M. Koike

Nagoya Math. J.
Vol. 99 (1985), 147-157

MATHIEU GROUP M_{24} AND MODULAR FORMS

MASAO KOIKE

§0. Introduction

In [6], Mason reported some connections between sporadic simple group M_{24} and certain cusp forms which appear in the 'denominator' of Thompson series assigned to Fisher-Griess's group F_{1}. In this paper, we discuss the 'numerator' of these Thompson series.

We state our result precisely. Since M_{24} is a subgroup of the symmetric group S_{24} of degree 24 , we can write for each $m \in M_{24}$,

$$
m=\left(n_{1}\right)\left(n_{2}\right) \cdots\left(n_{s}\right), \quad n_{1} \geqq \cdots \geqq n_{s} \geqq 1
$$

to mean that m is a product of cycle of length $n_{i}, 1 \leqq i \leqq s$. To each $m=\left(n_{1}\right) \cdots\left(n_{s}\right)$, we associate modular forms $\eta_{m}(z)$ and $\vartheta_{m}(z)$ as follows; let

$$
\eta_{m}(z)=\eta\left(n_{1} z\right) \cdots \eta\left(n_{s} z\right),
$$

where $\eta(z)$ is the Dedekind η-function

$$
\eta(z)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

where $q=\exp (2 \pi \sqrt{-1} z)$ and $\boldsymbol{z} \in \boldsymbol{H}=\{\boldsymbol{z} \in \boldsymbol{C} \mid \operatorname{Im} z>0\}$. Then, in [6], Mason showed that $\eta_{m}(z)$ is a cusp form of weight $s / 2$ on $\Gamma_{0}\left(n_{1} n_{s}\right)$ with some character ε_{m} and is also a common eigenfunction of all Hecke operators, (see also [3]).

On the other hand, it is well-known that M_{24} acts on the Leech lattice L as isometries. To each $m \in M_{24}$, put

$$
L^{m}=\{x \in L \mid m \cdot x=x\} .
$$

Then L^{m} is an even integral, positive definite quadratic lattice of rank s. Let $\vartheta_{m}(\boldsymbol{z})$ denote the theta function of L^{m} :

[^0]$$
\vartheta_{m}(z)=\sum_{x \in L^{m}} \exp (\pi \sqrt{-1} z\langle x, x\rangle)
$$
where \langle,$\rangle is the bilinear form on L$. Then $\vartheta_{m}(z)$ is a modular form of weight $s / 2$, however, it is not so easy to determine $\vartheta_{m}(z)$ explicitly.

Here comes Conway-Norton's remarkable discoveries 'Monstrous Moonshine'. Especially the following conjecture is very important:

Conjecture 0.1. For each $m \in M_{24}$, put

$$
j_{m}(z)=\frac{\vartheta_{m}(z)}{\eta_{m}(z)}
$$

Then there exists an element g in F_{1} such that the Thompson series $T_{g}(z)$ assigned to g in [1] coincides with $j_{m}(z)$ up to a constant term.

In this paper, we describe $\vartheta_{m}(z)$ explicitly as a linear sum of Eisenstein series and $\eta_{m}(z)$ assuming the above conjecture. The main result is as follows:

Theorem 0.1. For $m \in M_{24}, m \neq 12^{2}, 4^{6}, 2^{12}, 10^{2} \cdot 2^{2}, 12 \cdot 6 \cdot 4 \cdot 2,4^{4} \cdot 2^{4}$, there exists a unique modular form $\theta_{m}(z)=1+\sum_{n \geqq 1} a_{n}(m) q^{n}, a_{n}(m) \in \boldsymbol{Z}$ satisfying the following conditions.
(0.1) There exists $g \in F_{1}$ such that

$$
\frac{\theta_{m}(z)}{\eta_{m}(z)}=T_{g}(z)+c, \text { for some constant } c .
$$

(0.2) $\quad a_{1}(m)=0$.
(0.3) $\quad a_{n}(m)$ are even integers for all n.
(0.4) $\quad a_{n}(m) \geqq 0$ for all n.
(0.5) If $m^{r}=m^{\prime}$ for some $r \in Z$, then $a_{n}(m) \leqq a_{n}\left(m^{\prime}\right)$ for all n.

For the remaining 6 cases, if we add one more condition that
(0.6) $\quad a_{2}(m)=$ the number of elements in $\left\{x \in L^{m} \mid\langle x, x\rangle=4\right\}$, we can prove that there exists a unique $\theta_{m}(z)$ satisfying $(0.1) \sim(0.6)$.

We already applied these result to construct moonshines for $P S L_{2}\left(\boldsymbol{F}_{7}\right)$ ([4]).

In the subsequent paper, we shall apply the same argument to all the elements of the automorphism group of the Leech lattice. In this case, we need to modify the above conjecture slightly (see [5]).

§1.

Let G be a finite group and Λ be an even integral, positive definite quadratic lattice on which G acts as isometries of Λ. For any $g \in G, \Lambda^{g}$ is the set of fixed points of g on Λ. Then Λ^{g} is also an even integral, positive definite quadratic lattice. Let $\left(\Lambda^{g}\right)^{*}$ be the dual lattice of $\Lambda^{g} ;\left(\Lambda^{g}\right)^{*}$ $=\left\{x \in \boldsymbol{Q} \Lambda^{g} \mid\langle x, y\rangle \in \boldsymbol{Z}\right.$ for all $\left.y \in \Lambda^{g}\right\}$. Let ℓ_{g} denote the exponent of $\left(\Lambda^{g}\right)^{\#} / \Lambda^{g}$. The theta function $\theta\left(z ; \Lambda^{g}\right)$ of Λ^{g} is defined by

$$
\theta\left(z ; A^{g}\right)=\sum_{x \in 1^{g}} \exp (\pi \sqrt{-1} z\langle x, x\rangle) .
$$

We assume that the rank of Λ^{g} is always even which is denoted by $2 k_{g}$. Let $\left\{u_{i}\right\}$ be a basis of Λ^{g} and put $A_{g}=\left(\left\langle u_{i}, u_{j}\right\rangle\right)$. Then A_{g} is an even integral, positive definite symmetric matrix. Let N_{g} be the smallest positive integer such that $N_{g} \cdot A_{g}^{-1}$ is even integral. Then $\theta\left(z ; \Lambda^{g}\right)$ is a modular form on $\Gamma_{0}\left(N_{g}\right)$ of weight k_{g} with some character.

Lemma 1.1. Suppose that g is of order d. Then N_{g} divides $2 d N_{e}$ where e is the identity element of G.

Proof. It is easily seen that ℓ_{g} divides N_{g} and N_{g} divides $2 \ell_{g}$. Combining this with Lemma 2 in [7], we get the proof.

Corollary 1.1. Let m be any element in M_{24} of order d. Then $\vartheta_{m}(z)$ is a modular form on $\Gamma_{0}(2 d)$ with some character.

Proof. The pair M_{24} and the Leech lattice L satisfy the above situation in Lemma 1.1. Since L is unimodular, $N_{e}=1$. Hence we get the proof.

Lemma 1.2. Let $\theta\left(z ; \Lambda^{g}\right)=1+\sum_{n \geqq 1} b_{n}(g) q^{n}$ be the Fourier expansion. Then we have
(1.1) $\quad b_{n}(g)$ are even integers for all n.
(1.2) $\quad b_{n}(g) \geqq 0$.
(1.3) If $g^{r}=g^{\prime}$, then $b_{n}(g) \leqq b_{n}\left(g^{\prime}\right)$ for all n.

Proof. These are obvious.
Corollary 1.2. Let $\vartheta_{m}(z)=1+\sum_{n \geqq 1} a_{n}(m) q^{n}$ be as in the Introduction. Then $a_{n}(g)$ satisfy the conditions (0.2) (0.3) (0.4) (0.5) in Theorem 0.1.

Proof. It is well known that L has no vectors of length 2, so $a_{1}(m)$ $=0$ for all m. Other statements follow from Lemma 1.2.

Lemma 1.3. The notation being as above, suppose that $\vartheta_{m}(z) / \eta_{m}(z)=$ $T_{g}(z)-c$. Then c is equal to the Fourier coefficient of q^{2} in $\eta_{m}(z)$.

Proof. This follows from the fact that $a_{1}(m)=0$.
The proof of Theorem 0.1 is done by computation with the help of the above lemmas. We explain the argument of the proof only by taking a few examples. For $q^{n}\left(a_{0}, a_{1}, a_{2}, \cdots\right)$, we mean the Fourier expansion $a_{0} q^{n}$ $+a_{1} q^{n+1}+a_{2} q^{n+2}+\cdots$. For $m A, m B, \cdots$, we mean the Atlas name of elements of F_{1} in [1]. Take $m=3^{6} \cdot 1^{6}$. Then $\eta_{35 \cdot 18}(z)=q(1,-6,9,4,6, \cdots)$. Elements g of F_{1} satisfying (0.1) (0.2) and (0.3) are $3 \mathrm{~A}, 6 \mathrm{~A}, 6 \mathrm{C}, 12 \mathrm{~A}, 12 \mathrm{C}$, $12 \mathrm{E}, 24 \mathrm{~A}, 24 \mathrm{~B}, 24 \mathrm{D}$ and 48 A . Among these, only 3 A satisfies the condition (0.4). Take $m=2^{8} \cdot 1^{8}$. Then $\eta_{28.18}(z)=q(1,-8,12,64,-210, \cdots)$. Elements g of F_{1} satisfying (0.1) (0.2) (0.3) and (0.4) are 1A and 2A. $\eta_{28.18}(z) \times$ $\left(T_{14}(z)+8\right)=q^{0}(1,0,196832, \cdots)$, but $\vartheta_{124}(z)=q^{0}(1,0,196560, \cdots)$ and 196560 <196832; this contradicts the condition (0.5). Similar argument can be applied to all $m \in M_{24}$, except $12^{2}, 6^{4}, 4^{6}, 2^{12}, 10^{2} \cdot 2^{2}, 12 \cdot 6 \cdot 4 \cdot 2$, to determine uniquely the solution $\theta_{m}(z)$ which satisfies $(0.1) \sim(0.5)$.

For the remaining cases, the solution $\theta_{m}(z)$ which satisfies $(0.1) \sim(0.5)$ is not uniquely determined. To choose the unique solution, we need one more condition (0.6). To state all the argument and computations is too tedious, so we state only the results in Table I in Appendix.

§ 2.

We give several remarks
Remark 2.1. In [2], Mckay, Dummit and Kisilevsky considered the products of η-functions which have multiplicative Fourier coefficients. There are 30 such functions which are called multiplicative products of η-functions. Among them, 2 cases are modular forms of half integral weight, and the remaining 28 cases are characterized by the property that they are primitive cusp forms, (see [3]). On the other hand, there are close connections between these and Frame shape associated to rational representations of finite groups: for example, for all $m \in M_{24}, \eta_{m}(z)$ have multiplicative Fourier coefficients.

Therefore, we consider whether all the multiplicative products of η functions have the similar property to Theorem 0.1. The result is as follows:

Proposition 2.1. Let $f(z)$ be a multiplicative product of η-functions
which does not coincides with $\eta_{m}(z)$ for $m \in M_{24}$. Then there exists a theta function $\vartheta(z)$ such that $\vartheta(z) / f(z)$ is a generator of the modular function field of Γ which is of genus 0 and contains $\Gamma_{0}(N)$ for some N.

Proof. The proof is done by giving such $\vartheta(z)$ explicitly as follows;

m	$\vartheta(z)$	symbol
$18 \cdot 6$	$\theta(18 z) \theta(6 z)$	$36 \mid 3+$
$9^{2} \cdot 3^{2}$	$\theta\left(z ;\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]\right)^{2}$	$9 \mid 3+$
$6^{3} \cdot 2^{3}$	$\theta(6 z)^{3} \theta(2 z)^{3}$	$12+$
$16 \cdot 8$	$\theta(16 z) \theta(8 z)$	$32 \mid 4+$
$8^{2} \cdot 4^{2}$	$\theta(8 z)^{2} \theta(4 z)^{2}$	$16 \mid 2+$
$20 \cdot 4$	$\theta(20 z) \theta(4 z)$	$40 \mid 2+$
$22 \cdot 2$	$\theta(22 z) \theta(2 z)$	$44+$
8^{3}	$\theta(8 z)^{3}$	$16 \mid 4+$
24	$\theta(24 z)$	$48 \mid 12+$

Here the symbol means the same as in [1] and

$$
\theta(z)=\sum_{n \in \boldsymbol{Z}} \exp \left(\pi \sqrt{-1} z n^{2}\right) .
$$

Remark 2.2. To prove Conjecture 0.1, we need only to compute Fourier coefficients of q^{n} of $\vartheta_{m}(z)$ for a few small n and to check that these coincide with $a_{n}(m)$ of $\theta_{m}(z)$. This computation may be possible to use the explicit description of L and M_{24} given in [8], but we do not yet run this computation.

So, for the time being, it is not yet proved that $\theta_{m}(z)$ in Theorem 0.1 are theta functions of some even integral, positive definite quadratic lattices, for some $m \in M_{24}$, for example $m=2^{8} \cdot 1^{8}, 5^{4} \cdot 1^{4}, 7^{3} \cdot 1^{3}$, etc. However, there is a following fact.

Proposition 2.2. Let m be $2^{8} \cdot 1^{8}, 3^{6} \cdot 1^{6}, 5^{4} \cdot 1^{4}, 7^{3} \cdot 1^{3}, 11^{2} \cdot 1^{2}$, and $23 \cdot 1$. Then there exists a theta function $\theta\left(z ; T_{m}\right)$ such that

$$
\theta\left(z ; T_{m}\right)=\theta_{m}(z)+c_{m} \eta_{m}(z)
$$

where c_{m} is a non-zero constant.
Proof. The proof is done by giving T_{m} explicitly as follows:
m
T_{m}
c_{m}
$2^{8} \cdot 1^{8} \quad\left[\begin{array}{cccc}2 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2\end{array}\right]^{4}$

m	T_{m}	c_{m}
$3^{6} \cdot 1^{6}$	$\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]^{6}$	36
$5^{4} \cdot 1^{4}$	$\left[\begin{array}{llll}2 & 1 & 1 & 1 \\ 1 & 2 & 0 & 1 \\ 1 & 0 & 4 & 2 \\ 1 & 1 & 2 & 4\end{array}\right]^{2}$	12
$7^{3} \cdot 1^{3}$	$\left[\begin{array}{ll}2 & 1 \\ 1 & 4\end{array}\right]^{3}$	6
$11^{2} \cdot 1^{2}$	$\left[\begin{array}{ll}2 & 1 \\ 1 & 6\end{array}\right]^{2}$	4
$23 \cdot 1$	$\left[\begin{array}{ll}2 & 1 \\ 1 & 12\end{array}\right]^{2}$	2

Here T_{m} are given by the corresponding even integral, positive definite symmetric matrix, and A^{n} means n-times direct sum of A. The reason why we can find such theta functions is the following: let A_{m} be the same as in Remark 2.3. If we assume that the conjecture 0.1 is true, we can compute the determinant of A_{m} in Proposition 2.4. We choose T_{m} whose determinant, level and rank are the same as those of A_{m}. Then, since the level of the associated theta functions is a prime number, it is proved that Proposition 2.2 is true. The detail will appear in the subsequent paper.

The similar phenomena can be found when the level is not a prime. The existence of such theta functions is closely related to the existence of various moonshines of $\operatorname{PSL}_{2}\left(\boldsymbol{F}_{q}\right)$.

Proposition 2.3. Let m be $6^{2} \cdot 3^{2} \cdot 2^{2} \cdot 1^{2} \cdot 15 \cdot 5 \cdot 3 \cdot 1,14 \cdot 7 \cdot 2 \cdot 1$ and $10^{2} \cdot 2^{2}$. Then there exists a theta function $\theta\left(z ; T_{m}\right)$ such that

$$
\theta\left(z ; T_{m}\right)=\theta_{m}(z)+c_{m} \eta_{m}(z),
$$

with some constant c_{m}.
Proof. The proof is done by giving T_{m} explicitly as follows:

m	T_{m}	c_{m}
$6^{2} \cdot 3^{2} \cdot 2^{2} \cdot 1^{2}$	$\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]^{2} \oplus\left[\begin{array}{ll}4 & 2 \\ 2 & 4\end{array}\right]^{2}$	12
$15 \cdot 5 \cdot 3 \cdot 1$	$\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right] \oplus\left[\begin{array}{rr}10 & 5 \\ 5 & 10\end{array}\right]$	6
$14 \cdot 7 \cdot 2 \cdot 1$	$\left[\begin{array}{ll}2 & 1 \\ 1 & 4\end{array}\right] \oplus\left[\begin{array}{cc}4 & 2 \\ 2 & 8\end{array}\right]$	2
$10^{2} \cdot 2^{2}$		$\left[\begin{array}{rr}2 & 0 \\ 0 & 10\end{array}\right]^{2}$

Remark 2.3. We consider the index of L^{m} in $\left(L^{m}\right)^{\ddagger}$. Let A_{m} denote the corresponding matrix to L^{m}. Then the determinant of A_{m} is equal to the index of L^{m} in $\left(L^{m}\right)^{*}$.

Proposition 2.4. For any $m=\left(n_{1}\right) \cdots\left(n_{s}\right)$ in M_{24}, assume that $\vartheta_{m}(z)$ $=\theta_{m}(z)$ in Theorem 0.1. Then it holds that the index of L^{n} in $\left(L^{m}\right)^{\sharp}=$ $n_{1} n_{2} \cdots n_{s}$.

Proof. It is well-known that

$$
\theta\left(z ; A_{m}\right)(-i z)^{k_{m}}=\left(\operatorname{det} A_{m}\right)^{-\frac{1}{2}} \theta\left(-\frac{1}{N_{m} z}, N_{m}^{-1} \cdot A_{m}\right)
$$

where $N_{m}, 2 k_{m}$ denote the level and the rank of A_{m} respectively. Hence, by calculating $\theta_{m}(-1 / z)$, we can know the determinant of A_{m}. Since we know the explicit description of $\theta_{m}(z)$ by the linear sum of Eisenstein series and $\eta_{m}(z)$, it is easy to calculate $\theta_{m}(-1 / z)$.

Appendix; Table I, II, III

Table I; For any $m \in M_{24}$, we describe $\theta_{m}(z)$ in Theorem 0.1 as the linear sum of Eisenstein series and $\eta_{m}(z)$ and also give the corresponding element g in F_{1} which satisfies the condition (0.1). For Eisenstein series, we use the following notation: For even $k \geqq 4$,

$$
E_{k}(z)=1-\frac{2_{k}}{B_{k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n},
$$

is the Eisenstein series of weight k on $S L_{2}(Z)$ where B_{k} is the k-th Bernoulli number and $\sigma_{r}(n)=\sum_{\substack{d \backslash n \\ d>0}} d^{r}$.

Let

$$
G_{2}(z)=-\frac{1}{24}+\sum_{n=1}^{\infty} \sigma_{1}(n) q^{n} .
$$

For any characters χ and ψ defined modulo N and M, and for any odd integer k,

$$
E_{x, \psi}^{(k)}(z)=c_{k, \chi, \psi}+\sum_{\substack{m>0 \\ n>0}} \chi(m) \psi(n) n^{k-1} q^{m n}
$$

is the Eisenstein series on $\Gamma_{0}(N M)$ of weight k with character χ_{ψ} where $c_{k, x, \psi}$ is a constant related to generalized Bernoulli numbers. In table I, we use the following notation; χ, ρ, ψ and φ are real primitive characters defined modulo $4,8,7$ and 23 respectively.

For $g \in F_{1}$, and symbol, we mean the same as in [1].
Table II; We give a few Fourier coefficients $a_{n}(m) 0 \leqq n \leqq 9$ for $\theta_{m}(z)=\sum_{n=0}^{\infty} a_{n}(m) q^{n}$.

Table III; We give a few Fourier coefficients $c_{n}(m) 1 \leqq n \leqq 10$ for $\eta_{m}(z)=\sum_{n=1}^{\infty} c_{n}(m) q^{n}$.

Table I

m	g	symbol	$\theta_{m}(z)$
$1{ }^{24}$	1 A		$E_{12}(z)-\frac{65520}{6910} \eta_{124}(z)$
$2^{8} \cdot 1^{8}$	$2 A$	$2+$	$\frac{1}{17}\left\{E_{8}(z)+16 E_{8}(2 z)-480 \eta_{28,18}(z)\right\}$
$3^{6} \cdot 1^{6}$	3 A	$3+$	$-\frac{1}{26}\left\{E_{6}(z)-27 E_{6}(3 z)+504 \eta_{36,16}(z)\right\}$
$5^{4} \cdot 1^{4}$	$5 A$	$5+$	$\frac{1}{26}\left\{E_{4}(z)+25 E_{4}(5 z)-240 \eta_{5^{5}+14}(z)\right\}$
$4^{4} \cdot 2^{2} \cdot 1^{4}$	4 A	$4+$	
$7^{3} \cdot 1^{3}$	7 A	$7+$	$-\frac{1}{8}\left\{7 E_{1, \psi}^{(3)}(z)-49 E_{\psi, 1}^{(3)}(z)+42 \eta_{73,13}(z)\right\}$
$8^{2} \cdot 4 \cdot 2 \cdot 1^{2}$	8 A	8+	$-\frac{2}{3} E_{1, \varphi}^{(3)}(z)+\frac{16}{3} E_{\varphi, 1}^{(3)}(z)-\frac{14}{3} \eta_{82.4 .2 .12}(z)$
$6^{2} \cdot 3^{2} \cdot 2^{2} \cdot 1^{2}$	6 A	$6+$	$\begin{aligned} \frac{1}{50}\left\{E_{4}(z)+4 E_{4}(2 z)+9 E_{4}(3 z)+36\right. & E_{4}(6 z) \\ & \left.-240 \eta_{62 \cdot .32 \cdot 22 \cdot 12}(z)\right\} \end{aligned}$
$11^{2} \cdot 1^{2}$	$11 A$	$11+$	$\frac{12}{5}\left\{G_{2}(z)-11 G_{2}(11 z)-\eta_{112.12}(z)\right\}$
15.5.3.1	15A	$15+$	$\frac{3}{2}\left\{G_{2}(z)+3 G_{2}(3 z)-5 G_{2}(5 z)-15 G_{2}(15 z)-\eta_{15 \cdot 5 \cdot 3.1}(z)\right\}$
14.7.2.1	14A	$14+$	$\frac{4}{3}\left\{G_{2}(z)+2 G_{2}(2 z)-7 G_{2}(7 z)-14 G_{2}(14 z)-\eta_{14 \cdot 7 \cdot \cdot 1}(z)\right\}$
$23 \cdot 1$	$23 A$	$23+$	$\frac{2}{3}\left\{E_{1, \varphi}^{(1)}(z)-\eta_{23.1}(z)\right\}$
12^{2}	$24 E$	$24 \mid 6+$	$4 E_{1, z}^{(1)}(6 z)$
6^{4}	12 D	12\|3+	$8\left\{G_{2}(3 z)-4 G_{2}(12 z)\right\}$
4^{6}	$8 B$	$8 \mid 2+$	$-4 E_{1, \chi}^{(3)}(2 z)+16 E_{k, 1}^{(3)}(2 z)$
3^{8}	$3 C$	$3 \mid 3$	$E_{4}(3 z)$
2^{12}	4 A	$4+$	$-\frac{1}{63} E_{6}(z)+\frac{64}{63} E_{6}(4 z)-8 \eta_{212}(z)$
$10^{2} \cdot 2^{2}$	20 A	$20+$	$\frac{4}{3}\left\{G_{2}(z)-4 G_{2}(4 z)+5 G_{2}(5 z)-20 G_{2}(20 z)-\eta_{102.22}(z)\right\}$
21.3	$21 C$	$21 \mid 3+$	$2 E_{1, \psi}^{(1)}(3 z)$
$4^{4} \cdot 2^{4}$	$4 B$	$4 \mid 2+$	$\frac{1}{5}\left\{E_{4}(2 z)+4 E_{4}(4 z)\right\}$
$12 \cdot 6 \cdot 4 \cdot 2$	$12 C$	$12 \mid 2+$	$6\left\{G_{2}(2 z)-2 G_{2}(4 z)+3 G_{2}(6 z)-6 G_{2}(12 z)\right\}$

Table II

m	1^{24}	$2^{8} \cdot 1^{8}$	$3^{6} \cdot 1^{6}$	$5^{4} \cdot 1^{4}$	$4^{4} \cdot 2^{2} \cdot 1^{4}$
a_{0}	1	1	1	1	1
a_{1}	0	0	0	0	0
a_{2}	196560	4320	756	120	260
a_{3}	16773120	61440	4032	240	960
a_{4}	398034000	522720	20412	600	3060
a_{5}	4629381120	2211840	60480	1440	8704
a_{6}	34417656000	8960640	139860	2400	16320
a_{7}	187489935360	23224320	326592	3120	28800
a_{8}	814879774800	67154400	652428	5400	53300
a_{9}	2975551488000	135168000	1020096	7200	87040

Table II (continued)

m	$7^{3} \cdot 1^{3}$	$8^{2} \cdot 4 \cdot 2 \cdot 1^{2}$	$6^{2} \cdot 3^{2} \cdot 2^{2} \cdot 1^{2}$	$11^{2} \cdot 1^{2}$	$15 \cdot 5 \cdot 3 \cdot 1$	$14 \cdot 7 \cdot 2 \cdot 1$	$23 \cdot 1$
a_{0}	1	1	1	1	1	1	1
a_{1}	0	0	0	0	0	0	0
a_{2}	42	30	72	12	6	8	2
a_{3}	56	56	192	12	12	8	2
a_{4}	84	66	504	12	12	16	2
a_{5}	168	144	576	12	0	8	0
a_{6}	280	188	2280	24	30	24	2
a_{7}	336	584	1728	24	12	0	0
a_{8}	462	378	4248	36	18	40	2
a_{9}	336	448	4800	36	36	16	2

Table II (continued)

m	12^{2}	6^{4}	4^{6}	3^{8}	2^{12}	$10^{2} \cdot 2^{2}$	$21 \cdot 3$	$4^{4} \cdot 2^{4}$	$12 \cdot 6 \cdot 4 \cdot 2$
a_{0}	1	1	1	1	1	1	1	1	1
a_{1}	0	0	0	0	0	0	0	0	1
a_{2}	0	0	12	0	264	4	0	48	6
a_{3}	0	8	0	240	2048	8	2	0	0
a_{4}	0	0	60	0	7944	4	0	624	6
a_{5}	0	0	0	0	24576	16	0	0	0
a_{6}	4	24	160	2160	64416	16	4	1344	42
a_{7}	0	0	0	0	135168	8	0	0	0
a_{8}	0	0	252	0	253704	4	0	5232	6
a_{9}	0	32	0	6720	475136	16	0	0	0

Table III

m	1^{24}	$2^{8} \cdot 1^{8}$	$3^{6} \cdot 1^{6}$	$5^{4} \cdot 1^{4}$	$4^{4} \cdot 2^{2} \cdot 1^{4}$	$7^{3} \cdot 1^{3}$	$8^{2} \cdot 4 \cdot 2 \cdot 1^{2}$
c_{1}	1	1	1	1	1	1	1
c_{2}	-24	-8	-6	-4	-4	-3	-2
c_{3}	252	12	9	2	0	0	-2
c_{4}	-1472	64	4	8	16	5	4
c_{5}	4830	-210	6	-5	-14	0	0
c_{6}	-6048	-96	-54	-8	0	0	4
c_{7}	-16744	1016	-40	6	0	-7	0
c_{8}	84480	-512	168	0	-64	-3	-8
c_{9}	-113643	-2043	81	-23	81	9	-5
c_{10}	-115920	1680	-36	20	56	0	0

Table III (continued)

m	$6^{2} \cdot 3^{2} \cdot 2^{2} \cdot 1^{2}$	$11^{2} \cdot 1^{2}$	$15 \cdot 5 \cdot 3 \cdot 1$	$14 \cdot 7 \cdot 2 \cdot 1$	$23 \cdot 1$	12^{2}	6^{4}
c_{1}	1	1	1	1	1	1	1
c_{2}	-2	-2	-1	-1	-1	0	0
c_{3}	-3	-1	-1	-2	-1	0	0
c_{4}	4	2	-1	1	0	0	0
c_{5}	6	1	1	0	0	0	0
c_{6}	6	2	1	2	1	0	0
c_{7}	-16	-2	0	1	0	0	-4
c_{8}	-8	0	3	-1	1	0	0
c_{9}	9	-2	1	1	0	0	0
c_{10}	-12	-2	-1	0	0	0	0

Table III (continued)

m	4^{6}	3^{8}	2^{12}	$10^{2} \cdot 2^{2}$	$21 \cdot 3$	$4^{4} \cdot 2^{4}$	$12 \cdot 6 \cdot 4 \cdot 2$
c_{1}	1	1	1	1	1	1	1
c_{2}	0	0	0	0	0	0	0
c_{3}	0	0	-12	-2	0	-4	-1
c_{4}	0	-8	0	0	-1	0	0
c_{5}	-6	0	54	-1	0	-2	-2
c_{6}	0	0	0	0	0	0	0
c_{7}	0	20	-88	2	-1	24	0
c_{8}	0	0	0	0	0	0	0
c_{9}	9	0	-99	1	0	-11	1
c_{10}	0	0	0	0	0	0	0

References

[1] J. H. Conway and S. P. Norton, Monstrous moonshine, Bull. London Math. Soc., 11 (1979), 308-330.
[2] D. Dummit, H. Kisilevsky and J. Mckay, Multiplicative products of η-functions,
[3] M. Koike, On Mckay's conjecture, Nagoya Math. J., 95 (1984), 85-89.
[4] ——, Moonshine for $\operatorname{PSL}_{2}\left(F_{7}\right)$, preprint.
[5] T. Kondo, The automorphism group of Leech lattice and elliptic modular function, preprint.
[6] G. Mason, M_{24} and certain automorphic forms, preprint.
[7] J. G. Thompson, Finite groups and modular functions, Bull. London Math. Soc., 11 (1979), 347-351.
[8] J. A. Todd, A representation of the Mathieu group M_{24} as a collineation group, Ann. Mat. Pura Appl., 71 (1966), 199-238.

Department of Mathematics

Faculty of Sciences
Nagoya University
Chikusa-ku, Nagoya 464
Japan

[^0]: Received June 15, 1984.

