold of Pn+p(C), and Qn(C) is the standard complex quadric hypersurface

of some totally geodesic Pn+1(C). In Pn+1(C) has homogeneous co-ordinates

(zQ, ,zn+1), then Qn(C) is defined by the equation

A + + 4+i = o .

In the remainder of this section we assume that Mn satisfies the

hypotheses of Theorem 2. To begin the proof of Theorem 2, we state

the following proposition. Its proof, which we omit here, depends on

Propositions 1 and 2. With minor changes, the proof is identical to the

corresponding proposition for submanifolds of Rm proven by Nomizu

and Rodriguez ([6], p. 199).

PROPOSITION 3. Let D be a dense subset of Pn+p(C). Assume that

for p ePn+p(C), Lp has a non-degenerate critical point of index j at xeMn.

Then there exists qeD, y eMn such that Lq has a non-degenerate critical

point of index j at y (q and y may be chosen as close to p and x9 respective-

ly, as desired).
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Using Proposition 3 and the Index Theorem, we now prove the
following proposition which is sufficient to complete the proof of Theorem
2 for the case of co-dimension p = 1.

PROPOSITION 4. Let xeMn and ξ be a unit-length vector in T^(Mn).
Then there exists λ > 0 such that A\ = λ2l on Tx(Mn).

Proof. Fix x e Mn and ζ a unit-length vector in T^(Mn). If Aξ has
no non-zero eigen-values, then Aξ = 0 and the proof is complete.

Suppose Aξ has at least one non-zero eigen-value. It is known that
A* must have the form

0

when diagonalized for kt > 0, 1 < i < n. Let λ be the largest of the
eigen-values. If kt = λ for 1 < i < n, then A) = λ2l and the proof is
finished. If kt Φ λ for some i, let β > 0 be the second largest of the
non-negative eigen-values. Choose r, 0 < r < π/2, such that β < cot r < λ.
For p = Fix, rξ), Proposition 2 implies that Lp has a non-degenerate
critical point of index / at x where 0 < j < 2n. Since λ > cot r > ki9 for
any &* ψ λ, Proposition 2 also implies that j equals the multiplicity of λ.

For D as in Theorem 2, Proposition 3 implies that there exists qeD
and y e Mn such that Lq has a non-degenerate critical point of index j
at y. Since j > 0, the hypothesis on the index of Lq, q e D, at a non-
degenerate critical point implies that j = n. Thus λ has multiplicity
equal to n, and again we conclude A] = Λ2/. Q.E.D.

Remark 1. For the case when Mn is a hypersurface of Pn+1(C),
Proposition 4 yields the proof of Theorem 2 in the following way.

The condition that A\ = Λ2/ for any ξ e T±(Mn) and any xeMn im-
plies that Mn is an Einstein manifold. This is clear from the following
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equation (see [8], p. 253). For S(X, Y), the Ricci tensor of Mn, it is
true that

S(X, Y) = -29(A)X, Y) + 2(n + l)g(X, Y)

= 2(71+1- λ2)g(X, Y) .

Since the real dimension of Mn exceeds 2, a classical theorem (see [4],
Vol. I, p. 292) implies that 2(n + 1 — λ2) is indeed constant on Mn. Thus
Mn is an Einstein manifold. Theorem 2 then follows from the follow-
ing result of Brian Smyth ([8], p. 265).

THEOREM (Smyth). For n>2, Pn(C) and Qn(C) are the only com-
plex hypersurfaces of Pn+1(C) which are complete and Einstein.

(end of Remark 1).

Section 4—Reducing the co-dimension.

To complete the proof of Theorem 2 for arbitrary co-dimensions,
we will show that under the hypotheses of Theorem 2, Mn is actually a
hypersurface of a totally geodesic Pn+1(C) c Pn+p(C).

We first must introduce the concept of the first normal space of
Mn at xeMn.

DEFINITION. For x e Mn, the first normal space, N^x), is the orthogo-
nal complement in T^(Mn) of the set

= 0}.

We define a new inner product, < , >, on N^x) by

<?> 9> = trace AξAη for ξ,ηe Nt(x) .

One easily checks that < , > is a positive definite inner product on
and that for ξyηeN^x),

(18)

and

(19)

For ζ e Niix), Proposition 4 implies A\ = λ2l for λ > 0. Then it is
easy to see that Tx(Mn) can be decomposed as

Tx(Mn) = T+ 0 Tj
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where

Tt = {Xe Tx(Mn) I AξX = XX)

and

Tj = {XeTx(Mn)\AζX = -λX} .

It is a simple matter to show that if XeT%, then JXeTj; and if

X e Tj, then JX e Tf. We employ the inner product < , > in the follow-

ing proposition to prove that N^x) has complex dimension no larger

than 1 for all xeMn.

PROPOSITION 5. Let xeMn and let k be the complex dimension of

N^x). Then k<l.

Proof. Assume k > 1. Choose ?i, ,?fc so that with respect to the

inner product < , >, the vectors ξl9 •••,£*, Jξu , Jξk from an ortho-

normal basis for Nλ(x).

We know there is a positive function λ on Nx{x) such that A) = λ2(ξ)I

for any ξeN^x). If elf •• ,βn are an orthonormal basis for T+ = T£,

then Je19 ,/βw are an orthonormal basis for Γ" = Tjt. With respect

to the basis Ω for TΛ(MW),

SJ = {βj, , βn, Jβlf , JCnj ,

the endomorphism AH is represented by the matrix

o -mj
where In is an n x » identity matrix.

Fix j , 2 < j < k . Consider XeT+, and suppose AS/5Γ = Y + Z where

Γ e Γ + , ZeT~. First of all, we have

(21) A)1+liX = λKξ, + ξj)X .

But also we find,

A>ι+iiX = Aξl+(JA(l+(iX = A*HX + (AHASί + A(jA(l)X + A^X

(22) = λ\ξdX + λ\ξj)X + λiξXY -Z) + λ(ξO(Y + Z)

Then (21) and (22) yield
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(23) Y = μX , where μ = [*(& + ξj) - Λ2(

Since we see that μ does not depend on the choice of X, we have

shown that for any X e T+,

(24) AξjX = μX + Z where ZeT~ .

From (24) we can also compute for X eT+,

(25) Aξ/X = -/A,,X = - / ( ^ X + Z) = -

Equations (24) and (25) and the fact that Aξj is symmetric imply that

with respect to the basis Ω,AξJ has the form

where B is an n x n matrix.

Since ξx and ξs are orthogonal with respect to < , >, we know

(27) trace AξlAξj = 0 .

However, equations (20) and (26) imply that with respect to the basis Ω,

(2X) A A - \X£M
(28) ^ Ai-ι B
From (28) we compute trace AξιAξj = 2nλ(ξ1)μ. Comparing this with (27),

we conclude μ — 0, since λ(ξ^ > 0. Hence (26) becomes

From the fact that V is a Kahlerian connection, one easily shows that

AJξJ = /Afy. From (29), we see that as a matrix,

= ro -/jro tβ] = r-β o]
Yin o JLβ oJ L o IB\ '

A J ξ J — JAξJ —

This shows that AJξj maps T+ into Γ+ and T~ into T~. This fact

and computations similar to those leading to (23) show that for X eT+,

AJξjX = vX ,

where
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Thus we can represent AJξJ as,

=lΐ _°J
Now equations (20) and (30) imply that AξίAJξj = Λ(f>7 on Tx(Mn), and

(31) trace A,xAJf. = 2nλ(ξ1)v .

But <?i,/£j> = 0, and so trace AξιAJξJ = 0. Comparing this with
(31), we conclude y = 0. Then (30) implies A J f i = 0 which implies Aξj

= 0, and ξjgN^x). This is true for 2<j<k, and we have obtained
a contradiction if we assume k > 1. Thus, fc < 1. Q.E.D.

We first want to make it clear that we have no further use for the
inner product < , >. Any subsequent references to metric properties such
as orthogonality are made with respect to the metrics g or g.

We now begin to reduce the co-dimension. The argument is similar
to that used by Cartan to show that an umbilical submanifold of Rm

which is not totally geodesic must be a Euclidean sphere embedded in Rm

(see [2], p. 231).
Proposition 5 enables us to define a function λ on Mn in the follow-

ing way. Let a(X, Y) be the second fundamental form of Mn in Pn+p(C).
If a(X, Y) = 0 at x e Mn, we set λ(x) = 0. If a{X, Y) Φ 0 at x e Mn, then
by Proposition 5, Nx(x) has complex dimension 1. We define λ(x) to be
the well-defined positive number such that A) = λ\x)I for any unit vector
ξ in NX(JX). It is easy to show from the obvious dependence of λ on
a(X, Y) that λ is continuous on Mn. We omit that proof here, however,
and next prove the following.

PROPOSITION 6. Let xeMn and suppose the second fundamental
form a(X, Y) Φ 0 at x. Then there is a neighborhood U of x in Mn on
which the function λ is constant.

Proof. Let U be a neighborhood of x on which a(X, Y) Φ 0. Then
by Proposition 5, N^u) has constant dimension 1 on U. It is easy to
show, then, that there exists a unit-length vector field ζl9 on U such that

N^ύ) = span{£!,/&} for every ueU .

Let ξ2y •• ,?2> be unit-length normal vector fields on U such that ξι,ξ2>
- - ->ξP>Jξι> - ->JξP are an orthonormal basis for T^iMn) for any ueU.
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Fix an arbitrary point ueU. The following equation defines the

the tensors skj and tkj on Tu(Mn),

(32) F±£, = t skj(X)ξjc + t tkj{X)Jξk for X e TU{M«) .
fcl fcl

The fact that VL is a Kahlerian connection readily implies

(33) skj(X) = -

and

(34) t

Now we know Aξj = AJe, = 0 for 2 < j <p. This fact and (33) imply

that Codazzi's equation for Aξl reduces to

(35) (FzAζl)(Y) - tn(X)JA$1(Y) = (FγAξl)(X) - tn(Y)JAξl(X) .

Let I , Y e Γ = Γ (̂t̂ ) such that X, Y are linearly independent, and

suppose

VXY = Xγ + X2 for Xx e Γ+,Z2 e Γ ,

F F Z = Yx+ Y2 for Γ ^ Γ J a e Γ .

Using the above equations and recalling the following equations,

AξlZ = λZ for Z e Γ+ ,

A e i Z= -^Z for Z e Γ " ,

we find after some calculation that (35) becomes

(36) (Xλ)Y + 2λX2 + tn(X)λJY = (YX)X + 2λY2 + tn(Y)λJX .

But X2,Y2yJXyJY are in Γ~, and the component of (36) in Γ+ is,

(37) (Xλ)Y =

The linear independence of X and Y implies that Xλ = 0. This is

true for any I e T + . A similar calculation shows Xλ — 0 for any X eT~.

So we have Xλ = 0 for any Z e TU(MW) for any ueU. This is implies

Λ is constant on Z7. Q.E.D.

Proposition 6 enables us to prove that N^x) has constant dimension

on Mn as follows.

PROPOSITION 7. N^x) has constant dimension on Mn.
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Proof. If the second fundamental form a(X, Y) = 0 for all x e Mn,
then N^x) has constant dimension 0; and the proof is complete.

Suppose a(X, Y) Φ 0 at x0 e Mn. Consider the set S defined by

Since λ is continuous on Mn, we know S is closed. However
Proposition 6 implies S is open. Since x0 e S, we know S Φ φ; so the
connectedness of Mn implies S = Mn. Hence λ = λ(x0) on Mn, and Nχ(x)
has constant dimension 1 on M\ Q.E.D.

In the case where N^x) has constant dimension 0, Mn is totally
geodesic, and hence Mn = PW(C). To complete the proof of Theorem 2,
we must show that when Nx(x) has constant dimension 1, we can reduce
the co-dimension to 1.

Let U be any co-ordinate neighborhood of Mn. As before we choose
orthonormal vector fields ξ 19 , ξp so that ξl9 , ξp, Jξl9 , Jξp span
T^(Mn) for any weί/, and such that ξl9Jξλ span iVx(̂ ) for any ueU.
We then prove,.

PROPOSITION 8. For any xeU and X e Tx(Mn) the following equa-

tions are true:

( i ) r±& - UX)jξ!
(ii) For i > 2 , F±£, and F^J^ e span{?fe, Jf»|2 < fe < p}, i.e. N^x)

and N0(x) are invariant with respect to VL.

Proof. For ease of notation, let Aό = Aξj, 1 < j < p. For any fixed
h 2 < j < P, Codazzi's equation says the following,

(FxAj)(Y) - £ skj(X)Ak(Y) - £ tkj{X)JAk(Y)

is symmetric in X and Y.
Since Aό = 0, then (F^A )̂ = 0 and Codazzi's equation can be written

as:

(38) s^A.iY) + UjWJAάY) = SuOOAάX) + tu(Y)JAλ{X) .

Choose X, Y linearly independent vectors in T^(x) then since AX(X)
= λX and AX{Y) = λY9 (38) becomes

(39) sυ(X)λY + tυ{X)λJY = sυ{Y)λX + tυ(Y)λJX .
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But X, Y, JX, JY are linearly independent, so (39) implies

(40) 8lJ(X) = tγj{X) = 0 , 2<j<p .

A similar calculation shows that (40) holds for X e Tjt(x), and hence

(40) holds for all XeTx(Mn). We recall that for 1 < < p,

(32) F±ξj = Σ «*,(*)£* + Σ tkj(X)Jξk .

Then skj = — sifc and ί t i = ίifc and (40) imply that for / = 1, (32) becomes

(41) Fi& = tnWJξ,

proving (i). For the same reasons, for j > 1, (32) becomes

(42) F±f, = Σ «»/X)& + Σ tkj(X)Jξk .

Then F^Jξj = /(Fify) and (42) prove (ii). Q.E.D.

Finally Proposition 8 and the fact that N^x) has constant complex

dimension 1 will imply that f(Mn) c Pn+1(O after we prove the follow-

ing proposition. We note that J. Erbacher, [3], has proven a corres-

ponding result for real submanifolds of real space forms. With minor

changes, the following proposition can be proven for submanifolds of

Cn+P and the complex hyperbolic space form, Hn+p(C).

PROPOSITION 9. Let f:Mn-^Pn+p(O be a holomorphic and isometric

immersion of a connected, complete, complex n-dimensional Kdhlerian

manifold Mn into Pn+p(C). Suppose the first normal space Nx(x) has con-

stant dimension k, and is parallel with respect to the normal connection.

Then there is a totally geodesic (n + kydimensional submanifold, Pn+k(O,

such that f(Mn) c Pn+\C).

Proof. We first remark that since Nλ(x) is parallel with respect to

F-1, so is its complement N0(x). Let U be a co-ordinate neighborhood

of Mn and fix x0 e C7.

Choose ξu , ξp e T^Q(Mn) so that the following equations hold for

x = x0,

(43) N&) = span{ξ)tJξj\l<j< k}

and
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(44) N0(x) = span{ξj9 Jξj\k + 1 < j <p} .

Extend ξ19 , ξp to vector fields on U by parallel translation with

respect* to VL along geodesies of Mn, Then (43) and (44) hold for any

x'eϋ.

Let ίy denote the horizontal lift to T'w of ξj(π(w)) where π(w) e U.

Fix w0eS2(n+p)+1 so that τr(w0) = #o Let 7W o be the real affine subspace

of cn+p+1 through w0 given by

VWo = span {f/Wβ), if/Wα) | k + 1 < j < p} .

Let WWo be the real affine space through w0 of real dimension 2(n + k + 1)

which is orthogonal to VWo. Since the vector - ^ e ^ , we know that

the affine space WWo passes through the origin in cn+p+1. Hence the set

is a great (2(^ + k) + l)-dimensional sphere in S2in+p)+1. The set Pn+k(C)

= π(S2(n+k)+1) is an (n + fc)-dimensional totally geodesic submanifold of

pn+P(c). We will show that f(Mn) c Pn+k(C).

We first prove f(U) c Pn+k(C). Fix us U, and let α?(ί), 0 < ί < tβ,

be a curve in f(U) from /(^0) to /(w). Let w(t) be the lift of x(t) to

S2(n + 2» + l s o t h a t W ( O ) = ^ o a n d π ( w ( f ) ) = aj(t), 0 < t < t0.

We know that for 0 < t < t0 we have

P^ξj = T Γ * ^ ) ^ ) f or 1 < < p .

We also know

F^ξj = -Aξβ(t)) + F^ξj .

For j > k, however, Aξj = 0 and

Fi\t)ξj e span {ξm, Jξm \ k + 1 < m < p) ,

and thus

P*wξj € span {f TO, / f m I fc + 1 < m < p} .

A similar result holds for V^{t)Jξ^ If we let

Vt = span {&(w(t», ifi(w(i)) | k + 1 < m < p} ,

then by the isomorphism π*, we have for each t,

(45) Γ&(t)ft and VL{t)iξ^Vt .
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Since g(w(t),ξ'3) = 0, for 0 < t < t0, we have Dm)^ = F^ ( ί ) ^ , where

D is the Euclidean covariant derivative in cn+p+1.

This fact and (45) imply that for all t, and for k + 1 < / < p,

A6 ( l )£ and A a ω ^ e Vt .

Thus Ft is a parallel Euclidean subspace along w(t), i.e. for each

£, Vt is parallel to F W β in the sense of Euclidean parallelism.

For each t, let Wt be the 2(n + k + l)-dimensional real afHne space

through w(£) which is orthogonal to Vt. Since F e is parallel to VWo for

each t, Wt is parallel to WWo for each ί, in the Euclidean sense of paral-

lelism. However, for each t, —wit) e Wt, and thus Wt passes through

the origin for each t. Hence we conclude Wt = WWo for 0 < t < t0.

Since w(ί) is orthogonal to Vt for all ί, we have w(t) e Wt — WWQ.

Since w(ϋ) e WWύ, this shows that w(t) e WWo for all t and so w(t) e WWo

n 52(»+p)+i = S2(n+A)+i f o r o < ί < ί 0 . Applying^, we get x(t) eP ( n + f c )(C)

for all ί. In particular, /(w) = α?(t0) e Pn+k(C). Since w e U was arbitrary,

we have shown f(U) c Pw+fc(C).

To prove the global result we use the connectedness of Mn. Let Uly

U2 be co-ordinate neighborhoods of Mn such that Z7j Π C72 ̂  0. We have

shown above that there exist 2 totally geodesic (n + fc)-dimensional sub-

manifolds of Pn+KC), call them PT* and PΓ*, such that f(U1) c P?+fc

and f(U2) c PΓ f c.

Suppose P?+fc ^ fί+*. Then, Pϊ+fc Π PΓ f c = P 7 1 ^" 1 , a totally geodesic

(n + k - l)-dimensional submanifold of Pn+p(C), and f{Uι Π C72) c p»+*-i.

This implies that for « e C7Ί Π Z72, the first normal space Nλ(z) has dimension

k — 1. This contradicts the assumption that Nλ(x) has constant dimen-

sion k on Mn. Thus we conclude P?+* = PΓ* = Pn+fc(C). Using this,

one easily proves from the connectedness of Mn that f(Mn) c Pn+fc(C).

Q.E.D.

Now Propositions 7, 8, and 9 combine to imply that under the

hypotheses of Theorem 2, f(Mn) c Pn+1(C), a totally geodesic (n + 1)-

dimensional submanifold of Pn+p(C). The proof of Theorem 2 then fol-

lows from Remark 1.

Section 5—The Special Case Qn c Pn+1(C).

In this section we make a detailed study of the case Qn c Pn+1(C).

The main results are contained in Theorem 3. We first discuss some



CRITICAL POINT THEORY 27

necessary preliminaries.

Consider Cn+2 with natural basis eQ, , en + 1. We denote by H(z, w)

the complex bi-linear form defined by

n+l n+l n+l

H(z, w) — 2 zkwk , where z = 2] £fcefc and w = Σ wfceft

Then Qn is defined as

Qn = {τr(2)|^eS2(rι+1)+1 and H(z,z) = 0} ,

where π is the projection from S2(n+1)+1 to Pn + 1(C). We continue to as-

sume that Pn+1(C) has constant holomorphic sectional curvature 4.

Let qeQn and £ be a unit-length vector in T£(Qn). Then Smyth

([8], p. 263-265) shows that Aξ has the following form when diagonalized,

A, = Γ / "

where again In is an n x n identity matrix.

With these remarks aside, we first prove the following elementary

proposition.

PROPOSITION 10. Let z = ΣάUzkekeS2in+1)+1. Then H(z,z) = l if

and only if zk is real for 0 < k < n + 1.

Proof. H(z,z) = Σϊiote*) 2 ; and if each a;fc is real, then H(z,z) = ||^||2

= 1. Conversely, suppose ίί(^,2;)=:l. Then letting z = ΣlHzkek, we

have

(46) I (*, z) |2 =

The Schwarz inequality for the inner product ( , ) implies that (46)

can be true only if z = cz for some c e C.

But then since (z, z) = 1,

τι+1 n+l n+l

Σ
fc0

Hence c = 1 and so z = z and s is real, i.e. zk is real for 0 < k < n + 1.

Q.E.D.

Let Rn+2 denote the real vector space spanned by e0, , en+1. Then

Sn+1, defined by Sn+1 = Λn+2 Π SUn+1)+\ is an (w + l)-dimensional Euclidean
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sphere. The projection π takes the antipodal points z and — z e Sn+1 onto

the same point p = π(z) ePn+1(C). This is the only identification on Sn+1

induced by π, and we see that π(Sn+1) = Pn+1(R), a real (n + l)-dimensional

protective space naturally embedded in Pn+1(C). Let pePn+1(R), and let

zeSn+1 such that π(z) = p. We define a set Sn

p by

a? e S*+1, flr(s, z) = θ}

One easily shows that Si is independent of the choice of z.

PROPOSITION 11. Let p e Pn+1(R), then Si is the image of a Euclidean

n-sphere of radius lj^/~2 isometrically embedded in Pn+p(C).

Proof. Let z e Sn+1 such that π(z) = p. We define Rn+1 by

R*+1 = {weRn+21g(z,w) = 0} .

Let Rn+2 = Rn+1 X {iz} where {iz} is the 1-dimensional real subspace

spanned by the vector iz. Then

is a Euclidean (w + l)-sphere of radius 1. Then

S =
1, g(xf z) = θ}

In fact, it is easy to see that S is a small-sphere of dimension n with

center iz/<J~2 and radius 1/VΊΓ contained in Sn+ι. One checks that no

two points of S are identified under the projection π. Thus π is a one-to-

one isometry on S, and π(S) = Sj is the image of a Euclidean ^-sphere

of radius 1/VsΓ isometrically embedded in Pn+p(C). Q.E.D.

The following theorem describes the focal point behavior for
Qn c prc + l(C).

THEOREM 3. ( i ) The set of focal points of Qn c Pn+1(C) is Pn+1(R).

(ii) Let pePn+1(R); then

{qeQn\p is a focal point of (Qn,q)} = Si .

Proof. To prove (i), we first show that the set of focal points of

Qn is contained in Pn+1(J?).

Let pePn+1(C) be a focal point of (Qn,q) for some qeQn. By
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Proposition 1, p = F(q,rξ) where ξ is a unit-length vector in T£(Qn) and
cotr = λ for some eigen-value λ of Aξ. As we remarked at the begin-
ning of this section, λ = ± 1 for any such g and f. Choosing the sign
of ξ properly we may assume cotr = 1, and then

F(q, j-ή = π(-^L- + _ ^ - ) where π(w) = g and **(£') = f .

It is known (see [4], Vol. II, p. 279) that there exist unique real vectors
x, y of length l/VΊΓ, with g{x, y) = 0, such that w = x + iy. Then T^{Qn)
is spanned by π*(ix + y) and π*{—x + iy). Thus we can express ξ' as

ξ' = cos0(iα; + #) + sin^(—x + iy) for some φ,Q <φ<2π .

Thus p = π(z) where

z = (w + cos 0(i# + i/) + sin φ(—x + iy))

x -[(1 — sin φ) + i cos φ] -\ ^L^[cos φ + (1 + sin φ)i] .

Using the defining properties of x and y, we compute

H(z,z) = -s i

Let a/ = e-ί('+*/2)/2z; then π(z') = p, but

Thus by Proposition 10, ^ is real, and so
Conversely, suppose p = π-(̂ ) where ze Sn+1. Let # e Sn+1 such that

flr(a?, is) = 0. Let w = (x + iz)/V~2. Then,

iϊ(w, w) = 0 , and q = ^(w) e Qw .

One easily shows that ξ' = (-a? + iz)/f2 e T'w and ^#(f0 6 T -̂(Qn). If
we let

, 1 g + jg\ _ .

then by Proposition 1, π(zf) is a focal point of (Qn, q). But TΓOO = π(&) = p,
and so the proof of (i) is complete.

To prove (ii) we let p = π(z) for 2 e Sn+1. Let
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S = {(x + &)//2" I x e Sn+\ g(x, z) = 0}

and

T = {qeQn\p is a focal point of (Qn,q)} .

By definition Si = π(S), and in the above proof of (i) we showed that
Sn

p c Γ. To complete the proof of (ii), we show T c Sn

p.
Suppose qeT. Let weS2in+1)+1 such that π(w) = g. Then w =

(# + iy)/V~2 for a unique choice of α;,?/eSfw+1 such that g(x,y) =Ό. By
(i) we know pePn+*(!?), so there is zeSn+1 such that π(z) = p. We
first show

3 = cos ax + sin ay for some α, 0 < a < 2π .

We know that T^{Qn) is spanned by

( x + iy\ a n d

By Proposition 1, any focal point of (Qn,q) can be expressed as π(u)
where

for some φ, 0 < φ < 2π.
Since ττ(^) = p is a focal point of (Q n , g), we must have z = e*% for

some % as in (47), and for some β, 0 < β < 2π. This implies t h a t z is
a real linear combination of x9 y, ίx and ί̂ / Since x, y and « a re all real,
we must have

(48) z = cos a x + sin α y for some or, 0 < a < 2π .

Consider w! — (sinα: + ΐcos<*)[(# + iy)j^/~2]. Then 7r(wO = π(w) =
But from (48) we see

w7 [(sin a x — cos α #) + i(cos α: x + sin or ?/)]

= —==-[(sin ax — cos ay) + iz] .
v 2

Thus w' e S, and q e π(S) = SJ. This is true for any q e T, and we have
Tcft. Q.E.D.
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