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THE SCHEME OF LIE SUB-ALGEBRAS OF A LIE ALGEBRA

AND THE EQUIVARIANT COTANGENT MAP*

WILLIAM J. HABOUSH

Introduction. The main object of this paper is to develop techniques
for investigating the local properties of actions of an algebraic group
on an algebraic variety. Our main tools are certain schemes which may
be associated to Lie algebras. Let X be a scheme and let «£? be a locally
free sheaf of Lie algebras over ΦΣ of rank n. Let LieJ/x denote the
functor which assigns to each X-scheme Y with structure morphism,
p: Y —> X, the set of all coherent sheaves of Lie subalgebras of p*iί?
which are sub-bundles of p*^ of rank r. Sections 1 and 2 are devoted
to demonstrating that LieJ/x is a representable functor and that represent-
ing scheme, LieJ/JΓ, is projective over X. Section 3 is devoted to a
description of the tangent space to LieJ/fc at a closed point correspond-
ing to a Lie subalgebra of <g of dimension r in the case where X is the
spectrum of a field.

Section 4 is devoted to the construction of a certain canonical map
associated to actions of algebraic groups with equidimensional orbits.
The map may be interpreted in the following way. Let V be a variety
over k. Let G be a linear algebraic group and let a: G x k V —> V be
an action with equidimensional orbits. The map is the well known map
which associates to each point oί V, v7 the Lie algebra of the stabilizer
of v.

Section 5 is an attempt to calculate the dimension of the connected
component of LieJ/fc in which a Lie subalgebra, H, lies. Some conditions
are given which imply that the component in which H lies is the closure
of the orbit of H under the adjoint action in the case where Jδf is the
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60 WILLIAM J. HABOUSH

Lie algebra of an algebraic group. These conditions may be interpreted,
under suitable circumstances, as principal orbit theorems.

Also, it is hoped that section 2 in which the results of section 1 are
utilized to construct LieJ/JΓ may be of some independent interest as a way
of making certain relative constructions.

The results in this paper are really special to characteristic zero. How-
ever, the corresponding results in positive characteristic may be proven
by entirely analogous methods. Over a field of positive characteristic,
p, it is necessary to consider deformations of closed local sub-groups
whose rings of functions are of the form k[x19 ,xr]/(xf, ,#f) with
the xt indeterminates, rather than the scheme of Lie sub-algebras of
dimension r in a Lie algebra of dimension n. The interested reader is
referred to a forthcoming paper for the details (Haboush [5]).

Special thanks are due to Professors H. Matsumura and T. Oda
whose unending patience and encouragement were an important com-
ponent of this work.

§ 1. Lie Algebras.

Let R be a commutative ring with unit and let L be a protective
Lie algebra of rank n over R. Then the bracket product on L is a map
from the second exterior power of L, ARL, to L. This map dualizes to
a map, D\\ L* —> (ARL)*f where the asterisk denotes the linear dual.
By alternation, (Λ2

RL)* may be identified with Λ2

RL*. The map D\ extends
uniquely to an anti-derivation, DL, of degree + 1 of ΛRL*, the full ex-
terior algebra of L* over R, in itself. (An antiderivation of degree + 1
is a graded £0-map, D, of a graded algebra, S = ® Sv9 into itself satis-
fying D(up-Uq) = D(up) uq + (—ΐ)pup-D(uq) whenever upeSp and uqeSq.)

1.1. DEFINITION. Let R, L, ΛRL*, DL be as above. Then DL is
called the Lie anti-derivation associated to L.

Let H be another protective, finite, Lie algebra over R and let
u: H —> L be a Lie algebra homomorphism. Then u dualizes to a map
u* : L* —> iϊ* and hence gives an algebra homomorphism, Λu* : ΛRL* —>
ΛRH*. The fact that u is a Lie algebra homomorphism is expressed by
the commutativity of the following diagram:
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H - ϋ * L

ΛRH -^ Λ\L .

The vertical arrows are given by the brackets in H and L respectively.

Dualizing gives the relation, D^ou* = ΛRu* o D\. Thus, DH (Λu*) —

(Λu*)DL. It follows that if 21 = ker Λu*, DL(W) c 21. Now assume that

H is a projective i?-submodule of L of rank r which is a direct sum-

mand of L. Let j : H-+ L be the natural injection. Then /* : L* —> iϊ*

is surjective. Now ;'* extends to ΛO'*): ΛBL* —» ARH* which is also sur-

jective. Let 21 = kerΛ(j*). Suppose that 1 (̂21) c 21. Then DL induces

a derivation, D, on ARH*. In degree 1, this yields a commutative

diagram,

As j and Λ2j are the natural injections and Df is the bracket on L we

have proven the following:

1.2. LEMMA. Let R be a commutative ring with unit, let L be a

projective Lie algebra over R and let H c L be a direct summand of

L. Let 21 = ker (Λj*) where j is the injection of H in L. Then H is

a Lie subalgebra of L if and only if DL(2I) c 21.

Now let N = ker j * . As H is a direct summand of L, 21 = N ARL*.

A moment's consideration will reveal that DL($ί) c 21 if and only if

DL(N) c N A L*.

For the next portion of the discussion assume that L, H and N are

free. Then the rank of N is s = n — r and we may assume that Λ*N

is generated by one element ω e ΛSL*. Moreover N = {m e L*: ω Λ m = 0}.

Assume that w1? ••-,%, is a basis for iV and that ω = nλ A ••• Λ %

Then DL(ω) = 2]}=i (—^)j~ιnx A Λ D(%) Λ Λw,, and so it is clear

that if H is a subalgebra of L, DL(ω) e ω Λ L * . Now assume that DL(ω) e

ω A L*. Then if meN, m A ω = 0. Thus J9L(m Λ ω) = Z)L(m) Λ ω -

m A DL(ω) = 0. As Z)L(ω) e ω A L*, m Λ DL(ω) = 0 and so J9L(m) Λ ω

= 0. But {x e Λ2L* : x A ω = 0} = 2V Λ L*. Consequently DL(m) e ΛΓ Λ L*.
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It follows that DL(N) c N Λ L* if and only if DL(ω) eω Λ L*. More-
over this is equivalent, by the preceding, to the condition that if be a
subalgebra of L. Though we have assumed that H9 N and L are free,
by localizing sufficiently we have proven the following.

1.3. PROPOSITION. Let R be commutative with unit and let L be
a protective Lie algebra of rank n. Let H be a direct summand of L
of rank r. Let N = (L/H)* c L* and let s = n — r. Then H is a sub-
algebra of L if and only if DL(ΛSN) c ( M ) L*.

§2. The Representibiliy Theorem.

2.1. DEFINITION. Let X be a scheme and let se be a locally free
sheaf of Lie algebras over Θx of rank n. Then Lie£/jΓ is the functor
which assigns to each X-scheme, Y with structure morphism p: Y —> X,
the set of all coherent sheaves of Lie subalgebras of p*££ which are
sub-bundles of p*££ of rank r.

2.2. THEOREM. Let X be a scheme and let se be a locally free
sheaf of Lie algebras over ΘΣ of rank n. Then

i) Lie^/X is a representable functor.
ii) // Lie£/X is the scheme representing LieJ/x, LieJ/x is a projec-

tive scheme over X.
iii) If q: LieJ/JΓ -* X is the structure morphism, there is a sub-

bundle of Lie subalgebras of g*(ϋ?) of rank r, denoted $#/x, so that the
isomorphism of functors between LieJ/x and Homz ( - ,Lie£/x) is given
by f-+f*Q,/z for fe Homx(Y,LieJ/x).

Proof. Our proof is an explicit construction. First we review our
notation, which though standard is not without its eccentricities. Let
X be a scheme and let δ be a locally free sheaf of ΘΣ modules. Then
P(i) denotes Proj (Sΰχ(£)). If q:P(£)—>X is the structure morphism
and ^ is a coherent sheaf on P(£), Γ*(ίF) will denote ILwe^+ Q^i^in))
and Γn(&) will denote q^in)). If / : Y -> X is an Z-scheme, i γ will
occasionally be used in place of f*δ.

First we observe that the constructions of § 1 apply to our situation.
Namely, the bracket on if induces an anti-derivation, D#f of Λ9rse* in
itself.

Consider P{ΛS

ΘΣ£?) where s = n - r, and let q: P{A*9j£e) -> X. Then
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Λ(0*ΛJz^*) - Λ\je* ®ΰχ SlMlx^) - Alχ^* ®ΦΛX^ which, by alternation

and a standard f unctorial isomorphism, is isomorphic to Hom^ (Λs

0zSf9 A
s

OzJ£).

There is a section, denoted ωS9 in ΓΊ(q*A8&*), which corresponds to the

identity map on J^je.

Now observe that Γ*{<tA9l2*)~A9χ2*®ΦΣS0z{A*&). This can be

identified with As<PχUs^ (Γ^q*^*). Consequently ω# may be used to define

a morphism, ψ: q*£?* -* q*Al+1£?*, by setting ψ(t&) = ω^ Λ w. Moreover

g*(D*) is an anti-derivation of q*Aβz&* in itself and g*(Z)jaf)(ωJ?) e gr*(-4;+1jSf*).

Then q*(Dj)(ωjr) and the image of *̂jSf* under ψ generate a coherent

subsheaf of q*A\Σ

λ££*. Denote it <J/. Set P = P(Asg), let 0 = Λ W and

let J^ = Al^iq^AlΫ^*). As there is a map qι& -* &9 there is a pairing

<^* ®*P ^ -> 0P. Let J be the image of <F* <g)βjP ^ in 0P. Thus / i s a

sheaf of ideals in ΘP which consequently defines a closed subscheme of

P, L. We observe that our entire construction commutes with base ex-

tension. That is, if / : Y —> X is a morphism, and we were to proceed

with our construction using Y and /*JS? rather than Z and J2f, we would

obtain Γ X j I .

We assert that L represents LieJ/JΓ. The fact that our construction

commutes with base extension makes two simplifications possible. The

first is that it suffices to show that the sections of X in L correspond

to the subalgebras of if which are sub-bundles of if of rank r. The

fact that L represents LieJ/x then follows by functoriality. The second

simplification consists in the observation that if for an open cover of Z,

{Ui}ieI, the sections of Z74 in L\ Ut correspond to Lie subalgebras of JSP| Z7*

which are rank r sub-bundles of if, then the same thing is true for X

and if. Thus we may assume that X is affine, and that ^ is free.

We shall hence give an explicit description of L when X = Spec R

and S^ is the sheaf associated to L a free Lie algebra over R with basis

xl9 9xn. Let / be the set of strictly increasing sequences of integers

between one and n of length s, and let e19 •• ,en be the basis for L*

dual to xl9 , xn. If Γ = (ix, . , ίs) e /, then let xτ = ^ Λ, , Λ #*s

and let eΓ = etl Λ, , Λ eis. Then P = Proj R[Xτ]τej and Γ^A'g*)

= J B [ Z Γ ] Γ € J ® Λ J 1 Γ € J J?eΓ. Moreover ω^ = S r e J ^r ® eτ' Let J ; be the

set of all strictly increasing (s + l)-tuples of integers between one and

n and choose a suitable ordering for Jr. Let eτ, denote the basis element

of AS+1L* corresponding to Tr (as above). Then we may write:
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Γ'G.7'

where the prime on the sum indicates that the sum is appropriately
ordered, and the £JtT, are linear forms in the Xτ. Then the ideal J
described above correspond to the graded ideal, J9 generated in R[Xτ]τej
by the r + 1 by r + 1 minors of the matrix, (ίjtT>) where the T are
suitably ordered, and L = Pro j R[Xτ]τe jjJ. Now let a section, σ, of
Spec R in L be given. Then, σ determines a locally free rank one sheaf

of iϋ-modules, P and a surjective morphism Λ%L —̂ -> P —> 0. Consequently
P* is a direct summand of ΛiL*. Let iV = {x e L*: x A P* = 0}. We
assert that N is a direct summand of L* of rank s and that DL(P*) c
P* Λ L*. Clearly it suffices to prove this statement locally and so we
may assume that P is free with generator e. In this case, set σ(Xτ) =
aτ. Then since σ corresponds to a section of L, the r + 1 by r + 1
minors of the matrix (ΰj,T'(Xτ)τej) vanish when the aτ are substituted
for the Xτ. Moreover the image of P* in ΛSL* is J] aτeτ — α>σ. Now

clearly

ωβ Λ e< = 27 ^i,τ'(βτ)τeJeτ'
τfej'

and

The fact that the r + 1 by r + 1 minors of the matrix of coefficients of
these expressions vanishes implies that ωσ Λ L* is a protective rank r
submodule of ΛS+1L*, by the general theory of Grassman varieties, and
further implies that DL(ωσ) eωσ Λ L*. This proves the assertion con-
cerning N. It follows by Proposition 1.3 that (L*/Λ0* is a Lie sub-
algebra of L which is a direct summand of L. Thus statements i) and
ii) of the theorem are proven. Statement iii) may be proven quite
simply by taking SQg/z to be the sub-bundle of Lie algebras of q*Jίf as-
sociated to the identity map of LieJ/x into itself. More explicitly we
may return to our construction and observe that on LieJ/x the sheaf s/
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is equal to ω<? Λ #*=£?*. Thus, restricting to LieJ/ x, ψ becomes surjective.

Dualizing one obtains 0 —> (^ |LieJ / x )*-> ((g*^f*)|LieJ/x)*. It is easily

verified that Gs/|LieJ/χ)* is precisely §zjχ. We conclude with a corollary

to the proof of Theorem 2.2 which needs no further explanation.

2.3. COROLLARY. Let / : Γ - » X be a morphism of schemes and let

££ be a locally free rank n sheaf of Lie algebras over ΘΣ% Then

~ Y χ

3. The Tangent Space

In this section, we shall consider the case where X is the prime

spectrum of a field, k, and <£ = L is just a Lie algebra over k. Then

Lie£/X is just a projective scheme over k whose closed points correspond

to the Lie subalgebras of L of dimension r.

Let k[ε] denote the ring of dual numbers that is ε2 = 0. Then if

X is a fc-scheme and x e l is a point rational over k, the tangent space

to X at x consists of those elements of Homfc (Spec k[ε],X) which project

to x under the natural map induced by the map p1: k[ε] —> k. Suppose

now that X = Lie£/fc and x is the point determined by the Lie subalgebra

H. Then, Homfc (Spec Jc[e],IAel/k) is, by the definition of Lie£/Λ, the set

of k[ε] Lie subalgebras of k[ε] (x)fc L which are free fc[ε]-modules (Note

that k[ε] is artinian local) of rank r and k[ε] direct summands of

k[ε] ®fc L. The tangent space at x corresponds to the set of subalgebras

H' c k[ε] ®Λ L such that (p1 (g) l)(H0 = H, where px is the natural map

from k[ε] to k.

We observe that if H is a Lie subalgebra of L, then L/H admits

a natural iϊ-representation, given by h o u = [h, u] where x denotes the

class of x in L/H and heH. We use Z\H,LjH) and Bι{H,LjΉ) to
denote the Whitehead one cocycles and co-boundaries of H in L/ίf in

the standard complex. That is Z\H, L/H) = {S e Horn* ( # , L/iϊ): 3([w, v])

= uodiv) — vodiu)} and B\H,L/H) is the set of maps of the form δu(h)

~ hou for ueL/H. There is a natural map, γ, from L to Bι(H,L/H)

given by f(m) = £m where δm{h) = hom and m is the class of m in L/H.

Now, r(m) = 0 only if ^m = 0. But δm = 0 if and only if [H, m] c fl".

Thus B\H,L/H) is isomorphic to L/NL(H) where iV̂ CEQ denotes the

normalizer of H in L.

3.1. THEOREM. Let L be a Lie algebra of dimension n over k, and



66 WILLIAM J. HABOUSH

let x = xH denote the k-valued point of ~Lier

L/k^determined by the r di-

mensional subalgebra H.

Let TH = Tx denote the tangent space to Lieχ,/fe at x. Then TH is

isomorphic to Zl(H,LjH).

Proof. Let k[ε] be the dual numbers. Then k[ε] = kφ k ε and there

are two projections plfp2- k[ε] —> k.

We must construct an element of Z\H, L/H) for each element of TH.

As has been previously remarked the elements correspond to free rank

r Mε]-subalgebras of k[ε] ®L = U, Hf which are Mε]-direct summands

of U and which project to H under px ® 1. We shall construct the

correspondence. Let p{ = p1®l and let pί = p 2 ® l Given H',p[ is a

surjective morphism from Hf to H. As H and H' are A -vector spaces,

there is a map u:H-*H' such that p[ou~iά. Thus p2°u maps H

into PW)- AS ε-H' = ε(g)H, Hap'2(H'). The class of p'2oumodH is
a map d from H into L/H. We assert that 5 is the required element
of Z\H,L/H).

First we shall show that δ is unique. Thus we must show that for

any two sections u,v!: H —> H' such that p'1ou = p^ou' = id#, we obtain

the same map δ. Now, u — v! maps H into kerp{\H\ and since δ is

obtained by composing with p'2 and taking the residue class modi?, it

suffices to show that Pf

2 (ker (p, | H')) c i ϊ .

Thus we may assume that hλ, —,hr is a base of i ϊ, and that 1 ® /^

+ e ® J i , , l ® f t f + e®flfr is a base of ΈLr over fc[ε]. Then what we

must show is that ε®L{\ΈLra.ε®H. Suppose that 2]ί-ife + β%ε)

(1® Λ< + β (8) Λ) = ε ® m. Then 2]r=1 (1 (x) a i ^ ) + e ® ( ^ ^ + ^ ^ = e ® m.

As the hi are linearly independent the a% are zero and so m = 2] jSî i e H.

This establishes the uniqueness of δ.

To show that δ e ^( l ϊ* L/iϊ) note that δ(h) is obtained explicitly by

choosing K&h + εd&geH' and setting δ(h) equal to the class of g in

L/ίf. Thus suppose 1 ® h + ε (8) g and 1 ® hf + ε ® gr7 are in H ; . Then

[1 ® ft + e ® ff, 1 ® fc' + e ® 0Ί = 1 ® [Λ, Λ1 + e ® ([fe, flf'] - [Λ', ff]). It im-

mediately follows that δ([h, h;]) = Λδ(Λ0 - h'δ(h).

To construct an H' given a ^, just choose σ: L/iϊ -> L which splits

the natural projection. Let u = σ o δ. Then take Hf = {1 ® Λx + ε ® (̂ (fej)

+ Λ2): h19 h2 e H}. It is readily verified that Hf is a subalgebra of U of

the requisite type, that it is independent of the choice of σ and that its

associated cocycle is δ. The theorem is proven.
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3.2. COROLLARY. Let L be a Lie algebra over k and let H be a

subalgebra of L of dimension r. Let x be the k-point of Lieχ/fc cor-

responding to H. Let NL(H) be the normalίzer of H in L. Then if

Hι(H, L/H) = 0, Tx, the tangent space to Lie£/fc at x, is isomorphic to

L/NL{H).

Proof. If Hl(H,L/H) = 0y Bι(H,L/H) = Zι(HyL/H). By theorem

3.1, Tx is isomorphic to Z\H,L/H) and as we have observed B\H, L/H)

is isomorphic to L/NL(H).

3.3. COROLLARY. Let L be a Lie algebra of dimension n over k

and let H be an ideal of dimension r in L. Let x e Lie£/fc be the k-point

corresponding to H. Let q = dim* H[H,H], Then dim Tx = q-(n — r).

In particular if H = [H,H], x is an isolated point of Lier

L/k.

Proof. If H is an ideal in L, the natural representation of H on

L/H is the zero representation. Consequently if δeZι(H,L/H), δ({h,h'])

= hδ(h') - h;δ(h) = 0. It follows that Z\H, L/H) = Homfc (H/[H, H], L/H)

where "Horn/' denotes vector homomorphisms. The result follows at

once.

§ 4. The Έquivariant Cotangent Map

Let X be a reduced and irreducible scheme of finite type over a field,

k, and let G be a linear algebraic group over k. Let a: G XkX —> X be

an action of G on X. Then the set of points lying in orbits of highest

dimension is an open subset of X,XQ. We shall always be concerned

with the properties of a in Xo, and so, replacing X by Xo if necessary,

we shall assume that X has equidimensional orbits. Letp 2 G xkX—>X

be projection on the second factor. Let Φ: G XkX -» X xkX be defined

by Φ = (a,p2). Let Δ : X -> X x X be the diagonal morphism. Set GΔ =

Δ~ι{G XkX) = X XXxχ(G x X) where Φ is the structure morphism for

G x X. Then, in a natural way GΔ is a closed sub-group scheme of

G x X where the latter is regarded as an X-group with structure

morphism p2. Let eΣ: X —» G x X be the identity section of X in G x X

and let eΔ: X —* G^ be the identity section of X in G> Let Ix be the

sheaf of ideals defining ex(X) and let lΔ be the sheaf of ideals defining

eΔ(X). Let ω4 = e%IΔ) and let ω x — ex(Ix). Let L be the Lie algebra of

G over k let f: X —> & be the structure morphism for X over k and let
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j Δ : GΔ -> G x X be the inclusion. Then observe that ex = jΔ o eΔ, and that

ω x = f*(L*). As Gj is closed in G x X there is a natural surjection of

sheaves of 0x-modules, πa: ωx —> ωiβ As orbits in X are equidimensional,

stabilizers are likewise and the fibre of the dual of ωΔ at x is the Lie

algebra of the stabilizer of x. Consequently the fibres of ωΔ are equidi-

mensional. As X is reduced and irreducible, it follows by Mumford [3],

Lemma 1, page 51 that ωΔ is a locally free sheaf of ^-modules. Further-

more dualizing πa, one obtains a morphism of sheaves:

.*
0 > ω* • ωx .

However ωx is the sheaf of Lie algebras associated to G X X and

π* is the inclusion of the Lie algebra of GΔ in the Lie algebra of G x X.

Let the dimension of G be n, and let the dimension of the orbits in X

be s. Let r = n — s. What we have shown is that ωx == ξ*L is a locally

free sheaf of Lie algebras and that ωf is a sub-bundle of Lie subalgebras

of dimension r. Consequently, by Theorem 2.2, there is a map £a:X~>

Lie^/jr. Noting that ωx = f*L, and applying Corollary 2.3 we conclude

that Lier

ω*χ/X — X X* Lie£/A;. If <j2: Lie^ / J r -» Lier

L/k denotes projection on

the second factor q2o£a maps X to Iuier

L/k.

4.1. DEFINITION. Let G be a linear algebraic group over k, let X

be a reduced and irreducible algebraic variety over k, and let a: G x k X

—• Z be an action of G on X with equidimensional orbits. Then the

equivariant cotangent map associated to a is the map q2 o 4 defined above.

It will be written λa.

Observe that if Gx is the stabilizer of x, then σGxσ~ι is the stabilizer

of σx. If the Lie algebra of G is L, inner automorphism by G induces

the adjoint representation on L and G operates by Lie automorphisms.

Consequently, the adjoint action carries Lie sub-algebras to Lie sub-

algebras and so induces an action of G on Lie£/fc. By the remark at the

beginning of this paragraph, λa is a G-equivariant map.

For the remainder of this paper, if G is a linear algebraic group,

with Lie algebra L, we shall write Lie£/fc in lieu of Lie£/fe. The follow-

ing facts are obvious consequences of standard facts and Theorem 2.2.

4.2. Let G be a linear algebraic group of dimension n over fc, let

H be a subalgebra of the Lie algebra of G and let x — x(H) be the k

point of Lie£/fc corresponding to H. Then Gx, the stabilizer of x, is just
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NG(H), the normalizer of H in G. Thus G(x), the orbit of x, is just

G/NG(H).

4.3. If H is the Lie algebra of K, a closed subgroup of G, and x

is as above, then Gx is equal to NG(K°) where K° is the connected com-

ponent of K and NG(K°) is the G-normalizer of K°.

§ 5. Applications

We shall use the definition in section 4 to translate the results of

sections 3 and 4 into the language of algebraic groups.

5.1. PROPOSITION. Let G be a linear algebraic group over k and

let K be a normal semi-simple k-subgroup of G of dimension r. Let H

be the Lie algebra of K. Let x be the point of IΛeG/k corresponding to

H. Then x is an isolated point in Lie£/Λ.

Proof. The conditions of Corollary 3.3 are satisfied.

5.2. COROLLARY. Let G be a linear algebraic group over k, of

characteristic 0, and let K be a connected normal semi-simple k-subgroup

of G. Let B be a connected linear algebraic group of automorphisms

of G. Then B leaves K stable.

Proof. As B operates on G, it operates on LieS/fc. Let x be the

point of lAer

G/k corresponding to the Lie algebra of K. Then, as B is

connected, so is the orbit of x. Consequently, B(x) = x. As the char-

acteristic of K is zero, B must leave K stable. Q.E.D.

(We remark that this implies that if K is a connected semi-simple sub-

group of G and N is the normalizer of K in G, then N is self

normalizing)

5.3. THEOREM. Let G be a connected linear algebraic group of

dimension n over k, let K be a closed k-subgroup of G of dimension r

and let H be the Lie algebra of K. Let x = x(H) be the point of IΛeG/k

corresponding to H. Suppose that Hι(Ή, L/H) = 0. Then the closure of

the orbit G(x) in Lie£/fc is an irreducible component of Lie£/fc.

Proof. By 3.2, Tx the tangent space at x, is isomorphic to L/NL(H)

where NL(H) is the Lie normalizer of H in L. If N is the Lie algebra

of N0(H), then N c NL(H). Let q = dim* NL(H) and let qx = dimfc N.
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Then n — q < n — qr. On the other hand, G/NG(H) is isomorphic to the
orbit of x and as it is of dimension n — qu its dimension is greater than
or equal to dimfc Tx. Thus q = q19NL(H) = N and the theorem is an
immediate consequence.

5.4. THEOREM. Let G be a connected linear algebraic group and
let X be a reduced and irreducible variety, both over k9 of characteristic
0. Let a:GχkX->X be an action of G on X with equidimensίonal
orbits. Suppose that for some point teX, H\H, L/H) = 0 where H is
the Lie algebra of Gt and L is the Lie algebra of G. Then there is a
dense open subset of X, U, such that teU, and for any ueU, (Gu)° is
conjugate to (Gt)° where (GJ° is the connected component of the identity
in Gu.

Proof. Let λa: X —> Lie£/fc denote the equivariant cotangent map as-
sociated to a. Let x be the point in Lie£/fe corresponding to H. Then
as λa(t) = xy we may apply 5.3 and 5.4 follows at once.

In conclusion, it should be remarked that theorems 5.3 and 5.4 may
be interpreted as principal orbit theorems for actions of reductive groups
on affine varieties in characteristic zero. Results along these lines have
been recently proven by Richardson in Richardson [4].

In the terminology of that paper we have shown that if Hι(H, L/H)
= 0 then H is a "principal" isotropy subalgebra.

We further observe that our results trivially imply that if G is a
connected algebraic group over a field of characteristic zero, then G
contains only a finite number of conjugacy classes of reductive subgroups
of any given dimension.
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