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MATHIEU GROUP M 2 4 AND MODULAR FORMS

MASAO KOIKE

§ 0. Introduction

In [6], Mason reported some connections between sporadic simple

group M2i and certain cusp forms which appear in the 'denominator' of

Thompson series assigned to Fisher-Griess's group Ft. In this paper, we

discuss the 'numerator' of these Thompson series.

We state our result precisely. Since Mu is a subgroup of the sym-

metric group Su of degree 24, we can write for each m e Λf24,

m = {n^){n2) (ns) , nx ^ ^ ns ^ 1 ,

to mean that m is a product of cycle of length nί9 1 ^ i ^ s. To each

m = (raj (ns)y we associate modular forms ηm(z) and -9m(z) as follows;

let

where η(z) is the Dedekind ^-function

η(z) = qw Π (1 - Qn) ,
71=1

where q = exp(2π^ — lz) and z eH = {z e C|Im<ε >0}. Then, in [6], Mason

showed that ηm(z) is a cusp form of weight s/2 on ΓJjtjis) with some

character εm and is also a common eigenfunction of all Hecke operators,

(see also [3]).

On the other hand, it is well-known that M2i acts on the Leech

lattice L as isometries. To each m e M24, put

Lm = {xeL\m-x = x} .

Then Lm is an even integral, positive definite quadratic lattice of rank

s. Let &m(z) denote the theta function of Lm:
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where < , > is the bilinear form on L. Then 9m(z) is a modular form of

weight s/2, however, it is not so easy to determine &m(z) explicitly.

Here comes Conway-Norton's remarkable discoveries 'Monstrous

Moonshine*. Especially the following conjecture is very important:

CONJECTURE 0.1. For each m e M2i, put

Then there exists an element g in Fx such that the Thompson series Tg(z)

assigned to g in [1] coincides with jm(z) up to a constant term.

In this paper, we describe &m(z) explicitly as a linear sum of Eisenstein

series and ηm{z) assuming the above conjecture. The main result is as

follows:

THEOREM 0.1. For m e Mu, m Φ 122, 46, 212,102 22,12 6 4 2, 44 24, there

exists a unique modular form θm(z) = 1 + Σln^i ajjn)qn> o,n(jrC) e Z satisfying

the following conditions.

(0.1) There exists geF^ such that

(0.2)

(0.3)

(0.4)

(0.5)

Vm(z)

a^m)

ajjn)

an(m)

If mr

ajjn)

= 0,

are

^ 0

= m

<ar

even integers for

for all n .

' for some reZ,

t(m0 for all n .

then

For the remaining 6 cases, if we add one more condition that

(0.6) aim) = the number of elements in {x e Lm ] (x, x} = 4},

we can prove that there exists a unique θm(z) satisfying (0.1) — (0.6).

We already applied these result to construct moonshines for PSL2(F7)

(W).
In the subsequent paper, we shall apply the same argument to all

the elements of the automorphism group of the Leech lattice. In this

case, we need to modify the above conjecture slightly (see [5]).
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Let G be a finite group and A be an even integral, positive definite

quadratic lattice on which G acts as isometries of A. For any g eG, Ag

is the set of fixed points of g on A. Then Ag is also an even integral,

positive definite quadratic lattice. Let (A8)* be the dual lattice of A8 (A8)*

= {x e QAg I (x, y)eZ for all y e Ag}. Let ίg denote the exponent of

(Ag)*IAg. The theta function θ(z; Ag) of A8 is defined by

θ(z;A*)= Σ exp(;r/^Ίz<x,x».

We assume that the rank of A8 is always even which is denoted by 2k g.

Let {Ui} be a basis of Ag and put Ag = ((w*, w,)). Then Ag is an even

integral, positive definite symmetric matrix. Let Ng be the smallest

positive integer such that Ng'A~l is even integral. Then θ(z\ Ag) is a

modular form on ΓQ(Ng) of weight kg with some character.

LEMMA 1.1. Suppose that g is of order d. Then Ng divides 2dNe

where e is the identity element of G.

Proof. It is easily seen that ίg divides Ng and Ng divides 2£g. Com-

bining this with Lemma 2 in [7], we get the proof.

COROLLARY 1.1. Let m be any element in Mu of order d. Then &m(z)

is a modular form on Γ0(2d) with some character.

Proof. The pair M>4 and the Leech lattice L satisfy the above situa-

tion in Lemma 1.1. Since L is unimodular, Ne = 1. Hence we get the

proof.

LEMMA 1.2. Let θ(z; Ag) = 1 + Σ ^ i bn(g)qn be the Fourier expansion.

Then we have

(1.1) bn(g) are even integers for all n .

(1.2) bn(g)^0.

(1.3) If g' = g\ then bn(g) £ bn(g>) for all n .

Proof. These are obvious.

COROLLARY 1.2. Let $m{z) = 1 + Σn^i an(m)Qn be as in the Introduction.

Then an(g) satisfy the conditions (0.2) (0.3) (0.4) (0.5) in Theorem 0.1.

Proof. It is well known that L has no vectors of length 2, so a^m)

= 0 for all m. Other statements follow from Lemma 1.2.
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LEMMA 1.3. The notation being as above, suppose that 9m{z)jηm{z) =

Tg(z) — c. Then c is equal to the Fourier coefficient of q2 in ηm(z).

Proof. This follows from the fact that aλ{m) — 0.

The proof of Theorem 0.1 is done by computation with the help of

the above lemmas. We explain the argument of the proof only by taking

a few examples. For qn(a0, au a2, •), we mean the Fourier expansion aoq
n

+ a1q
n + 1 + a2q

n+2 + . For mA, mB, , we mean the Atlas name of

elements of F, in [1]. Take m = 36 Γ. Then ηs9.19(z) = g(l, - 6 , 9, 4, 6, •)•

Elements g of F, satisfying (0.1) (0.2) and (0.3) are 3A, 6A, 6C, 12A, 12C,

12E, 24A, 24B, 24D and 48A. Among these, only 3A satisfies the condition

(0.4). Take m - 28 Γ. Then Ύ]2*Λ*(Z) = q(l, - 8 , 12, 64, -210, •)• Elements

g of F, satisfying (0.1) (0.2) (0.3) and (0.4) are 1A and 2A. η2imli(z) X

(T1A(z) + 8) - q°(l, 0, 196832, •), but 9ιu(z) = q°(l, 0, 196560, •) and 196560

< 196832; this contradicts the condition (0.5). Similar argument can be

applied to all meMu, except 122, 6\ 46, 212, 102 22, 12 6 4 2, to determine

uniquely the solution θm(z) which satisfies (0.1) — (0.5).

For the remaining cases, the solution θm(z) which satisfies (0.1) — (0.5)

is not uniquely determined. To choose the unique solution, we need one

more condition (0.6). To state all the argument and computations is too

tedious, so we state only the results in Table I in Appendix.

§2.

We give several remarks
Remark 2.1. In [2], Mckay, Dummit and Kisilevsky considered the

products of ^-functions which have multiplicative Fourier coefficients.
There are 30 such functions which are called multiplicative products of
^-functions. Among them, 2 cases are modular forms of half integral
weight, and the remaining 28 cases are characterized by the property that
they are primitive cusp forms, (see [3]). On the other hand, there are
close connections between these and Frame shape associated to rational
representations of finite groups: for example, for all m e M24, ηm{z) have
multiplicative Fourier coefficients.

Therefore, we consider whether all the multiplicative products of η-
functions have the similar property to Theorem 0.1. The result is as
follows:

PROPOSITION 2.1. Let f(z) be a multiplicative product of ψfunctions
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which does not coincides with ηm(z) for m e M24. Then there exists a theta

function <9(z) such that $(z)jf(z) is a generator of the modular function field

of Γ which is of genus 0 and contains Γ0(N) for some N.

Proof The proof is done by giving such &(z) explicitly as follows;

m &(z) symbol

18-6

92 32

63 23

16-8

82 42

20-4

22-2

83

24

θ(lSz)θ(6z)

θiz; [i 2])'
θ(6zfθ(2zy
θ(16z)θ(8z)

θ(%zfθ(Azf

θ(20z)θ(<ίz)

θ(22z)θ(2z)

θ(8zY

θ(24z)

36|3 +

9 3 +

12+
32

16

4 +
2+

4012 +
44+

1614+
48112+

Here the symbol means the same as in [1] and

Σ
nezRemark 2.2. To prove Conjecture 0.1, we need only to compute Fourier

coefficients of qn of -9m(z) for a few small n and to check that these coin-

cide with an{m) of 0m(2). This computation may be possible to use the

explicit description of L and M24 given in [8], but we do not yet run this

computation.

So, for the time being, it is not yet proved that θm{z) in Theorem 0.1

are theta functions of some even integral, positive definite quadratic lat-

tices, for some meM2i, for example m = 28 18, 54 14, 73 13, etc. However,

there is a following fact.

PROPOSITION 2.2. Let m be 28 Γ, 36 Γ, 54 1\ 73 Γ, l Γ Γ, and 23-1.

Then there exists a theta function θ(z; Tm) such that

θ(z; Tm) = θm{z) + cmVm(z)

where cm is a non-zero constant.

Proof. The proof is done by giving Tm explicitly as follows:

28 Γ

2 1 1 1
1 2 0 0
1 0 2 0
1 0 0 2

96
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2
1
1
1

r-i

2
0
1

[I
[I
[I

1
0
4
2
IV
4J

12]

η 2

1
2
4

m Tm cm

3M g I] 36

C4 1 4
O 1

73 Γ

1 2 . 1 2

23-1

Here Tm are given by the corresponding even integral, positive definite

symmetric matrix, and An means n-times direct sum of A. The reason

why we can find such theta functions is the following: let Am be the same

as in Remark 2.3. If we assume that the conjecture 0.1 is true, we can

compute the determinant of Am in Proposition 2.4. We choose Tm whose

determinant, level and rank are the same as those of Am. Then, since

the level of the associated theta functions is a prime number, it is proved

that Proposition 2.2 is true. The detail will appear in the subsequent

paper.

The similar phenomena can be found when the level is not a prime.

The existence of such theta functions is closely related to the existence

of various moonshines of PSL2(Fq).

PROPOSITION 2.3. Let m be 6 2 3 2 22 Γ. 15- 5 3 1, 1 4 - 7 2 1 and 10222.

Then there exists a theta function θ(z; Tm) such that

θ(z; Tm) = ΘJz) + cmηjz),

with some constant cm.

Proof. The proof is done by giving Tm explicitly as follows:

m

52 32.22 Γ

15-5.3.1

14.7-2.1

102 22

ί2 xΓωLi 2 j ®

El]*
Γ2 0]
LO l o j

12

a
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Remark 2.3. We consider the index of Lm in (Lm)#. Let Am denote

the corresponding matrix to Lm. Then the determinant of Am is equal to

the index of Lm in (Lm)K

PROPOSITION 2.4. For any m — (nt) (ns) in M24, assume that &m(z)

= ΘJz) in Theorem 0.1. Then it holds that the index of Lm in (LmY =

ntn2 - ns.

Proof. It is well-known that

θ(z; AJ(-fe)*« = (det AJ-W-- --1—, iV-
V Nmz

where iVm, 2&m denote the level and the rank of Am respectively. Hence,

by calculating ΘJ^—ljz), we can know the determinant of Am. Since we

know the explicit description of θm(z) by the linear sum of Eisenstein series

and ηm(z), it is easy to calculate θm( — l/z).

Appendix; Table I, II, III

Table I; For any meMu, we describe θm(z) in Theorem 0.1 as the

linear sum of Eisenstein series and ηm(z) and also give the corresponding

element g in Fx which satisfies the condition (0.1). For Eisenstein series,

we use the following notation: For even k JΞ> 4,

is the Eisenstein series of weight k on SL2(Z) where Bk is the £-th

Bernoulli number and σr(ή) = 2 dr.

Let

"I oo

Σ24 n

For any characters X and ψ defined modulo N and M, and for any odd

integer k,

ra>0
0
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is the Eisenstein series on Γ^NM) of weight k with character Zψ where

cktXΛ is a constant related to generalized Bernoulli numbers. In table I,

we use the following notation; χ, p, ψ and φ are real primitive characters

defined modulo 4, 8, 7 and 23 respectively.

For g e Fu and symbol, we mean the same as in [1].

Table II; We give a few Fourier coefficients an{m) 0 ίg n ^ 9 for

θm(z) = Σ«=o an(m)q\
Table III; We give a few Fourier coefficients cn(m) 1 ^ n <Ξ 10 for

Table I

m

I 2 4

28 18

3 6 l β

54 Γ
44 22 Γ

73 Γ
82 4 2 Γ

62 32 22 Γ

l Γ Γ
1 5 5 3 1
1 4 - 7 - 2 - 1

2 3 - 1
122

64

46

38

2 »

1 0 2 2 2

2 1 - 3
44 24

12-6-4-2

8

1A
2A
3A
5A
4A
1A
8A

GA

UA
15A
UA
23A
24E
12D

8B
3C
4A

20A
21C

4B
12C

s y m b o l

2+
3 +
5 +
4+
7+
8 +

6 +

11 +
15+
14+
23 +

2416+
12|3 +

8 2+
3|3
4 +

20+
21

4
12

3 +
2+
2+

ΘJ?)

En(z)-&%§ZSLηvι(z)

-^γ{Ee(z)+16Ee(2z) - 480J7 2 8. 1 8(2)}
—~zjι\Eβ\Z) — 272?β(3,z) + 504jj36.i6(2)}
~zϊϊ{Eί(z) + 25Et(5z)—240)j54.14(2;)}
±{4Eί%(z) + 64Ef^(z) - βδηv.w.Jiz)}
- \{ΊE?X(z) - 49^(2)+42τ?73.13(2)}
- iEi%(z)+ψEft{(z) - •V !78..4.2.1.(2)
•g-g l i ί / 4 ^ ^ -|~ 4jC/ 4^iύ^ -|- V£LA\όZ) -J- 0021/4^0^

-^{G2(^)-11G2(11^)-27112.12(^)}

f {G2(z) + 3G2(32:) - 5G2(5z) - 15G2(15z) - η^.ZΛ(z)}
i{G2(z) + 2G2(2z) - ΊG2(lz) - 14G2(14z) - η14.7.2.i(z)}
i{Ei]l(z) — η23ml(z)}
4E[]{(6z)
8 { G 2 ( 3 z ) - 4 G 2 ( 1 2 z ) }
— 4tEi*\(2z) + lQEf^(2z)
EJ$z)
_ ^E6(z)+%jE6(4z) - $η2ι*(z)
i{G2(z) - 4G2(4^) + 5G2(5z) - 20G2(20z) - ηm.22(z)}
2E(

1]
)

Ψ(Sz)
}{E,(2Z) + AE,(4LZ)}

6{G2(2z) - 2G2(4z) + 3G2(6^) - 6G2(12^)}



MODULAR FORMS 155

Table II

m

a0

a,
α2

α3

α4

α5

α6

α7

α8

α9

m

a0

σ,

α2

<*3

α4

α5

α6

α7

α8

α9

/n

α2

α3

α4

α5

α6

α7

α8

α9

I2 4

1
0

196560
16773120

398034000
4629381120

34417656000
187489935360
814879774800

2975551488000

73 Γ 82 4 2 1

1 1
0 0

42 30
56 56
84 66

168 144
280 188
336 584
462 378
336 448

122 64 46

1 1 1
0 0 0
0 0 12
0 8 0
0 0 60
0 0 0
4 24 160
0 0 0
0 0 252
0 32 0

]

28 Γ

1
0

4320
61440

522720
2211840
8960640

23224320
67154400

L35168000

36 Γ

1
0

756
4032

20412
60480

139860
326592
652428

1020096

Table II (continued)

2 62 32 22 Γ 112 Γ 15 5 3 1

1
0

72
192
504
576

2280
1728
4248
4800

1 1
0 0

12 6
12 12
12 12
12 0
24 30
24 12
36 18
36 36

Table II (continued)

38

1

0
0

240
0
0

2160
0
0

6720

1

0
264

2048
7944

24576
64416

135168
253704
475136

102 22 21-3

1 1

0 0
4 0
8 2
4 0

16 0
16 4

8 0
4 0

16 0

54 Γ

1

0
120
240
600

1440
2400
3120
5400
7200

14 7 2

1
0
8
8

16
8

24
0

40
16

44 24

1
0

48
0

624
0

1344
0

5232
0

44 22 14

1
0

260
960

3060
8704

16320
28800
53300
87040

1 2 3 1

1
0
2
2
2
0
2
0
2
2

12 6 4 2

1
1
6
0
6
0

42
0
6
0



m

Ci

c2

c3

c4

c5

Ce

CΊ

c8

c,
c10

m

Ci

c2

c3

c4

c5

c6

c7

c8

c9

c10

m

Ci

c2

Q

cs

c6

c7

c8

c9

Ci,

I24

1
- 2 4
252

-1472
4830

-6048
-16744

84480
-113643
-115920

62 32 22 Γ

1
_ 2

- 3
4
6
6

- 1 6
- 8

9
- 1 2

46

1

0
0
0

- 6
0
0
0
9
0

28 1

1
- 8
12
64

-210
- 9 6
1016

-512
-2043

1680

1 Γ 1 2

1
- 2
- 1

2
1
2

- 2
0

- 2
- 2

38

1

0
0

- 8
0
0

20
0
0
0

MASAO KOIKE

Table III

8 3β Γ

1
- 6

9
4
6

- 5 4
- 4 0
168

81
- 3 6

Table III

15-5-3

1
- 1
- 1
- 1

1
1

0
3
1

- i

Table III

212

1

0
- 1 2

0
54

0
- 8 8

0
- 9 9

0

54 Γ

1
- 4

2
8

- 5
- 8

6
0

- 2 3
20

(continued)

•1 14-7-2

1
- 1
- 2

1

0
2
1

- 1

1
0

(continued)

102 22 ί

1
0

- 2
0

- 1
0
2
0
1
0

44 :

—

—

1

22 r

1
-4

0
16
14
0
0

64
81
56

73 Γ

1
- 3

—

0
5
0
0
7

- 3

2 3 1

1
- 1

21-3

1
0
0

- 1
0
0

- 1
0
0
0

-1

0
0
1
0
1

0
0

44 2

1
0

- 4
0

- 2
0

24
0

- 1 1
0

9
0

4

i Q2

122

1
0
0
0
0
0
0
0
0
0

12

•4-2-Γ

1
- 2
- 2

4
0
4
0

- 8
- 5

0

64

1
0
0
0
0
0

- 4
0
0
0

•6-4-2

1
0

- 1

0
- 2

0
0
0
1
0
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