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THE SCHEME OF LIE SUB-ALGEBRAS OF A LIE ALGEBRA
AND THE EQUIVARIANT COTANGENT MAP*

WILLIAM J. HABOUSH

Introduction. The main object of this paper is to develop techniques
for investigating the local properties of actions of an algebraic group
on an algebraic variety. Our main tools are certain schemes which may
be associated to Lie algebras. Let X be a scheme and let % be a locally
free sheaf of Lie algebras over Oy of rank n. Let Liej,, denote the
functor which assigns to each X-scheme Y with structure morphism,
p:Y — X, the set of all coherent sheaves of Lie subalgebras of p*¥
which are sub-bundles of p*# of rank r. Sections 1 and 2 are devoted
to demonstrating that Lie?, » is a representable functor and that represent-
ing scheme, Lie} s, is projective over X. Section 3 is devoted to a
description of the tangent space to Lie,, at a closed point correspond-
ing to a Lie subalgebra of % of dimension 7 in the case where X is the
spectrum of a field.

Section 4 is devoted to the construction of a certain canonical map
associated to actions of algebraic groups with equidimensional orbits.
The map may be interpreted in the following way. Let V be a variety
over k. Let G be a linear algebraic group and let a: G X, V—V be
an action with equidimensional orbits. The map is the well known map
which associates to each point of V, v, the Lie algebra of the stabilizer
of ».

Section 5 is an attempt to calculate the dimension of the connected
component of Lie}, in which a Lie subalgebra, H, lies. Some conditions
are given which imply that the component in which H lies is the closure
of the orbit of H under the adjoint action in the case where % is the
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Lie algebra of an algebraic group. These conditions may be interpreted,
under suitable circumstances, as principal orbit theorems.

Also, it is hoped that section 2 in which the results of section 1 are
utilized to construct Liej,» may be of some independent interest as a way
of making certain relative constructions.

The results in this paper are really special to characteristic zero. How-
ever, the corresponding results in positive characteristic may be proven
by entirely analogous methods. Over a-field of positive characteristic,
p, it is necessary to consider deformations of closed local sub-groups
whose rings of functions are of the form k[z,, ---,x,.1/(x?, - - -, 22") with
the z; indeterminates, rather than the scheme of Lie sub-algebras of
dimension 7 in a Lie algebra of dimension #. The interested reader is
referred to a forthcoming paper for the details (Haboush [5]).

Special thanks are due to Professors H. Matsumura and T. Oda
whose unending patience and encouragement were an important com-
ponent of this work.

§ 1. Lie Algebras.

Let R be a commutative ring with unit and let L be a projective
Lie algebra of rank n over R. Then the bracket product on L is a map
from the second exterior power of L, A%LL, to L. This map dualizes to
a map, DY:L* - (ALL)*, where the asterisk denotes the linear dual.
By alternation, (4%L)* may be identified with A%L*. The map D3 extends
uniquely to an anti-derivation, D;, of degree +1 of ApL*, the full ex-
terior algebra of L* over R, in itself. (An antiderivation of degree +1
is a graded S;-map, D, of a graded algebra, S = @ S,, into itself satis-

v€EZ
fying D(u,-u,) = D(u,)-ug + (—1)?u,-D(u,) whenever u, e S, and u, € S,.)

1.1. DEFRINITION. Let R, L, AgL*, D; be as above. Then D; is
called the Lie anti-derivation associated to L.

Let H be another projective, finite, Lie algebra over R and let
u: H— L be a Lie algebra homomorphism. Then u dualizes to a map
w*: L* — H* and hence gives an algebra homomorphism, Au*: AzL* —
AzH*., The fact that w is a Lie algebra homomorphism is expressed by
the commutativity of the following diagram:
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u

H — L

[ |

2 %,
A2H — AL .

The vertical arrows are given by the brackets in H and L respectively.
Dualizing gives the relation, Diou* = Aiu*oDi. Thus, Dy -(du*) =
(Uu*)D;. It follows that if U = ker Au*, D, () < Y. Now assume that
H is a projective R-submodule of L of rank 7 which is a direct sum-
mand of L. Let j: H— L be the natural injection. Then j*:L* — H*
is surjective. Now j* extends to A(j*): AzL* — A H* which is also sur-
jective. Let U = ker A(5%). Suppose that D, (%) € A. Then D, induces
a derivation, D, on A H*. In degree 1, this yields a commutative
diagram,

¥
H* &— L*

P
A24%
ALH* «—— L%,
As j and A% are the natural injections and D% is the bracket on L we
have proven the following:

1.2. LEMMA. Let R be a commutative ring with unit, let L be a
projective Lie algebra over R and let H C L be a direct summand of
L. Let U = ker (47*) where j is the injection of H in L. Then H is
o Lie subalgebra of L if and only if D, () C .

Now let N = ker j*. As H is a direct summand of L, & = N.AzL*.
A moment’s consideration will reveal that D,() C % if and only if
D, (N) c N A\ L*.

For the next portion of the discussion assume that L, H and N are
free. Then the rank of N is s =n — r and we may assume that AN
is generated by one element w € A°L*. Moreover N = {me L*: o A m = 0}.
Assume that %, ---,%n, is a basis for N and that o =n, A -+ A n,.
Then D (w) = > 5, (=D "'m, A -« ADmy) A --- An, and so it is clear
that if H is a subalgebra of L,D;(w) e o N\ L*. Now assume that D,(w) ¢
o A\ L* Then if meN, m ANw=0. Thus D,(im A\ w) =D;(m) \ o —
mADy(w=0. As Di(wecow NL* m \NDi(w) =0 and so D;(m) A\ o
=0. But {re £2L*: 2 ANw =0} = N A L*. Consequently D, (m)e N N\ L*.
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It follows that D,(N) ¢ N A L* if and only if D;(w)ew A L*. More-
over this is equivalent, by the preceding, to the condition that H be a
subalgebra of L. Though we have assumed that H, N and L are free,
by localizing sufficiently we have proven the following.

1.3. PROPOSITION. Let R be commutative with unit and let L be
a projective Lie algebra of rank n. Let H be a direct summand of L
of rank r. Let N = (L/H)* C L* and let s =n — r. Then H is a sub-
algebra of L if and only if D (A*N) C (A*N)-L*.

§2. The Representibiliy Theorem.

2.1. DEFINITION. Let X be a scheme and let % be a locally free
sheaf of Lie algebras over @y of rank n. Then Lie},, is the functor
which assigns to each X-scheme, Y with structure morphism p:Y — X,
the set of all coherent sheaves of Lie subalgebras of p*% which are
sub-bundles of p*¥ of rank r.

2.2. THEOREM. Let X be a scheme and let & be a locally free
sheaf of Lie algebras over Ox of rank n. Then

i) Liey,x s a representable functor.

ii) If Liey,x ts the scheme representing Liej y, Liel x s a projec-
tive scheme over X.

iii) If q:Liey x — X is the structure morphism, there is a sub-
bundle of Lie subalgebras of q*(&) of rank r, denoted $,x, so that the
isomorphism of functors between Liej y and Homy (—,Lie},y) is given
by f — [*Qex for fe Homy (Y, Liey,x).

Proof. Our proof is an explicit construction. First we review our
notation, which though standard is not without its eccentricities. Let
X be a scheme and let & be a locally free sheaf of ¢, modules. Then
P(&) denotes Proj(S,,(6)). If q:P(6) — X is the structure morphism
and & is a coherent sheaf on P(&), f'*(?) will denote Il ,cz+ ¢, (F (W)
and I',(#) will denote ¢ (F(n). If f:Y — X is an X-scheme, &, will
occasionally be used in place of f*&.

First we observe that the constructions of § 1 apply to our situation.
Namely, the bracket on % induces an anti-derivation, D,, of A4,,#* in
itself.

Consider P(4;,#) where s =mn — 7, and let q: P(4;,¥) — X. Then
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P q* A5, %) = M5, 9% ®,, Si (45, F) ~ M5, %* ®, A5,.# which, by alternation
and a standard functorial isomorphism, is isomorphic to Hom,, (45,%, 45,.%).
There is a section, denoted w,, in I',(g*4*%*), which corresponds to the
identity map on /5,%.

Now observe that I",(¢*4,,#*) ~ A,,.%* ®,, S, (4°%). This can be
identified with s, .z (I'.q*#*). Consequently w, may be used to define
a morphism, : ¢*¥* — g* A1 #*, by setting () = w, A u. Moreover
q¢*(D,) is an anti-derivation of ¢*/,,.#* in itself and ¢*(D,)(w,) € ¢* (L1 F*).
Then ¢*(D,)(w,) and the image of ¢*#* under + generate a coherent
subsheaf of ¢*/453'#*. Denote it &/. Set P = P(1°.%), let ¢ = A; '/ and
let F = A3} (q* 455 #*).  As there is a map q: ¢ — &, there is a pairing
F* Qop ¥ — Up. Let # be the image of F*®,, % in Op. Thus S isa
sheaf of ideals in @, which consequently defines a closed subscheme of
P, L. We observe that our entire construction commutes with base ex-
tension. That is, if f: Y — X is a morphism, and we were to proceed
with our construction using Y and f*% rather than X and .&, we would
obtain Y X y L.

We assert that L represents Lie} ». The fact that our construction
commutes with base extension makes two simplifications possible. The
first is that it suffices to show that the sections of X in L correspond
to the subalgebras of ¥ which are sub-bundles of % of rank ». The
fact that L represents Lie y then follows by functoriality. The second
simplification consists in the observation that if for an open cover of X,
{U.}ie1, the sections of U, in L|U, correspond to Lie subalgebras of #|U,
which are rank » sub-bundles of #, then the same thing is true for X
and . Thus we may assume that X is affine, and that % is free.

We shall hence give an explicit deseription of L when X = Spec R
and & is the sheaf associated to L a free Lie algebra over R with basis
Zy, -+, 2%,. Let J be the set of strictly increasing sequences of integers
between one and 7 of length s, and let e, .--,e, be the basis for L*
dual to a,---,2,. If T=(, --,%)ed, then let z, =z;, A, -+, A\ 2,
and let e, = e, A, -+, A e;,. Then P = Proj R[X;lre, and I (q*A°%*)
= Rl[X,lre; ®r lLres Rer. Moreover o, = D pes r @ epr  Let J be the
set of all strictly increasing (s + 1)-tuples of integers between one and
n and choose a suitable ordering for J’. Let e,. denote the basis element
of A**'L* corresponding to 7' (as above). Then we may write:
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o N e =T§;, 8,7 (Xp)res ® er

o e, :—‘TZ; gn,T’(XT)TeJ ® er
=
1® D )w) =T§J// Lo, v (Xp)res ® eq

where the prime on the sum indicates that the sum is appropriately
ordered, and the ¢;, are linear forms in the X,;. Then the ideal
described above correspond to the graded ideal, ./, generated in R[X ],
by the » + 1 by r 4+ 1 minors of the matrix, (¢{;,) where the 7" are
suitably ordered, and L = Proj R[X,;l;c;/#. Now let a section, g, of
Spec R in L be given. Then, ¢ determines a locally free rank one sheaf

of R-modules, P and a surjective morphism ASL —6—> P — 0. Consequently
P* is a direct summand of A4L*. Let N={rxeL*:x A P*=0}. We
assert that N is a direct summand of L* of rank s and that D, (P*) C
P* N\ L*. Clearly it suffices to prove this statement locally and so we
may assume that P is free with generator e. In this case, set 6(X;) =
ap,. Then since ¢ corresponds to a section of L, the r +1 by r + 1
minors of the matrix (¢4;;.(X7)res) vanish when the a, are substituted

for the X;. Moreover the image of P* in A°L* is ) are; = w,. Now
Ted

clearly
o, N\ ;= 3 Ly (Qr)reser
ey’
and
Dy(»,) =T§J,’ b1, (Op)pes€p: .

The fact that the » 4+ 1 by » 4+ 1 minors of the matrix of coefficients of
these expressions vanishes implies that o, A L* is a projective rank 7
submodule of A**'L*, by the general theory of Grassman varieties, and
further implies that D;(w,) ew, A L*. This proves the assertion con-
cerning N. It follows by Proposition 1.8 that (L*/N)* is a Lie sub-
algebra of L which is a direct summand of L. Thus statements i) and
ii) of the theorem are proven. Statement iii) may be proven quite
simply by taking $.,x to be the sub-bundle of Lie algebras of ¢*¥ as-
sociated to the identity map of Lie},y into itself. More explicitly we
may return to our construction and observe that on Lie} y the sheaf </
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is equal to w, A ¢*¥*. Thus, restricting to Lie}, x, ¥ becomes surjective.
Dualizing one obtains 0 — (&/|Lie}, x)* — ((¢*#*)|Lie},x)*. It is easily
verified that («/|Lie} x)* is precisely 9, x. We conclude with a corollary
to the proof of Theorem 2.2 which needs no further explanation.

2.3. COROLLARY. Let f:Y — X be a morphism of schemes and let
& be a locally free rank n sheaf of Lie algebras over Ox. Then Li€j .,y
~ Y Xy Liey .

3. The Tangent Space

In this section, we shall consider the case where X is the prime
spectrum of a field, %, and & = L is just a Lie algebra over k. Then
Liej,x is just a projective scheme over k whose closed points correspond
to the Lie subalgebras of L of dimension r.

Let k[e] denote the ring of dual numbers; that is & = 0. Then if
X is a k-scheme and xe X is a point rational over k, the tangent space
to X at « consists of those elements of Hom, (Spec kle], X) which project
to x under the natural map induced by the map p,: kle] — k. Suppose
now that X = Lie},, and 2 is the point determined by the Lie subalgebra
H. Then, Hom, (Spec kle], Lie; ;) is, by the definition of Lie},, the set
of k[¢] Lie subalgebras of kle] ®, L which are free kl[e]-modules (Note
that k[e] is artinian local) of rank » and k[c] direct summands of
klel ®, L. The tangent space at x corresponds to the set of subalgebras
H’ C k[e] ®; L such that (p, ® 1)(H’) = H, where p, is the natural map
from Fkle] to k.

We observe that if H is a Lie subalgebra of L, then L/H admits
a natural H-representation, given by ho% = [k, u] where  denotes the
class of # in L/H and heH. We use Z(H,L/H) and BYH,L/H) to
denote the Whitehead one cocycles and co-boundaries of H in L/H in
the standard complex. That is Z'(H,L/H) = {6 € Hom, (H, L/H) : §([u, v])
= %0d(v) — vod(w)} and B'(H,L/H) is the set of maps of the form ¢,(%)
= hou for ue L/H. There is a natural map, 7, from L to B'H,L/H)
given by y(m) = d,, where 6,(h) = hom and m is the class of m in L/H.
Now, y(m) = 0 only if 6, =0. But §, =0 if and only if [H,m] C H.
Thus BYH,L/H) is isomorphic to L/N (H) where N, (H) denotes the
normalizer of H in L.

3.1. THEOREM. Let L be a Lie algebra of dimension n over k, and
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let * = xzy denote the k-valued point of Liej,: determined by the r di-
mensional subalgebra H. ;

Let Ty = T, denote the tangent space to Liel, at x. Then Ty is
isomorphic to ZY(H,L|H).

Proof. Let Ele] be the dual numbers. Then kle] = k@ k-c and there
are two projections p,,p,: kle] — k.

We must construct an element of Z'(H, L/H) for each element of T.
As has been previously remarked the elements correspond to free rank
r kle]-subalgebras of kle] ® L = L/, H' which are k[e]-direct summands
of L’ and which project to H under p, ®1. We shall construct the
correspondence. Let p,=p,®1 and let p; =p,®1. Given H’,p, is a
surjective morphism from H’ to H. As H and H’ are k-vector spaces,
there is a map u: H — H’ such that pjow =id. Thus piou maps H
into pi(H"). As ¢eH' =e¢® H, H C py(H'). The class of pjoumod H is
a map & from H into L/H. We assert that § is the required element
of Z'(H,L/H).

First we shall show that ¢ is unique. Thus we must show that for
any two sections u,%’ : H — H’ such that pjou = pjow = idy, we obtain
the same map 6. Now, u — %' maps H into ker pj|H’, and since ¢ is
obtained by composing with p; and taking the residue class mod H, it
suffices to show that P;(ker (p,|H")) C H.

Thus we may assume that &,,.---,h, is a base of H, and that 1 ® &,
+e®gy,--,1Q0hn, +e®g, is a base of H’ over k[e]l. Then what we
must show is that e® L N H Ce®H. Suppose that 37, («; + Pic)
ARk +e®g) =e®m. Then 37, AQa;hy) + @ (Bih: + a;9:) = eQm.
As the h; are linearly independent the «; are zero and so m = 3 f;h; ¢ H.
This establishes the uniqueness of 4.

To show that 6e Z'(H,L/H) note that §(k) is obtained explicitly by
choosing 1® % 4+ e @ ge H and setting 6(h) equal to the class of ¢g in
L/H. Thus suppose 1®h + ¢®g and 1Q Rk + ¢® ¢ are in H. Then
M®h+e®9,10K +e®9J1=1Q[h, 1]+ @ [k, 91— [1,9D. It im-
mediately follows that é([2, »']) = hé(R') — h'6(h).

To construct an H’ given a 4, just choose ¢: L/H — L which splits
the natural projection. Let % = ocod. Then take H' = {1 ® k;, + ¢ ® (u(h,)
+ k) : hy, h,e HY. It is readily verified that H’ is a subalgebra of L’ of
the requisite type, that it is independent of the choice of ¢ and that its
associated cocycle is 6. The theorem is proven.
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3.2. COROLLARY. Let L be a Lie algebra over k and let H be a
subalgebra of L of dimension v. Let x be the k-point of Liei, cor-
responding to H. Let N,(H) be the normalizer of H in L. Then if
H\H,L/H) =0, T,, the tangent space to Lie}, at x, ts isomorphic to
L/N,(H).

Proof. If HYH,L/H)=0, BYH,L/H)= Z'(H,L/H). By theorem
3.1, T, is isomorphic to Z'(H,L/H) and as we have observed B'(H, L/H)
is isomorphic to L/N (H).

3.3. COROLLARY. Let L be a Lie algebra of dimension n over k
and let H be an ideal of dimension r in L. Let x < Liel, be the k-point
corresponding to H. Let q = dim, H[H,H]. Then dimT, = ¢ (n — 7).
In particular if H = [H,H], x is an isolated point of Liel,.

Proof. If H is an ideal in L, the natural representation of H on
L/H is the zero representation. Consequently if 6§ e ZY(H, L/H), é([h, ']
= ho(W) — K'o(h) = 0. It follows that Z*(H,L/H) = Hom, (H/[H,H],L/H)
where “Hom,” denotes vector homomorphisms. The result follows at
once.

§ 4. The Equivariant Cotangent Map

Let X be a reduced and irreducible scheme of finite type over a field,
k, and let G be a linear algebraic group over k. Let a: G X, X — X be
an action of G on X. Then the set of points lying in orbits of highest
dimension is an open subset of X,X,. We shall always be concerned
with the properties of « in X,, and so, replacing X by X, if necessary,
we shall assume that X has equidimensional orbits. Let p,: G X, X —-X
be projection on the second factor. Let @: G x, X — X X, X be defined
by @ = («,p,). Let 4: X — X xX X be the diagonal morphism. Set G, =
4G X X) = X Xxux (G X X) where @ is the structure morphism for
G x X. Then, in a natural way G, is a closed sub-group scheme of
G X X where the latter is regarded as an X-group with structure
morphism p,. Let exy: X — G X X be the identity section of X in G x X
and let e,: X — G, be the identity section of X in G,. Let I, be the
sheaf of ideals defining ey(X) and let I, be the sheaf of ideals defining
eX). Let w, = e¥(,) and let wy = e¢%(Iy). Let L be the Lie algebra of
G over k; let &: X — k be the structure morphism for X over % and let
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74t G;— G X X be the inclusion. Then observe that ey = j,0¢e,, and that
oy = E¥(L*). As G, is closed in G X X there is a natural surjection of
sheaves of Oxy-modules, z,: vy — w,. As orbits in X are equidimensional,
stabilizers are likewise and the fibre of the dual of w, at « is the Lie
algebra of the stabilizer of x. Consequently the fibres of w, are equidi-
mensional. As X is reduced and irreducible, it follows by Mumford [3],
Lemma 1, page 51 that w, is a locally free sheaf of 0y-modules. Further-
more dualizing 7,, one obtains a morphism of sheaves:

¥ ¥
00— 0f —> 0f.

However % is the sheaf of Lie algebras associated to G x X and
z¥ is the inclusion of the Lie algebra of G, in the Lie algebra of G x X.
Let the dimension of G be %, and let the dimension of the orbits in X
be s. Let r =n —s. What we have shown is that ¥ = £*L is a locally
free sheaf of Lie algebras and that o is a sub-bundle of Lie subalgebras
of dimension . Consequently, by Theorem 2.2, there is a map £,: X —
Liel;,y. Noting that o} = §*L, and applying Corollary 2.3 we conclude
that Liely,x = X X, Liez,. If g,: Liej,,y — Lie7, denotes projection on
the second factor ¢,o ¢, maps X to Liej,.

4.1. DEFINITION. Let G be a linear algebraic group over k, let X
be a reduced and irreducible algebraic variety over k, and let «: G %, X
— X be an action of G on X with equidimensional orbits. Then the
equivariant cotangent map associated to « is the map q,o ¢, defined above.
It will be written 2.

Observe that if G, is the stabilizer of z, then ¢G,s7} is the stabilizer
of gx. If the Lie algebra of G is L, inner automorphism by G induces
the adjoint representation on L and G operates by Lie automorphisms.
Consequently, the adjoint action carries Lie sub-algebras to Lie sub-
algebras and so induces an action of G on Liej,;. By the remark at the
beginning of this paragraph, 2, is a G-equivariant map.

For the remainder of this paper, if G is a linear algebraic group,
with Lie algebra L, we shall write Lie}, in lieu of Liej,;. The follow-
ing facts are obvious consequences of standard facts and Theorem 2.2.

4.2. Let G be a linear algebraic group of dimension » over k, let
H be a subalgebra of the Lie algebra of G and let x = x(H) be the k
point of Lie}, corresponding to H. Then G,, the stabilizer of z, is just
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N,(H), the normalizer of H in G. Thus G(x), the orbit of z, is just
G/Ny(H).

4.3. If H is the Lie algebra of K, a closed subgroup of G, and z
is as above, then G, is equal to N;(K° where K° is the connected com-
ponent of K and Ny (K" is the G-normalizer of K°.

§ 5. Applications

We shall use the definition in section 4 to translate the results of
sections 3 and 4 into the language of algebraic groups.

5.1. PROPOSITION. Let G be a linear algebraic group over k and
let K be a normal semi-simple k-subgroup of G of dimension r. Let H
be the Lie algebra of K. Let x be the point of Liey, corresponding to
H. Then x is an isolated point tn Lieg .

Proof. The conditions of Corollary 3.3 are satisfied.

5.2. COROLLARY. Let G be o linear algebraic group over k, of
characteristic 0, and let K be a connected normal semi-simple k-subgroup
of G. Let B be a connected linear algebraic group of automorphisms
of G. Then B leaves K stable.

Proof. As B operates on G, it operates on Liej,. Let x be the
point of Lie}, corresponding to the Lie algebra of K. Then, as B is
connected, so is the orbit of #. Consequently, B(x) = 2. As the char-
acteristic of K is zero, B must leave K stable. Q.E.D.
(We remark that this implies that if K is a connected semi-simple sub-
group of G and N is the normalizer of K in G, then N is self
normalizing)

5.3. THEOREM. Let G be a connected linear algebraic group of
dimension n over k, let K be a closed k-subgroup of G of dimension r
and let H be the Lie algebra of K. Let x = x(H) be the point of Lie},
corresponding to H. Suppose that H(H,L/H) = 0. Then the closure of
the orbit G(z) in Lie}, is an irreducible component of Lief,.

Proof. By 3.2, T, the tangent space at z, is isomorphic to L/N (H)
where N, (H) is the Lie normalizer of H in L. If N is the Lie algebra
of Ns(H), then N C N,(H). Let g = dim; N, (H) and let ¢, = dim; N.
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Then n — ¢ <7 — ¢q;. On the other hand, G/N.(H) is isomorphic to the
orbit of z and as it is of dimension # — ¢,, its dimension is greater than
or equal to dim, T,. Thus ¢ = q;,, N.,(H) = N and the theorem is an
immediate consequence.

5.4. THEOREM. Let G be a connected linear algebraic group and
let X be a reduced and irreducible variety, both over k, of characteristic
0. Let a:G X, X— X be an action of G on X with equidimensional
orbits. Suppose that for some point te X, H(H,L/H) = 0 where H 1is
the Lie algebra of G, and L is the Lie algebra of G. Then there is a
dense open subset of X, U, such that te U, and for any we U, (G,)° is
conjugate to (G,)" where (G,)° is the connected component of the identity
n Gy.

Proof. Let 4,: X — Lieg,, denote the equivariant cotangent map as-
sociated to @. Let x be the point in Lie, corresponding to H. Then
as 1,(t) = x, we may apply 5.3 and 5.4 follows at once.

In conclusion, it should be remarked that theorems 5.3 and 5.4 may
be interpreted as principal orbit theorems for actions of reductive groups
on affine varieties in characteristic zero. Results along these lines have
been recently proven by Richardson in Richardson [4].

In the terminology of that paper we have shown that if H'(H, L/H)
= 0 then H is a “principal” isotropy subalgebra.

We further observe that our results trivially imply that if G is a
connected algebraic group over a field of characteristic zero, then G
contains only a finite number of conjugaey classes of reductive subgroups
of any given dimension.
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