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CHARACTERIZATION OF RELATIVE
DOMINATION PRINCIPLE

ISAO HIGUCHI AND MASAYUKI ITO

1. Introduction

Let X be a locally compact and ¢-compact Abelian group and ¢ be
the Haar measure of X. A positive Radon measure N on X is called
a convolution kernel when we regard it as a kernel of potentials of con-
volution type. M. It6 [4], [6] characterized the convolution kernel which
satisfies the domination principle. The purpose of this paper is to charac-
terize the relative domination principle for the convolution kernels. We
call ze X a period of a real Radon measure g on X if uxe, = ¢ holds,
where ¢, is the unit mass at x, and denote by p(y) the set of all periods
of p. We shall prove the following result:

Let N, be a convolution kernel of Hunt on X and N, (# 0) be a
bounded convolution kernel on X. Then N, satisfies the relative domi-
nation principle with respeet to N, if and only if one of the following
conditions is satisfied.

(1) There exist a positive measure p(+ 0) and a positive measure
H on X such that

N, = Npp + H

and p(H) contains the support Sy, of N,.

(2) N, is bounded and p(N,) contains Sy,.
By virtue of this theorem, we shall obtain that the relative domination
principle defines an order on the totality of bounded convolution kernels
of Hunt on X.

2. Preliminaries
We denote by L, the family of real valued locally &-summable
functions on X, by Mz the family of bounded functions of L,., with
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compact support and by Cx the family of continuous functions of M.
L., M3 and C; are their subfamilies constituted by non-negative functions.

For a real Radon measure ¢ on X, Nxu is called a N-potential of
2 when the convolution has a sense. If Nxu is &-absolutely continuous,
we denote its density by Np. Particularly we write Nxpy = Nxf and
Ny = Nf when p = f¢& for fe Ly,

DEFINITION 1. Let N, and N, be convolution kernels on X. We say
that N, satisfies the relative domination principle with respect to N, and
write N; < N,, when the following statement is true. If f and ¢ are in
M# and N,f < N,g &-a.e. on k(f) ={xeX; f(x) >0}, then N,f < N,g &
a.e. on X. We say, simply, that N satisfies the domination principle
when N < N.

Remark 1. Let N be a convolution kernel on X satisfying the domi-
nation principle. Suppose that N(f + g) has a sense for f and ¢ in
L}, and that Nf + ¢f < Ng + cg &-a.e. on k(f) for some constant ¢ > 0.
Then Nf + ¢’f < Ng + ¢’g &a.e. on X for any constant ¢’ such that
0 £c (ef. [B]).

DEFINITION 2. A convolution kernel N is said to be bounded if
Nxp(x) is bounded on X for any ¢e Cr and it is said to be of positive
type if Nxp+@(0) = 0 for any ¢e Ck.

DEFINITION 3. A family (g);», of positive measures is said to be a
vaguely continuous semi-group if

@) prp = e Y20, Y520,

(2) p = ¢ (the Dirac measure),

(3) t-—p, is vaguely continuous.
A convolution kernel N (= 0) is called a Hunt kernel if there exists a
vaguely continuous semi-group (g);», such that N = J:o 2dt.

Remark 2. For a convolution kernel of Hunt, there exists a unique
system (N,),s, called the resolvent of N such that N, = N and that
Ny, — N,=(q—PNy*N,, p=0,9>0.

By the above resolvent equation, we have

oo

N+ 1.1 (N,)"
p D ==

o
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for any » > 0 and hence N satisfies the domination prineciple.

DEFINITION 4. A convolution kernel N is said to be associated with
the fundamental family 3 if there exists a fundamental system V(0) of
compact neighbourhoods of 0 such that with every v e V(0), we can as-
sociate a positive measure ¢, c 2 satisfying

(1) N = Nxo, and N # Nxo,,

(2) N = Nx¢, as a measure on Cv,

@) lim,_. Nx(e,)" = 0.

Remark 3. Let N be a convolution kernel of Hunt and V(0) be the
family of all compact neighbourhoods of 0. J. Deny proved in [3] that
for any v € V(0), there exists a balayaged measure o,, of ¢ on Cv with
respect to N and that if we put X = {0,,; v € V(0)}, then N is associated
with the fundamental family .

3. Relative balayaged measure

LEMMA 1. Let N, and N,(+# 0) be convolution kernels on X such
that N, <N,. Suppose that N, is bounded on X. Then N, is bounded
on X.

Proof. For any ¢eCf%, Ni#p(x) is bounded on S, and hence there
exists 4 e Cx such that N;xp < N,y on S,. The assumption N, <N,
implies that Nx¢ < N,x¢y on X. This means that N, is bounded if N,
is bounded.

Remark 4. Let N be a convolution kernel satisfying the domination
principle. M. It6 [5] proved that the following conditions are equivalent:

(1) N is bounded.

(2) N is of positive type.

(38) For any positive measure v with compact support and for any
relatively compact open set w, we denote by v, a balayaged measure of
v on @ with respect to N. Then I dv, < Idu.

Remark 5. To construct a relative balayaged measure, we use here
the following existence theorem of M. It6 (see [6]).

Let N be a convolution kernel of positive type and # be a locally
bounded é-measurable function on X. Then, for any compact set K and
for any ¢ > 0, there exists a unique element f, of M; supported by K
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such that
1) Nf,+cfuzu é-ae on K,
(2 Nfy, + cfy=u éae. on k(f,) ={xeX; fulx) >0}

LEMMA 2. Let N, and N, be convolution kernels such that N, <N,
and that N, is of positive type. Then, for any positive measure p with
compact support and for any relatively compact open set w, there exists
a positive measure p. supported by @ such that

(1) Nyl = Nyxp as @ measure in o,

(2) Nyl < Npyxp as a measure in X,

@) If v is a positive measure supported by @ such that Ny = Nyxp
m o, then Ny = Nyl in X,

Proof. If feMz, N,f is locally bounded and é&-measurable and
hence, by the above existence theorem, there exists f”e M} supported
by @ such that

O N+ cf’zN,f ¢é-a.e. on @,

@) N,f"” + c¢f” = N,f &a.e. on k(f").

It is known that N, < N, if and only if N, + ce <N, for any ¢ > 0 (see
[5D).
Therefore (1) and (2) imply that

N.f" + ¢f” < N,f &-a.e. on X,
N.f" + ¢f” = N,f &-a.e. on @ .

By the ordinary limit process, we obtain a positive measure . for u
having the desired properties (cf. [5]).

DEFINITION 5. In the above lemma, N xy. is uniquely determined
but g is not always uniquely determined. We call 4 a relative
balayaged measure of ¢ on o with respect to (N,, N,).

4. Characterization of relative domination principle

LEMMA 3. Let N be o bounded convolution kernel of Hunt and g,
be a balayaged measure of ¢ on Cv for ve V(0) with respect to N. Then
f AN < +oo (resp. de - +oo> if and only if jdow <1 ('resp. jdoc,, - 1)
for every v e V(0).

Proof. By Remark 8, N is associated with the fundamental family
3 = {0,;ve V(0)}. The boundedness of N means, by virtue of Remark 4,
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that J'dow < 1 for every v ¢ V(0). On the other hand, J. Deny [2] proved
this lemma for the associated kernel with a fundamental family under
the hypothesis that Jddw < 1 for every v e V(0). Therefore our assertion
is true.

LEMMA 4. Let N be a convolution kernel of Hunt. Then we have

Sy = U{Swwn3; e V(0), n=1,2,3, .-}
Proof. By the definition of ¢,,, we have
N g N*ocv g N*(acv)z g te Z N*(ocv)n .

On the other hand, the fact that N satisfies the domination principle
asserts that 0e Sy. Accordingly, Sy DS, for any v and for any integer
n > 0 and hence

SN - U{S(ch)"} .

Next, we shall prove the inverse inclusion. Le (v,).., be a decreas-
ing net of compact neighbourhoods of 0 such that (M,e,v.={0}. For
any positive integer n, we have

Nx(e — owa)*ni (0c0)? = N — Nx(g.,)" .
»=0

By Remark 3 and by the property of fundamental family, we have
lim Nx(o,,)" = 0

n—c0

and hence

oo

N = Nx(e — ac,,a)*g‘_(,) (0c0)? ©
This means that
Sy €0+ J {Stanrt €0 + U St}
and hence

SN c H {S(ch)"} ’

because (MN.eqv. = {0}
Consequently the equality holds.
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THEOREM. Let N, be a convolution kernel of Hunt on X and N, (+ 0}
be a bounded convolution kernel on X. Then N, satisfies the relative
domination principle with respect to N, if and only if one of the follow-
ing conditions is satisfied.

(1) There exist a positive measure u(# 0) and a positive measure
H on X such that

N, = Npxp + H

and that p(H) contains the support Sy, of N,.
(2) N, is bounded and p(N,) contains Sy,.

Proof. Necessity. For any relatively compact open set o, we write
U, a relative balayaged measure of ¢ on o with respect to (N, N;). The
inequality Nxp, < N, for any o implies that {g,} is vaguely bounded as

® 1 X and hence there exists a positive measure ¢ such that p, — ¢ vaguely
as w7 X. If we put

H = N, — Npxp = lim Ny, — Ny,
ol

then H is a positive measure on X. Therefore it is sufficient to prove
the periodicity of H.
For any v ¢ V(0), we denote by g., a balayaged measure of ¢ on Cv
with respect to the kernel N, (¢f. Remark 3). Then we have
Hx(s — 0,,) = lim Nyx(p, — (e — o) = lim Nyx(e — oop)*(p, — ) =0,
ot X

ot X

and hence H = Hxo,, = Hx(0,,)* for every v ¢ V(0) and for every integer
n > 0.

If JdN < 4-co, then fdaw < 1 for every v (cf. Lemma 3) and hence
H = 0, because H = Hx(c.,)” for every n.

If de = oo, then Idzrw = 1. Therefore, by virtue of the theorem
of G. Choquet and J. Deny (see [1]), p(H), the set of all periods of H,
contains the support S, of o, for every v. On the other hand, we
have, by Lemma 4,

dev

Sy, = U{Swoy3veV(0), n=1,2,3,---}.

consequently p(H) contains Sy,.
Sufficiency. If the condition (1) holds, N, and H are bounded, because
N, is bounded and hence it is sufficient to prove that N, <N, under
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the following hypothesis:
N, is bounded and there exist positive measures x and H such that
N, =N p+ H
and that p(H) contains Sy,.

N, being bounded, there exists a system (N{’),., of resolvent satisfying

[pavg <1 p>0, Np=N
and
Ny — NQ = (g — pNPsN (= 0,% > 0).
By the resolvent equation, we have

1
N® + e = (@ — NP .
Y g—-p  q-— ,.Z‘ ‘

Accordingly, for any » > 0 and for ¢ > 0, there exists a positive measure
0,p,. such that

Ip,c

f dope <1, 8, .=Swpie =S,
and that
N +ce=c¢c ;;1 (0p,0" .
By the periodicity of H, we have

1 1
" (e — 0p,0)xH = " ( jdap,c)H =0

and hence there exists a positive measure « satisfying
H = (N + co)xa .

By the resolvent equation, there exists a positive measure g satisfying
N, = (NQ + co*p .

Therefore, for some positive measure v, N, can be written in the follow-
ing form

N, = (NQ + co*v .
We suppose, for f and g in M}, that
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(NP 4 co)f < Nog = (N + ce)(vxg) &-a.e. on k() .Y
Then we have
(NQ + co)f =< Nyg &-a.e. on X,

because (N$’ + ce) satisfies the domination principle (cf. Remark 1).
Therefore

(N® + ¢e) <N, .

p and ¢ being arbitrary, we may conclude that N, <N, by the ordinary
limit process.

Consequently the theorem is proved.

Let s, be the totality of bounded convolution kernels of Hunt on
X. We denote N, ~ N, when N, is proportional to N, and #, = #,/~.

COROLLARY. The relation < is an order on #,.

Proof. The reflexive law follows by the domination principle. As-
sume that N, < N, and N, <N, for N,,N,¢c s#,. By our theorem, N, and
N, can be written in the following forms

Ny = Nyxp + Hy

N, =N + H,,
where p,v,H, and H; are positive measures on X and p(H) O Sy,,
p(Hy) D Sy, 1If '[le < 400, then we may clearly choose a non-zero

measure as p. If IolN1 = +o0 and x=0, then N, = N,x¢ ., for any v € V(0),

where ¢ ., is a balayaged measure of ¢ on Cv with respect to N,. This
contradicts to the unicity principle for N,.? Similarly, we may suppose
v # 0. Therefore

N, = (N#w+v + Hxv + H, .
It is known that lim,, y Nyxel ., = 0 (cf. [6]) and hence

lim H sxysel o = 0 .
w1x

By p(H) D Sy,, Hxv =0 and hence H, =0. Similarly H,=0. Con-
sequently

1) In this case vxg means the density of v:(g§).
2) This means that 4 =v whenever Nxy = N,
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N, = (Nyxp+y .

For a compact set K in X, we denote by px and vy the restrictions of
¢ and v to K, respectively. Then

N, = (Nxpg)ivg = Nl*(ﬂK*VK)
and hence fd(,ux*vx) <1, that is, jde.[de < 1. K being arbitrary,
fdy < 4+ o0 and jdv < +4o0. Consequently
N, = (Nxp+y = Npx(p*y) .

By the unicity principle for N,, p+xv = ¢ and hence g = ce and v = (1/c¢)e,
where ¢ is a positive constant. This means N, ~ N, (asymmetric law).

Let N,,N,,N,e s, and suppose that N, < N,, N, <N, and that for
Jr9e Mg,

N,f £ N,g ¢&-a.e. on S .
By Lemma 2, there exists ¢, e M} satisfying

N,g, + %g; = N,g §-a.e. on Sy,

N,g, + %g; < N,g &-a.e. on X .

Put
F,={xeS;y; Nif@) £ Nogr (@)}
and let f, be the restriction of f to F,. Then
Nifu £ Nogy, -ae. on k(f,)
and hence the same inequality holds &-a.e. on X, that is,
N,f. £ Nyg &-a.e. on X.

{1/n)g.} converging to 0 &-a.e. on X as n— oo, f, — f &-a.e. on X. Con-
sequently N,f < N,g é-a.e. on X, that is, N, < N, (transitive law). This
completes the proof.
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