J. T. Gresser

Nagoya Math. J.
Vol. 51 (1973), 185-189

RESTRICTED PRINCIPAL CLUSTER SETS OF A GERTAIN HOLOMORPHIC FUNCTION

JOHN T. GRESSER

Let D be the open unit disk and let K be the unit circle. We say that α is an arc at $\zeta \in K$ if α is contained in D and is the image of a continuous function $z=z(t)(0 \leq t<1)$ such that $z(t) \rightarrow \zeta$ as $t \rightarrow 1$. We call α a segment as ζ if the function $z=z(t)$ is linear in t. If P is a property which is meaningful for each point of K, we say that nearly every point of K has property P if the exceptional set is a set of first Baire category in K. We assume that the reader is familiar with the rudiments of cluster set theory, and in particular with the terms ambiguous point, Meier point, and Plessner point of a function (cf. [4] or [7]). If f is a function which maps D into the Riemann sphere, if $\zeta \in K$ and α is an arc at ζ, then $C(f, \zeta, \alpha)$ will denote the arc-cluster set of f at ζ along α. The principal cluster set of f at ζ is defined to be the set

$$
\Pi(f, \zeta)=\bigcap_{\alpha} C(f, \zeta, \alpha)
$$

where α ranges over all arcs of ζ. The nontangential principal cluster set of f at ζ is defined to be the set

$$
\Pi^{*}(f, \zeta)=\bigcap_{\alpha} C(f, \zeta, \alpha),
$$

where α ranges over all arcs at ζ for which there is a Stolz angle at ζ containing α. Finally, if Δ is a Stolz angle at ζ, we define the set

$$
\Pi_{\Delta}(f, \zeta)=\bigcap_{\alpha} C(f, \zeta, \alpha)
$$

where α ranges over all arcs at ζ such that $\alpha \subseteq \Delta$.
Let Δ be a Stolz angle at $\zeta_{0}=1$, and for each $\zeta \in K$ let $\Delta(\zeta)$ be the Stolz angle at ζ which is obtained by rotating Δ about the origin. We
mention as background for this paper two well-known results by E. F. Collingwood. Let f be an arbitrary complex-valued function defined in D. Then

$$
C_{\Delta(\zeta)}(f, \zeta)=C(f, \zeta)
$$

for nearly every point $\zeta \in K$, and

$$
C_{B}(f, \zeta)=C(f, \zeta)
$$

for all but a countable number of points $\zeta \in K$. Here $C_{B}(f, \zeta)$ denotes the boundary cluster set of f at ζ (cf. [4, pp. 80, 82]). More recently, using analogous definitions and techniques, the boundary principal cluster set of f at ζ, denoted by $B \Pi(f, \zeta)$, has been investigated [5]. This set describes the behavior of $\Pi(f, \xi)$ at points ξ which are near and distinct from ζ. It has been shown that if f is continuous in D, then

$$
B \Pi(f, \zeta)=\Pi(f, \zeta)
$$

for nearly every point $\zeta \in K$ [5, Theorem 9]. This naturally suggests the question of whether for a continuous function f in D it follows that

$$
\Pi_{\Delta(\zeta)}(f, \zeta)=\Pi(f, \zeta)
$$

for nearly every point $\zeta \in K$. The purpose of this paper is to answer this question in the negative, even for a holomorphic function; we show, in fact, that an even stronger inequality is possible. We use the symbol \subset in the sequel to denote proper set inclusion.

Theorem. Let Δ be a Stolz angle at $\zeta_{0}=1$. Then there exists a holomorphic function f in D such that

$$
\Pi^{*}(f, \zeta) \subset \Pi_{\Delta(\zeta)}(f, \zeta)
$$

for nearly every point $\zeta \in K$.
Proof. Our construction is a modification of a method presented by F. Bagemihl in [2]. If ρ is a segment at ζ, we let $\theta(\rho)$ denote the angle $(0<\theta(\rho)<\pi)$ between ρ and the forward tangent to the unit circle at ζ, and we let $\ell(\rho)$ denote the length of ρ.

For each ternary fraction

$$
t=0 \cdot t_{1} t_{2} t_{3} \cdots
$$

where each t_{j} is zero or two, we denote by

$$
b(t)=0 \cdot b_{1} b_{2} b_{3} \cdot \cdots
$$

the binary fraction such that for each $j=1,2,3, \ldots$

$$
b_{j}=\left\{\begin{array}{lll}
0 & \text { if } \quad t_{j}=0 \\
1 & \text { if } & t_{j}=2 .
\end{array}\right.
$$

The set T of all such ternary fractions is the Cantor "middle thirds" set, and the set of all corresponding binary fractions is the closed unit interval. We set $T^{*}=T-\{1\}$, and for each $t \in T^{*}$ we let

$$
\zeta_{t}=e^{2 \pi i b(t)} .
$$

We let θ_{0} be any fixed number ($0<\theta_{0}<\pi$) such that $\theta(\rho)>\theta_{0}$ for every segment ρ at $\zeta_{0}=1$ which is contained in Δ. Then for each $t \in T^{*}$ we let ρ_{t} be the segment at ζ_{t} defined by

$$
\theta\left(\rho_{t}\right)=(1-t) \theta_{0} / 4, \quad \text { and } \quad \ell\left(\rho_{t}\right)=(1-\sin (\pi t / 2)) \sin \left(\theta_{0} / 4\right) .
$$

Since $\ell\left(\rho_{t}\right)<\sin \left(\theta\left(\rho_{t}\right)\right)$ for $t \in T^{*}$, it follows that the line perpendicular to ρ_{t} and passing through the origin does not intersect ρ_{t}. In addition, $\theta\left(\rho_{t}\right)$ is a decreasing function of t which is always less than $\pi / 4$. These observations easily imply that for each $t \in T^{*}$ the segments in the collection

$$
\left\{\rho_{s}: s \in T^{*}, s \geq t, \quad \text { and } \quad \arg \zeta_{t} \leq \arg \zeta_{s} \leq \arg \zeta_{t}+\pi / 2\right\}
$$

are mutually nonintersecting. Thus in order to establish that the segments in the collection

$$
P=\left\{\rho_{t}: t \in T^{*}\right\}
$$

are mutually nonintersecting, it suffices to show that for each $t \in T^{*}$ such that ζ_{t} lies in the fourth quadrant, the corresponding segment ρ_{t} lies in the lower half of D. This follows from the observation that for each $t \in T^{*}$ with $t>7 / 9$ we have $t>b(t)>3 / 4$ and hence

$$
\ell\left(\rho_{t}\right)<1-\sin (\pi b(t) / 2)<1-\cos (2 \pi b(t))<|\sin (2 \pi b(t))| .
$$

There is a countably dense subset E of K such that for each $\zeta \in E$ there are two segments, say α_{ζ} and β_{ζ}, at ζ belonging to P, while for each $\zeta \in K-E$ there is exactly one segment at ζ belonging to P. For each $\zeta \in E$ we let τ_{ζ} be the segment at ζ defined by

$$
\theta\left(\tau_{\xi}\right)=(1 / 2)\left(\theta\left(\alpha_{\xi}\right)+\theta\left(\beta_{\xi}\right)\right) \quad \text { and } \quad \ell\left(\tau_{\xi}\right)=(1 / 2)\left(\ell\left(\alpha_{\xi}\right)+\ell\left(\beta_{\xi}\right)\right),
$$

and we let

$$
Q=\left\{\tau_{\zeta}: \zeta \in E\right\}
$$

It follows easily from [3, Theorem 1, p. 187-8] that there is a holomorphic function f defined in D such that for every $\rho \in P$

$$
f(z) \longrightarrow 0 \text { as }|z| \longrightarrow 1 \text { along } \rho,
$$

and for every $\tau \in Q$

$$
f(z) \longrightarrow \infty \text { as }|z| \longrightarrow 1 \text { along } \tau
$$

Because E, and $K-E$ are both dense in K, we have that $0, \infty \in C(f, \zeta)$ for every $\zeta \in K$, and hence no point of K is a Meier point of f. Therefore, nearly every point of K is a Plessner point of $f[6$, Theorem 6, p. 330]. We will show that

$$
\begin{equation*}
\infty \in \Pi_{\Delta(\xi)}(f, \zeta) \tag{1}
\end{equation*}
$$

for every Plessner point ζ which is not an ambiguous point of f. Since there are at most countably many ambiguous points of f [1, Theorem 2, p. 380], and since $\Pi^{*}(f, \zeta) \subseteq\{0\}$ for every $\zeta \in K$, the verification of (1) will complete the proof.

Let ζ be a Plessner point of f which is not an ambiguous point of f, and suppose, to the contrary, that γ is an arc at ζ with $\gamma \subseteq \Delta(\zeta)$ such that $\infty \notin C(f, \zeta, \gamma)$. If ρ is the segment at ζ belonging to P, then $\infty \notin C(f, \zeta, \rho)$. Since the region bounded by γ, ρ, and any third convenient arc in D contains a Stolz angle, it follows that the full cluster set of f at ζ restricted to this subregion is total. By the Gross-Iversen theorem [4, Theorem 5.8, p. 101] it follows that ∞ is an asymptotic value of f at ζ, and this contradicts our assumption that ζ is not an ambiguous point of f. Thus (1) is established and the proof is complete.

References

[1] F. Bagemihl, Curvilinear cluster sets of arbitrary functions, Proc. Nat. Acad. Sci., 41 (1955), 379-382.
[2] F. Bagemihl, The chordal and horocyclic principal cluster sets of a certain holomorphic function, Yokohama Math. J., 16 (1968), 11-14.
[3] F. Bagemihl and W. Seidel, Some boundary properties of analytic functions, Math. Zeitschr., 61 (1954), 186-199.
[4] E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge, 1966.
[5] J. T. Gresser, The local behavior of principal and chordal principal cluster sets, Trans. Amer. Math. Soc., 165 (1972), 323-332.
[6] K. Meier, Uber die Randwerte der meromorphen Funktionen, Math. Ann., 142 (1961), 328-344.
[7] K. Noshiro, Cluster sets, Berlin, 1960.

Bowling Green State University

