CUSP FORMS OF WEIGHT ONE, QUARTIC RECIPROCITY AND ELLIPTIC CURVES

NOBURO ISHII

§1. Introduction

Let m be a non-square positive integer. Let K be the Galois extension over the rational number field \boldsymbol{Q} generated by $\sqrt{-1}$ and $\sqrt[4]{m}$. Then its Galois group over \boldsymbol{Q} is the dihedral group D_{4} of order 8 and has the unique two-dimensional irreducible complex representation ψ. In view of the theory of Hecke-Weil-Langlands, we know that ψ defines a cusp form of weight one (cf. Serre [6]). This cusp form is denoted by $\theta(\tau, K)$. The present paper consists of two parts. In the first part (§ 2 and §3), we shall study the number theoretic properties of $\theta(\tau, K)$ deduced from K. We show firstly that $\theta(\tau, K)$ has three expressions by definite or indefinite theta series. We may consider these expressions of $\theta(\tau, K)$ as the identities between cusp forms of weight one. This point of view gives a number theoretic explanation for the identities between cusp forms ([3]). Further we show that the Fourier coefficients of the cusp form $\theta(\tau, K)$ determine the decomposition law of the extension K / Q and especially the quartic residuacity of m. These results are obtained from that K has three quadratic subfields over which K is abelian. In particular, for the case m is prime, we write down the above expressions of $\theta(\tau, K)$ explicitly by determining the class group corresponding to K in each quadratic subfield. We deduce from this a special case of quartic reciprocity law. In this part we also establish the "higher reciprocity law" of the defining equation of K.

Let E be the elliptic curve defined by the equation: $y^{2}=x^{3}+4 m x$. Then K is generated over \boldsymbol{Q} by certain torsion points of E. The purpose of the second part is to study the property of $\theta(\tau, K)$ related to E through K. Let $\vartheta(\tau, E)$ denote the inverse Mellin transform of the L-function of E. Then $\vartheta(\tau, E)$ is a cusp form of weight two (cf. Shimura [8]). In

Received April 13, 1984.

Section 4, we shall show, under certain assumption on m, the following congruence:

$$
\theta(\tau, K) \equiv \vartheta(\tau, E) \bmod 4
$$

We remark that this result provides an answer for the problem proposed by Koike (cf. Koike [4]).

The author would like to express his hearty gratitude to Professor T. Hiramatsu for encouraging him to consider these problems and Dr. Y. Mimura for very helpful discussions.

§ 2. Quartic residuacity and cusp forms of weight one

Let m be a non-square positive integer such that m has the following decomposition in prime numbers p :

$$
\begin{equation*}
m=\prod_{p} p^{e(p)}, \quad 0 \leqq e(p) \leqq 3 \tag{1}
\end{equation*}
$$

Let $K=\boldsymbol{Q}(\sqrt{-1}, \sqrt[4]{m})$ be the field generated by $\sqrt{-1}$ and $\sqrt[4]{m}$ over the rational number field \boldsymbol{Q}. Then K is a Galois extension over \boldsymbol{Q} of degree 8 and its Galois group $G=G(K / Q)$ is isomorphic to the dihedral group D_{4} of order 8. Let σ and ρ be the two generators of G defined by

$$
\begin{array}{ll}
\sigma(\sqrt[4]{m})=\sqrt{-1} \sqrt[4]{m}, & \sigma(\sqrt{-1})=\sqrt{-1} \\
\rho(\sqrt[4]{m})=\sqrt[4]{m}, & \rho(\sqrt{-1})=-\sqrt{-1}
\end{array}
$$

Then the following Diagram 1 of subfields of K is obtained:

Diagram 1.
To 'the field K we shall define a cusp form $\theta(\tau, K)$ of weight one. Let ψ be the two-dimensional complex irreducible representation of G defined by

$$
\psi(\sigma)=\left(\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right), \quad \psi(\rho)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Then the representation $\operatorname{det} \psi$ of G defined by $(\operatorname{det} \psi)(g)=\operatorname{deg} \psi(g)$ induces a Dirichlet character ε such that

$$
\varepsilon(n)=(-1 / n) .
$$

Denote the Artin L-function associated with ψ by

$$
L(s, K / \boldsymbol{Q}, \psi)=\sum_{n=1}^{\infty} a(n) n^{-s}
$$

Then $L(s, K / \boldsymbol{Q}, \psi)$ has the Euler product:

$$
\begin{equation*}
L(s, K / \boldsymbol{Q}, \psi)=\prod_{p \mid N}\left(1-a(p) p^{-s}\right)^{-1} \prod_{p \nmid N}\left(1-a(p) p^{-s}+\varepsilon(p) p^{-2 s}\right)^{-1}, \tag{2}
\end{equation*}
$$

where N denotes the conductor of ψ. Now we define the function $\theta(\tau, K)$ by

$$
\theta(\tau, K)=\sum_{n=1}^{\infty} a(n) q^{n}, \quad q=\exp (2 \pi \sqrt{-1} \tau)
$$

It follows from the well-known theory of Hecke-Weil-Langlands that $\theta(\tau, K)$ is a cusp form (new form) of weight one with character ε on the Hecke group $\Gamma_{0}(N)^{1}$.

We are going to give explicit form of $\theta(\tau, K)$. At first we explain the notation used below. Let Ω and Λ be fields such that Ω is abelian over Λ. Then $F(\Omega / \Lambda)$ (resp. $f(\Omega / \Lambda)$) denotes the conductor (resp. the finite part of conductor) of Ω over Λ. Let M be one of the quadratic fields appeared in Diagram 1. Then \mathcal{O}_{M} denotes the ring of integers of M and $N_{M / Q}$ denotes the norm of M over \boldsymbol{Q}. Let \mathfrak{a} be an integral ideal of M. If M is imaginary (resp. real), then $H_{M}(\mathfrak{a})$ denotes the group of ray classes (resp. narrow ray classes) modulo \mathfrak{a} of M. Furthermore $P_{M}(\mathfrak{a})$ denotes the subgroup of $H_{M}(\mathfrak{a})$ generated by principal classes (resp. principal classes represented by totally positive elements). If \mathfrak{b} is an ideal prime to \mathfrak{a}, then [b] denotes the class of $H_{M}(a)$ represented by \mathfrak{b}. If b is an element of M and (b) is the principal ideal generated by b, then [b] denotes [(b)]. Finally let $C_{M}(K)$ (resp. $C_{m}(L)$) denote the subgroup of $H_{M}(f(K / M)$) corresponding to the field K (resp. L).

Let ψ and M be as above. Then the restriction of ψ to the abelian group $G(K / M)$ decomposes into two distinct linear representations ξ_{M} and ξ_{M}^{\prime} of $G(K / M)$. Via Artin reciprocity law, we can identify ξ_{M} and ξ_{M}^{\prime} with

[^0]characters of $H_{M}(f(K / M))$ trivial on $C_{M}(K)$. We denote these characters by the same notation. If c_{M} and c_{M}^{\prime} are the finite part of conductors of ξ_{M} and ξ_{M}^{\prime} respectively, then c_{M} is conjugate to c_{M}^{\prime} over \boldsymbol{Q}. Let ξ_{M} (resp. $\left.\dot{\xi}_{M}^{\prime}\right)$ be the primitive character of ξ_{M} (resp. ξ_{M}^{\prime}) and $L\left(s, \tilde{\xi}_{M}\right)$ (resp. $L\left(s, \tilde{\xi}_{M}^{\prime}\right)$) the Hecke L-function associated with $\tilde{\xi}_{M}$ (resp. $\tilde{\xi}_{M}^{\prime}$). Then it is well-known that
\[

$$
\begin{equation*}
\left.L(s, K / \boldsymbol{Q}, \psi)=L\left(s, \tilde{\xi}_{M}\right)=L\left(s, \tilde{\xi}_{M}^{\prime}\right) .^{2}\right) \tag{3}
\end{equation*}
$$

\]

Let $\tilde{C}_{M}(K)$ and $\tilde{C}_{M}(L)$ be the images of $C_{M}(K)$ and $C_{M}(L)$ by the canonical homomorphism of $H_{M}(f(K / M))$ to $H_{M}\left(c_{M}\right)$ respectively. Then, as shown in [3],

$$
L\left(s, \tilde{\xi}_{M}\right)=\sum_{\substack{\mathfrak{a} \subset \sum_{M M} \\[\mathfrak{a}] \in \tilde{C}_{M}(L)}} \chi_{M}(\mathfrak{a}) N_{M / \Omega}(\mathfrak{a})^{-s},
$$

where

$$
\chi_{M}(\mathfrak{a})=\left\{\begin{aligned}
1 & \text { if }[\mathfrak{a}] \in \tilde{C}_{M}(K) \\
-1 & \text { otherwise }
\end{aligned}\right.
$$

Applying the inverse Mellin transformation on the both sides of (3), we obtain

$$
\begin{equation*}
\theta(\tau, K)=\sum_{\substack{a \in 0_{M} \\\left[a \in \in \tilde{C}_{M K}(L)\right.}} \chi_{M}(\mathfrak{a}) q^{N_{M K} / Q(a)} \tag{4}
\end{equation*}
$$

Therefore $\theta(\tau, K)$ has three expressions according to quadratic fields F, E and k. To determine $C_{m}(K)$ and $C_{M}(L)$, it is necessary to know the conductors of K / M and L / M. Let \mathscr{K}, \mathscr{L} and \mathscr{F} be fields such that $\mathscr{K} \supset \mathscr{L} \supset \mathscr{F}$ and $[\mathscr{L}: \mathscr{F}]=2$. Assume \mathscr{K} is abelian over \mathscr{F}. Then $f(\mathscr{K} \mid \mathscr{F})$ is determined by $f(\mathscr{K} \mid \mathscr{L})$ and the different $D(\mathscr{L} \mid \mathscr{F})$ of \mathscr{L} over \mathscr{F}. Thus we have

Lemma 1. For a prime ideal \mathfrak{P} of \mathscr{L}, let $f(\mathfrak{\beta})$ (resp. $g(\mathfrak{F})$) denotes the \mathfrak{B}-exponent of $f(\mathscr{K} \mid \mathscr{L})$ (resp. $D(\mathscr{L} \mid \mathscr{F})$). Put

$$
e(\mathfrak{P})=\max (0, g(\mathfrak{P})-f(\mathfrak{P})) .
$$

Then

$$
f(\mathscr{K} \mid \mathscr{F})=f(\mathscr{K} \mid \mathscr{L}) D(\mathscr{L} \mid \mathscr{F}) \prod_{\mathscr{F}} \mathscr{B}^{e(\mathscr{F})} .
$$

[^1]Proof. This is deduced from the proof of Lemma 1 in [3].
It follows from $[L: M]=2$ that $f(L / M)=D(L / M)^{2}$. And $D(L / M)$ is deduced from the following equalities:

$$
\begin{aligned}
& D(L / \boldsymbol{Q})^{2}=D(F / \boldsymbol{Q}) D(E / \boldsymbol{Q}) D(k / \boldsymbol{Q}) \\
& D(L / \boldsymbol{Q})=D(L / M) D(M / \boldsymbol{Q})
\end{aligned}
$$

In view of Lemma 1, to obtain $F(K / M)$ it is sufficient to determine $F(K / L)$. Write

$$
m=2^{e(2)} m_{1}, \quad 0 \leqq e(2) \leqq 3, \quad\left(m_{1}, 2\right)=1
$$

Let

$$
n_{1}=\prod_{\substack{p m_{1} \\ e(p): \text { even }}} p, \quad n_{2}=\prod_{\substack{p m_{1} \\ e(p): \text { odd }}} p
$$

Furthermore put $n=n_{1} \sqrt{n_{2}}$. Then the conductor $F(K / L)$ is as follows.

$e(2)$	1,3	0			2		
$m_{1} \bmod 8$		1	5	3,7	1,5	3	7
$F(K / L)$	$4 n$	n	$2 n$	$4 n$	$4 n$	$2 n$	n

Table 1.
In the next Table 2, we give $F(K / M), F(L / M)$ and c_{M} in only the cases needed below, thus, the cases where m are prime numbers $p \geqq 5$.

$p \bmod 8$	$F(K / E)$	$F(L / E)$	c_{E}	$F(K / k)$	$F(L / k)$	c_{k}	$F(K / F)$	$F(L / F)$	c_{F}
1	$\sqrt{-p}$	1	$\sqrt{-p}$	p		p	$4 \sqrt{p} \infty_{1} \infty_{2}$	$4 \infty_{1} \infty_{2}$	$\mathfrak{p}_{2}^{2} \sqrt{p}$ 5
$2 \sqrt{-p}$	1	$2 \sqrt{-p}$	$2 p$	p	$2 p$				
3	$8 \sqrt{-p}$	4	$8 \sqrt{-p}$	$4 p$	p	$4 p$	$4 \sqrt{p} \infty_{1} \infty_{2}$	$\infty_{1} \infty_{2}$	$4 \sqrt{p}$
7									

Table 2.
In the above Table 2, \mathfrak{p}_{2} denotes a prime ideal of F dividing 2 and ∞_{i} ($i=1,2$) denote infinite places of F. From this we know that $\tilde{C}_{M}(L)=$ $C_{M}(L)$ and $\tilde{C}_{M}(K)=C_{M}(K)$ except the case $p \equiv 1 \bmod 8$ and $M=F$.

Assume that m is a prime p congruent to $5 \bmod 8$. Denote by $\theta(\tau, M)$ the right side of (4). In (I) through (III) below, we shall determine $\theta(\tau, M)$ explicitly for $M=E, k$ and F respectively. In the following we write simply H_{M} and P_{M} in place of $H_{M Z}(f(K / M))$ and $P_{M}(f(K / M))$ respectively.

Further for a prime ideal \mathfrak{B} of M denote by $r(\Re)$ a generator of the group $\left(\mathcal{O}_{M} / \mathcal{B}\right)^{\times}$. And, for an integral ideal \mathfrak{a} dividing $f(K / M)$, denote by $K(\mathfrak{a})$ the kernel of the canonical homomorphism of P_{M} to $P_{M}(\mathfrak{a})$.
(I) The case $M=E(=\boldsymbol{Q}(\sqrt{-p}))$. Put $\mathfrak{B}=(\sqrt{-p})$. Let ω and λ be integers of E satisfying the following properties:

$$
\left\{\begin{array} { l }
{ \omega \equiv \sqrt { - p } \operatorname { m o d } 2 , } \\
{ \omega \equiv 1 \quad \operatorname { m o d } \mathfrak { \beta } ; }
\end{array} \quad \left\{\begin{array}{l}
\lambda \equiv 1 \bmod 2, \lambda \in Z^{+} \\
\lambda \equiv r(\Re) \bmod \mathfrak{P} .
\end{array}\right.\right.
$$

Then it is easy to see

$$
\begin{array}{ll}
P_{E}=\langle[\omega],[\lambda]\rangle, \quad K(\mathfrak{P})=\langle[\omega]\rangle, \\
K((2))=\langle[\lambda]\rangle .
\end{array}
$$

Since $F(K / E)=2 \mathfrak{P}$ and $F(L / E)=1$, we see

$$
C_{E}(L) \supset P_{E} ; \quad C_{E}(K) \not \supset P_{E}, \quad K(\mathfrak{P}), K((2)) .
$$

This implies

$$
\left[P_{E}: P_{E} \cap C_{E}(K)\right]=2, \quad C_{E}(K) \nexists[\omega],[\lambda]
$$

From this, noting that $[\lambda]^{2} \in C_{E}(K)$, we have

$$
P_{E} \cap C_{E}(K)=\langle[\omega] \cdot[\lambda]\rangle .
$$

It follows from the genus theory that the class number $h(E)$ of E is even and that the number of square classes in H_{E} / P_{E} equals to $\frac{1}{2} h(E)$. Let $\mathfrak{a}_{i}\left(i=1, \cdots, \frac{1}{2} h(E)\right)$ be integral ideals of E such that $\left[\mathfrak{a}_{i}\right]^{2}$ represent all square classes in H_{E} / P_{E}. Since $G(K / E)$ is a Klein four group, $\left[\mathfrak{a}_{i}\right]^{2} \in C_{E}(K)$ and the following coset decompositions are obtained:

$$
\begin{aligned}
& C_{E}(L)=C_{E}(K)+C_{E}(K)[\omega] \\
& C_{E}(K)=\sum_{i}\left[\mathfrak{a}_{i}\right]^{-2}\left(P_{E} \cap C_{E}(K)\right) .
\end{aligned}
$$

If \mathfrak{a} is an integral ideal of E prime to $2 \mathfrak{P}$ and $[\mathfrak{a}] \in C_{E}(L)$, then there exist unique \mathfrak{a}_{i} and an element $a+b \sqrt{-p}$ of \mathfrak{a}_{i}^{2} such that

$$
\begin{aligned}
& \mathfrak{a}=\mathfrak{a}_{i}^{-2}(a+b \sqrt{-p}) \\
& (a, p)=1 \\
& a \neq b \bmod 2
\end{aligned}
$$

Furthermore

$$
[\mathfrak{a}] \in C_{E}(K) \Longleftrightarrow(a / p)(-1)^{b}=1
$$

Hence we obtain

$$
\theta(\tau, E)=\frac{1}{2} \sum_{i=1}^{h(E) / 2}\left\{\sum_{\substack{a \neq b \text { mod } 2 \\ a+b \\ \cdots-p \in a i^{2}}}(-1)^{b}(a / p) q^{\left(a^{2}+p b^{2}\right) / A_{i} i^{2}}\right\},
$$

where $A_{i}=N_{E / Q}\left(\mathfrak{a}_{i}\right)$.
(II) The case $M=k(=\boldsymbol{Q}(\sqrt{-1}))$. Let $p=\mathfrak{B} \mathfrak{P}^{\prime}$ be the decomposition in prime ideals of p in k. Choose integral elements η and λ of k satisfying the congruent relations:

$$
\left\{\begin{array}{l}
\eta \equiv \sqrt{-1} \bmod 2 \\
\eta \equiv 1 \quad \bmod \mathfrak{B}
\end{array} ;\left\{\begin{array}{l}
\lambda \equiv 1 \bmod 2 \\
\lambda \equiv r(\mathfrak{B}) \bmod \mathfrak{B} \\
\lambda \equiv 1 \bmod \mathfrak{P}^{\prime}
\end{array}\right.\right.
$$

Let λ^{\prime} be the conjugate of λ over \boldsymbol{Q}. Then it is easy to see $P_{k}=\left\langle[\lambda],\left[\lambda^{\prime}\right],[\eta]\right\rangle$ and $K((p))=\langle[\eta]\rangle$. It follows from the values of conductors in Table 2 that

$$
\begin{aligned}
& {\left[P_{k}: C_{k}(L)\right]=\left[C_{k}(L): C_{k}(K)\right]=2 ;} \\
& C_{k}(L) \supset K((p)), \quad C_{k}(K) \not \supset K((p)) .
\end{aligned}
$$

Since $G(K / k)$ is cyclic of order 4, we know

$$
C_{k}(L) \in[\lambda]^{2}, \quad C_{k}(K) \nexists[\lambda]^{2} .
$$

Further the commutativity (resp. non-commutativity) of $G(L / Q)$ (resp. $G(K / Q)$) implies that

$$
C_{k}(L) \ni[\lambda]^{-1} \cdot\left[\lambda^{\prime}\right] \quad\left(\text { resp. } C_{k}(K) \nexists \Rightarrow[\lambda]^{-1}\left[\lambda^{\prime}\right]\right) .
$$

Therefore

$$
\begin{aligned}
C_{k}(L) & =\left\langle[\lambda]^{2},[\lambda]^{-1}\left[\lambda^{\prime}\right],[\eta]\right\rangle, \\
C_{k}(K) & =\left\langle[\lambda]^{2}[\eta],[\lambda]\left[\lambda^{\prime}\right]^{-1}[\eta]\right\rangle \\
& =\left\langle[\lambda]^{4},[\lambda]\left[\lambda^{\prime}\right]^{-1}\right\rangle .
\end{aligned}
$$

Thus for integral ideals \mathfrak{a} of k prime to $2 p$, we obtain

$$
\begin{aligned}
& {[a] \in C_{k}(L) \Longleftrightarrow a \text { has a generator } x+\sqrt{-1} y \text { such that }} \\
& \qquad\left(x^{2}+y^{2} / p\right)=1, x \equiv 1, y \equiv 0 \bmod 2:
\end{aligned}
$$

Furthermore

$$
[\mathfrak{a}] \in C_{k}(K) \Longleftrightarrow(x+s y / p)\left(x^{2}+y^{2} / p\right)_{4}=1,
$$

where s is an integer such that $s^{2} \equiv-1 \bmod p$.

Hence

$$
\theta(\tau, k)=\frac{1}{2} \sum_{x, y}(x+s y / p)\left(x^{2}+y^{2} / p\right)_{4} q^{x^{2+} y^{2}}
$$

where the summation is over all pairs of integers (x, y) such that $x \equiv 1$, $y \equiv 0 \bmod 2$ and $\left(x^{2}+y^{2} / p\right)=1$.
(III) The case $M=F(=\boldsymbol{Q}(\sqrt{p}))$. Let $\mathfrak{B}=(\sqrt{p})$ and $\omega=\frac{1}{2}(1+\sqrt{p})$. For $\alpha \in \mathcal{O}_{F}$, take an element α^{*} of \mathcal{O}_{F} such that

$$
\left\{\begin{array}{l}
\alpha^{*} \text { is totally positive, } \\
\alpha^{*} \equiv \alpha \bmod 4 \\
\alpha^{*} \equiv 1 \bmod \Re
\end{array}\right.
$$

Let $\xi \in \mathcal{O}_{F}$ such that ξ induces an element of order 3 in the group $\left(\mathcal{O}_{F} / 4\right)^{\times}$. Let λ be a positive integer such that $\lambda \equiv 1 \bmod 4$ and $\lambda \equiv r(\mathfrak{F}) \bmod \mathfrak{\beta}$. Put $\eta=1+2 \omega$. Then it is easy to see

$$
\begin{aligned}
& P_{F}=\left\langle\left[\xi^{*}\right],\left[\eta^{*}\right],\left[3^{*}\right],[\lambda]\right\rangle, \\
& K((2))=\left\langle\left[\eta^{*}\right],\left[3^{*}\right],[\lambda]\right\rangle, \quad K((4))=\langle[\lambda]\rangle .
\end{aligned}
$$

Taking account of the values of conductors, we have

$$
\begin{aligned}
& {\left[P_{F}: C_{F}(L) \cap P_{F}\right]=\left[C_{F}(L) \cap P_{F}: C_{F}(K) \cap P_{F}\right]=2 ;} \\
& C_{F}(L) \supset K((4)), \not \supset K((2)) ; C_{F}(K) \not \supset K((4)) .
\end{aligned}
$$

If $\left[\eta^{*}\right]^{\prime}$ is the conjugate class of $\left[\eta^{*}\right]$, then

$$
\left[\eta^{*}\right]^{\prime}=\left[3^{*}\right] \cdot\left[\eta^{*}\right] .
$$

Since $C_{F}(L)$ is closed under the conjugation, thus $C_{F}(L)^{\prime}=C_{F}(L)$, and $C_{F}(L) \not \supset P_{F}$, we know

$$
C_{F}(L) \nexists\left[\eta^{*}\right],\left[\eta^{*}\right] \cdot\left[3^{*}\right] .
$$

Therefore

$$
\begin{equation*}
C_{F}(L) \cap P_{F}=\left\langle\left[\xi^{*}\right],\left[3^{*}\right],[\lambda]\right\rangle \tag{5}
\end{equation*}
$$

The non-commutativity of $G(K / Q)$ shows that $C_{F}(K) \nexists\left[3^{*}\right]$.
This implies

$$
\begin{equation*}
C_{F}(K) \cap P_{F}=\left\langle\left[\xi^{*}\right],\left[3^{*}\right][\lambda]\right\rangle \tag{6}
\end{equation*}
$$

Let $h(F)$ be the narrow class number of F. By the genus theory, $h(F)$ is odd. Let $\mathfrak{b}_{i}(i=1, \cdots, h(F))$ be integral ideals such that $\left[\mathfrak{b}_{i}\right]$ represent
all classes of H_{F} / P_{F}. Then we have the coset decompositions:

$$
\begin{aligned}
& C_{F}(L)=C_{F}(K)+C_{F}(K)\left[3^{*}\right] \\
& C_{F}(K)=\sum_{i}\left[\mathfrak{b}_{i}\right]^{-2}\left(C_{F}(K) \cap P_{F}\right)
\end{aligned}
$$

Let μ be a totally positive element of \mathcal{O}_{F} prime to $4 \mathfrak{P}$. If $\mu \equiv 1 \bmod 2$, then we can put $\mu=u+v \sqrt{p}, u \equiv v+1 \bmod 2$. Further in view of (5) and (6), we obtain

$$
\left\{\begin{array}{l}
{[\mu] \in C_{F}(L) \Longleftrightarrow[\mu] \in\left\langle\left[3^{*}\right],[\lambda]\right\rangle \Longleftrightarrow v \equiv 0 \bmod 2,(p, u)=1 ;} \tag{7}\\
{[\mu] \in C_{F}(K) \Longleftrightarrow(u / p)(-1)^{(u+v-1) / 2}=1, v \equiv 0 \bmod 2 .}
\end{array}\right.
$$

If $\mu \not \equiv 1 \bmod 2$, then we can put $\mu=\frac{1}{2}(s+t \sqrt{p})$, s : odd. Choose $a=1$ or 2 such that $\mu \xi^{* a} \equiv 1 \bmod 2$. Put $\mu \xi^{* a}=u+v \sqrt{p}, u \equiv v+1 \bmod 2$. Since $N_{F / Q}\left(\xi^{*}\right) \equiv 1 \bmod 4$, we have

$$
N_{F / Q}(\mu) \equiv u^{2}-v^{2} \bmod 4
$$

Therefore

$$
v \equiv 0 \bmod 2 \Longleftrightarrow N_{F / Q}(\mu) \equiv 1 \bmod 4
$$

Further if $v \equiv 0 \bmod 2$, then

$$
\frac{1}{2}(u+v-1) \equiv \frac{1}{2}(s+1) \bmod 2
$$

Noting $s \equiv 2 u \bmod p$, it follows from (7) that

$$
[\mu] \in C_{F}(L) \Longleftrightarrow v: \text { even } \Longleftrightarrow N_{F / \ell}(\mu) \equiv 1 \bmod 4 ;
$$

Furthermore

$$
[\mu] \in C_{F}(K) \Longleftrightarrow(u / p)(-1)^{(u+v-1) / 2}=1 \Longleftrightarrow(s / p)(-1)^{(s-1) / 2}=1
$$

To obtain $\theta(\tau, F)$, we must consider the effect of units of F. Let

$$
\begin{aligned}
& E^{+}=\left\{\varepsilon \in \mathcal{O}_{F} \mid \varepsilon: \text { totally positive units }\right\} \\
& E_{0}=\left\{\varepsilon \in E^{+} \mid \varepsilon \equiv 1 \bmod f(K / F)\right\}
\end{aligned}
$$

Put $e=\left[E^{+}: E_{0}\right]$ and $B_{i}=N_{F / Q}\left(\mathfrak{G}_{i}\right)$. Then

$$
\begin{aligned}
\theta(\tau, F)= & e^{-1} \sum_{i=1}^{h(F)}\left\{\sum_{\mu_{1}}(s / p)(-1)^{(s-1) / 2+t} q^{\left(s^{2}-4 p t t^{2}\right) / B_{i}{ }^{2}}\right. \\
& \left.+\sum_{\beta_{2}}(s / p)(-1)^{(s-1) / 2} q^{\left(s s^{2}-p t^{2}\right) / 4 B_{i}^{2}}\right\},
\end{aligned}
$$

where the summation with respect to μ_{1} (resp. μ_{2}) is over all representatives
$\bmod E_{0}$ of the set of totally positive elements of \mathfrak{b}_{i}^{2} such that $\mu_{1}=s+2 t \sqrt{p} ; s, t \in Z$ and $s \equiv 1 \bmod 2\left(\right.$ resp. $\mu_{2}=\frac{1}{2}(s+t \sqrt{p}) ; s, t \in Z$, $s \equiv 1 \bmod 2$ and $\left.N_{F / \mathrm{Q}}\left(\mu_{2}\right) \equiv 1 \bmod 4\right)$.

Let ℓ be a prime number. Then we have

$$
\begin{aligned}
(-1 / \ell)=(p / \ell)=1 & \Longleftrightarrow \ell \text { splits completely in } L \\
& \Longleftrightarrow a(\ell)= \pm 2 ;
\end{aligned}
$$

Furthermore

$$
\ell \text { splits completely in } K \Longleftrightarrow a(\ell)=2 .
$$

(See Corollary 2 of Section 3 in the present paper).
Consequently we have
Theorem 1. Let $p \equiv 5 \bmod 8$ and keep the notation as above. Then
(i) $\theta(\tau, K)$ is a new form of weight one, with character $\varepsilon(n)=(-1 / n)$ on the group $\Gamma_{0}\left(16 p^{2}\right)$;
(ii) For a prime number ℓ such that $(-1 / \ell)=(p / \ell)=1$,

$$
(p / \ell)_{4}=\frac{1}{2} a(\ell) ;
$$

(iii) $\theta(\tau, K)$ has the following three expressions:

$$
\begin{aligned}
& \theta(\tau, K)=\frac{1}{2} \sum_{i=1}^{h(E) / 2} \sum_{\substack{a \neq b \text { mod } 2 \\
a+b=-p \in a_{i}{ }^{2}}}(-1)^{b}(a / p) q^{\left(a^{2}+p b 2\right) / A_{i}{ }^{2}} \\
& =\frac{1}{2} \sum_{x, y}(x+s y / p)\left(x^{2}+y^{2} / p\right)_{4} q^{x+y^{2}} \\
& =e^{-1} \sum_{i=1}^{h(F)}\left\{\sum_{\mu_{1}}(s / p)(-1)^{(s-1) / 2+t} q^{(s-4 p t 2) / B_{i}{ }^{2}}\right. \\
& \left.+\sum_{\mu_{2}}(s / p)(-1)^{(s-1) / 2} q^{\left(s^{2}-p t^{2}\right) / 4 B_{i}{ }^{2}}\right\} .
\end{aligned}
$$

Especially from the second expression of $\theta(\tau, K)$ in (iii), we obtain a reciprocity law of quartic residue:

Corollary 1. Let ℓ be a prime number such that $(-1 / \ell)=(p \mid \ell)=1$. Put $\ell=x^{2}+y^{2}$ with $x \equiv 1 \bmod 2$. Then

$$
(p / \ell)_{4}=(x+s y / p)(\ell / p)_{4} .
$$

To avoid diffuseness, for other primes, we shall state only the results corresponding to (iii) in the next Remarks.

Remark 1. Let $p=2$ or 3. Then $\theta(\tau, K)$ is expressed as follows.

$$
(p=2)
$$

$$
\begin{array}{rlr}
\theta(\tau, K) & =\frac{1}{2} \vartheta_{4}(16 \tau) \vartheta_{3}(16 \tau)=\sum_{a, b}(-1)^{a} q^{(4 a+1)^{2}+8 b^{2}} \\
& =\frac{1}{2} \vartheta_{2}(8 \tau) \vartheta_{0}(32 \tau)=\sum_{x, y}(-1)^{y} q^{(4 x+1)^{2}+18 y^{2}} \\
& =\vartheta_{+}\left(16 \tau, 1, \mathcal{O}_{F}, 4 \sqrt{2}\right)+\vartheta_{+}\left(16 \tau, 3, \mathcal{O}_{F}, 4 \sqrt{2}\right) \\
& =\sum_{s>6|t|}(-2 / s) q^{s 2-32 t 2} & \quad \text { (via } k) \\
\end{array}
$$

where $\vartheta_{0}, \vartheta_{2}, \vartheta_{3}$ and ϑ_{4} are theta series defined by

$$
\begin{aligned}
& \vartheta_{0}(\tau)=\sum_{n}(-1)^{n} \exp \left(\pi \sqrt{-1} n^{2} \tau\right), \vartheta_{2}(\tau)=\sum_{n=1} \exp _{\bmod 2}^{\sin }\left(\pi \sqrt{-1} n^{2} \tau / 4\right), \\
& \vartheta_{3}(\tau)=\sum_{n} \exp \left(\pi \sqrt{-1} n^{2} \tau\right), \vartheta_{4}(\tau)=\sum_{n}(2 / n) \exp \left(\pi \sqrt{-1} n^{2} \tau / 8\right)
\end{aligned}
$$

and ϑ_{+}denotes the Hecke indefinite theta series (see [3]).

$$
\begin{array}{rlrl}
(p=3) & & \\
\left.\qquad \begin{array}{rl}
\theta(\tau, K) & =\eta(24 \tau) \vartheta_{3}(24 \tau)=\sum_{a, b}(-1)^{a} q^{(6 a+1)^{2}+12 b 2} \\
& \left.=\sum_{x, y}(-1)^{y} q^{(6 x+1)^{2}+12 y^{2}}+\sum_{x, y}(-1)^{x+1} q^{4(3 x+1)^{2}+9(2 y+1)^{2}} \quad \quad \quad \quad \text { (via } k\right) \\
& =\vartheta_{+}\left(24 \tau, 1, \mathcal{O}_{F}, 4 \sqrt{3}\right)-\vartheta_{+}\left(24 \tau, 7+2 \sqrt{3}, \mathcal{O}_{F}, 4 \sqrt{3}\right) \\
& =\sum_{s>4|t|}(s / 6)(-1)^{t} q^{s s^{2-12 t 2}}
\end{array} \quad \text { (via } F\right) \text {) }
\end{array}
$$

where $\eta(\tau)$ is the Dedekind eta function.
Remark 2. Let $p \equiv 3 \bmod 4$ or $p \equiv 1 \bmod 8$. Keep the notation as above. Let $\left\{\mathfrak{a}_{i}\right\}$ (resp. $\left\{\mathfrak{b}_{i}\right\}$) be the set of the integral ideals of E (resp. F) such that $\left\{\left[\mathfrak{a}_{i}\right]^{2}\right\}$ (resp. $\left\{\left[\mathfrak{b}_{i}\right]^{2}\right\}$) represent all square classes in H_{E} / P_{E} (resp. $\left.H_{F} / P_{F}\right)$. Put $A_{i}=N_{E / Q}\left(\mathfrak{a}_{i}\right)$ and $B_{i}=N_{F / Q}\left(\mathfrak{F}_{i}\right)$. Then we have the following expressions of $\theta(\tau, K)$.
$(p \equiv 3 \bmod 4)$

$$
\begin{aligned}
& \theta(\tau, K)=\sum_{i=1}^{h(E)}\left\{\sum_{\omega_{1}}(-1)^{b}(a / p) q^{\left(a^{2}+4 p b 2\right) / A_{i}^{2}}\right\} \\
& +\left\{\begin{array}{l}
0 \quad \text { if } p \equiv 7 \bmod 8, \\
\sum_{i=1}^{h(E)} \sum_{\omega_{2}}(-1)^{\left(N_{E / Q} / \mathbf{Q}^{\left.\left(\omega_{2}\right)+3\right) / 4}\right.}(a / p) q^{\left(a^{2}+p b^{2}\right) / 4 A_{i}{ }^{2}} \text { otherwise; }
\end{array}\right. \\
& =\sum_{\lambda}\{x+\sqrt{-1} y / p\}_{4}(-1)^{y / 2} q^{x^{2}+y^{2}} \\
& =e^{-1} \sum_{i=1}^{h(F) / 2}\left\{\sum_{\mu_{1}}(a / p)(-1)^{t / 2} q^{\left(s^{2}-p t 2\right) / B_{i}{ }^{2}}\right. \\
& \left.+\sum_{\mu_{2}}(s / p)(-1)^{s / 2} q^{\left(s^{2}-p t 2\right) / B_{i}{ }^{2}}\right\},
\end{aligned}
$$

where $\{x+\sqrt{-1} y / p\}_{4}$ denotes a cyclic character of $\left(\mathcal{O}_{k} / p\right)^{\times}$of order 4 and the summations are as follows:

$$
\begin{aligned}
& \sum_{\omega_{1}}: \omega_{1}=a+2 b \sqrt{-p} \in \mathfrak{a}_{i}^{2}, a+2 b \equiv 1 \bmod 4 ; \\
& \sum_{\omega_{2}}: \omega_{2}=\frac{1}{2}(a+b \sqrt{-p}) \in \mathfrak{a}_{i}^{2}, a \equiv 3 \bmod 4 ; \\
& \sum_{\lambda}: \quad \lambda=x+\sqrt{-1} y, x \equiv 1 \bmod 4, y \equiv 0 \bmod 2,\left(x^{2}+y^{2} / p\right)=1 ; \\
& \sum_{\mu_{1}}\left(\text { resp. } \sum_{\mu_{2}}\right): \mu_{1}\left(\text { resp. } \mu_{2}\right) \text { runs over all representatives mod } E_{0} \text { of } \\
& \text { the set of totally positive elements } s+t \sqrt{p} \in \mathfrak{b}_{i}^{2} \text { such that } s \equiv 1, \\
& t \equiv 0(\text { resp. } s \equiv 0, t \equiv 1) \bmod 2 .
\end{aligned}
$$

$(p \equiv 1 \bmod 8)$
Let \mathfrak{p}_{2} be a prime ideal of F over 2. Put

$$
E_{0}^{\prime}=\left\{u \in E^{+} \mid u \equiv 1 \bmod \mathfrak{p}_{2}^{2}(\sqrt{p})\right\}
$$

Let $e^{\prime}=\left[E^{+}: E_{0}^{\prime}\right] . \quad$ Take $s \in Z$ such that $s^{2} \equiv-1 \bmod p$. Then

$$
\begin{aligned}
\theta(\tau, K)= & \frac{1}{2} \sum_{i=1}^{h(F) / 2} \sum_{\omega}(-1)^{b}(a / p) q^{\left(a^{2}+p b^{2}\right) / A_{i}^{2}} \\
= & \frac{1}{4} \sum_{2}(x+s y / p)\left(x^{2}+y^{2} / p\right)_{4} q^{x^{2}+y^{2}} \\
= & e^{\prime-1} \sum_{i=1}^{h(F)}\left\{\sum_{\mu_{1}}(-1)^{(s-t-1) / 2}(s / p) q^{(s 2-p t 2) / B_{i}{ }^{2}}\right. \\
& \left.\quad+\sum_{\mu_{2}}(-1)^{(s-t-2) / 4}(-1)^{(p-1) / 8}(s / p) q^{\left(s^{2}-p t^{2}\right) / 4 B_{i}{ }^{2}}\right\}
\end{aligned}
$$

where the summations are as follows;
$\sum_{o}: \quad \omega=a+b \sqrt{-p} \in \mathfrak{a}_{i}^{2}, a \not \equiv b \bmod 2 ;$
$\sum_{\lambda}: \quad \lambda=x+\sqrt{-1} y,\left(x^{2}+y^{2} / p\right)=1 ;$
$\sum_{\mu_{1}}$ (resp. $\sum_{\mu_{2}}$): μ_{1} (resp. μ_{2}) runs over all representatives $\bmod E_{0}^{\prime}$ of the set of totally positive integers such that $\mu_{1}=s+t \sqrt{p}$ (resp. $\left.\mu_{2}=\frac{1}{2}(s+t \sqrt{p})\right) \in \mathfrak{b}_{i}^{2}$ and $s \equiv t+1 \bmod 2($ resp. $s \equiv 1 \bmod 2$ and $s-t-2 \equiv 0 \bmod 4$) .

§ 3. Higher reciprocity law

Let the notation be as in Section 2. Consider the polynomial $f(x)$ $=x^{4}-m$. Then the cusp form $\theta(\tau, K)$ has close relation to the decomposition law of K / \boldsymbol{Q} and the "higher reciprocity law ${ }^{3}$ " of $f(x)$. We shall
3) For the higher reciprocity law, see Hiramatsu [2] and Moreno [5].
explain these properties of $\theta(\tau, K)$. To this purpose, let us consider the expression of $\theta(\tau, K)$ in (4), for $M=k$. Since ξ_{k} is primitive we obtain

$$
\begin{equation*}
\theta(\tau, K)=\sum_{\substack{a\left(c_{k} c_{(}(L) \\[a] \in C_{k}\right.}} \chi_{k}(\mathfrak{a}) q^{N_{k / Q}(a)} \tag{8}
\end{equation*}
$$

Let $m=2^{e(2)} m_{1},\left(m_{1}, 2\right)=1$. Put

$$
\begin{equation*}
m_{1}^{*}=\prod_{p \mid m_{1}} p \tag{9}
\end{equation*}
$$

Then the conductor $F(K / k)$ of K over k is given in the next Table 3.

$e(2)$	1,3	0			2		
$m_{1} \bmod 8$		1	5	3,7	1,5	3	7
$F(K / k)$	$8 m_{1}^{*}$	m_{1}^{*}	$2 m_{1}{ }^{*}$	$4 m_{1}^{*}$	$4 m_{1} *$	$2 m_{1}^{*}$	m_{1}^{*}

Table 3.
Let f be the positive integer such that $F(K / k)=(f)$. Then the level N of $\theta(\tau, K)$ is given by

$$
\begin{equation*}
N=4 f^{2} \tag{10}
\end{equation*}
$$

Now the decomposition law of K / \boldsymbol{Q} is described by $\theta(\tau, K)$ as follows.
Proposition 1. Let p be a prime number not dividing f. Denote by f_{p} the relative degree of the prime ideals of K over p. Then the following assertions hold;
(i) If $p \equiv 1 \bmod 4$, then

$$
\begin{aligned}
& f_{p}=1 \Longleftrightarrow a(p)=2 ; \\
& f_{p}=2 \Longleftrightarrow a(p)=-2 \\
& f_{p}=4 \Longleftrightarrow a(p)=0
\end{aligned}
$$

(ii) If $p \equiv 3 \bmod 4$, then $a(p)=0, f_{p}=2$ or 4. Further

$$
\begin{aligned}
& f_{p}=2 \Longleftrightarrow a\left(p^{2}\right)=1 \\
& f_{p}=4 \Longleftrightarrow a\left(p^{2}\right)=-1
\end{aligned}
$$

(iii) If $p=2$, then $f_{p}=1$ or 2 . Further

$$
\begin{aligned}
& f_{p}=1 \Longleftrightarrow a(p)=1 \\
& f_{p}=2 \Longleftrightarrow a(p)=-1
\end{aligned}
$$

Proof. Let \mathfrak{B} be a prime ideal of k over p and $f_{\mathfrak{B}}$ the relative degree
of \mathfrak{P}. Denote by \mathfrak{R}^{\prime} the conjugate ideal of \mathfrak{P}. Since $G(K / k)$ is cyclic, it is easy to see
$[\mathfrak{P}] \in C_{k}(L)\left(\right.$ resp. $\left.C_{k}(K)\right) \Longleftrightarrow \mathfrak{P}$ splits completely in L (resp. K)

$$
\Longleftrightarrow f_{p} / f_{\mathfrak{\beta}}=1 \text { or } 2\left(\text { resp, } f_{p} \mid f_{\mathfrak{\beta}}=1\right) ;
$$

$[\mathfrak{\beta}] \notin C_{k}(L) \Longrightarrow[\mathfrak{\beta}] \neq\left[\mathfrak{\beta}^{\prime}\right]$.
From this, for a prime p such that $p=2$ or $p \equiv 3 \bmod 4$ we have

$$
[\mathfrak{P}] \in C_{k}(L) \text { and } f_{p} \mid f_{\mathfrak{B}}=1 \text { or } 2 .
$$

Therefore our assertions are deduced immediately from (8).
q.e.d.

Corollary 2. Let p be a prime number such that $(-1 / p)=(m / p)=1$. Then

$$
(m / p)_{4}=\frac{1}{2} a(p)
$$

Next we shall treat the higher reciprocity law of $f(x)$. Consider all irreducible representations of G and they are listed below.

	σ	ρ
ψ_{0}	1	1
ψ_{1}	1	-1
ψ_{2}	-1	1
ψ_{3}	-1	-1
ψ^{2}	$\left(\begin{array}{cc}\sqrt{-1} & 0 \\ 0 & -\sqrt{-1}\end{array}\right)$	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

Table 4.
Let χ be the character of ψ. For a prime number p unramified at K ($\Longleftrightarrow p \nmid N$), denote by σ_{p} the Frobenius substitution of p. Then

$$
\begin{array}{ll}
\psi_{1}\left(\sigma_{p}\right)=(-1 / p), & \psi_{2}\left(\sigma_{p}\right)=\left(m_{0} / p\right), \\
\psi_{3}\left(\sigma_{p}\right)=\left(-m_{0} / p\right), & \chi\left(\sigma_{p}\right)=a(p), \tag{11}
\end{array}
$$

where m_{0} is the square free part of m :

$$
m_{0}=\prod_{e(p): \text { odd }} p
$$

For a prime number p, put

$$
S(p)=\#\left\{a \in \boldsymbol{F}_{p} \mid f(a) \equiv 0 \bmod p\right\} .
$$

Then we have
Proposition 2. Let p be a prime number not dividing N. Then

$$
\begin{aligned}
S(p) & =1+a(p)+\left(m_{0} / p\right) \\
& =a(p)+a\left(p^{2}\right)-\left(-m_{0} / p\right)
\end{aligned}
$$

Proof. Put $H=\langle\rho\rangle$. Then H is the subgroup of G corresponding to the subfield $\boldsymbol{Q}(\sqrt[4]{m})$. Let 1_{H} be the identity character of H and ν its induced character of G. Let $d(f)$ be the discriminant of $f(x)$. Then N and $d(f)$ have the same prime divisors. Therefore we obtain for $p \nmid N$,

$$
\nu\left(\sigma_{p}\right)=S(p) .
$$

Computing inner product of ν with all irreducible characters of G, we have

$$
\begin{aligned}
\left(\nu \mid \psi_{i}\right) & = \begin{cases}0 & \text { if } i=1,3, \\
1 & \text { otherwise } ;\end{cases} \\
(\nu \mid \chi) & =1
\end{aligned}
$$

Therefore

$$
\nu=\psi_{0}+\psi_{2}+\chi .
$$

It follows from (11) that

$$
S(p)=1+\left(m_{0} / p\right)+a(p) .
$$

In view of (2), we obtain (§ 3.3 of Shimura [7])

$$
a(p)^{2}=a\left(p^{2}\right)+(-1 / p) .
$$

On the other hand, by (11) we see

$$
a(p)^{2}=\chi\left(\sigma_{p}^{2}\right)+2(-1 / p) .
$$

Therefore

$$
a\left(p^{2}\right)=\chi\left(\sigma_{p}^{2}\right)+(-1 / p) .
$$

Since the correspondence: $g \rightarrow \chi\left(g^{2}\right)$ is a class function of G, by computing inner products with irreducible characters of G, we have

$$
\chi\left(\sigma_{p}^{2}\right)=1-(-1 / p)+\left(m_{0} / p\right)+\left(-m_{0} / p\right) .
$$

From this we have

$$
a\left(p^{2}\right)=1+\left(m_{0} / p\right)+\left(-m_{0} / p\right) ; \quad S(p)=a(p)+a\left(p^{2}\right)-\left(-m_{0} / p\right)
$$

Let $\operatorname{Spl}\{f(x)\}$ be the set of all primes p such that $f(x) \bmod p$ factors into a product of distinct linear polynomials over \boldsymbol{F}_{p}. Then we have

Proposition 3. (Higher Reciprocity Law of $f(x)$). Let p be 'a prime number not dividing N. Then

$$
p \in \operatorname{Spl}\{f(x)\} \Longleftrightarrow a(p)=2 .
$$

Proof. This is obvious from Propositions 1 and 2.

§,4. Elliptic curves and cusp forms of weight one

Let the notation be as in preceding sections. Consider the elliptic curve E over \boldsymbol{Q} defined by

$$
E: y^{2}=x^{3}+4 m x
$$

Then E has a complex multiplication J such that

$$
\begin{equation*}
J(P)=(-x,-\sqrt{-1} y), \tag{12}
\end{equation*}
$$

for all points $P=(x, y)$ on E.
Since $J^{2}=-1_{E}$, the subalgebra \mathcal{O} generated by J over Z is identified with the maximal order \mathcal{O}_{k} of $k=\boldsymbol{Q}(\sqrt{-1})$. Denote the L-function of E by

$$
L(s, E)=\sum_{n=1}^{\infty} c(n) n^{-s}
$$

Let $c(E)$ be the conductor of E. Further put

$$
\vartheta(\tau, E)=\sum_{n=1}^{\infty} c(n) q^{n} .
$$

Since E has complex multiplications, we know $\vartheta(\tau, E)$ is a cusp form of weight 2, with trivial character on the group $\Gamma_{0}(c(E))$ (Shimura [8]). In this section we shall show that the cusp form $\theta(\tau, K)$ of weight one is associated with the cusp form $\vartheta(\tau, E)$ of weight 2 under a congruent relation. At first we determine the conductor $c(E)$. Since E has complex multiplications it is easy to see that $c(E)$ takes the form

$$
c(E)=2^{x} 3^{y} m_{2}^{2},
$$

where $x, y \in Z$ and m_{2} is the product of all prime divisors of m which are prime to 6 . Let $e(2)$ and $e(3)$ be the 2 -exponent and 3 -exponent of m respectively. Then by Tate's argorithm in Tate [10], we know $y=0$ or 2 according to $e(3)=0$ or not. Further x are as follows.

$e(2)$	0		1	2		3
$m_{1} \bmod 4$	1	3		1	3	
x	5	6	8	6	5	8

Table 5.
Let m_{1}^{*} be the integer defined by (9). Then we have from this

$$
c(E)=2^{x} m_{1}^{* 2} .
$$

Therefore it follows from Tables 3 and 5 that the level $c(E)$ of $\vartheta(\tau, E)$ equals to the level N of $\theta(\tau, K)$ up to a power of 2 and that $c(E)=N$ if $e(2)$ is odd. For a prime number p not dividing $c(E)$, denote by E_{p} the reduction of $E \bmod p$. Then E_{p} is again an elliptic curve with complex multiplications \mathcal{O}_{k}. Let $\mathfrak{Q}=(1+\sqrt{-1})$ be the prime ideal of k dividing 2. Denote by $E(n)$ (resp. $E_{p}(n)$) the group of \mathfrak{Q}^{n}-division points of E (resp. E_{p}). Then

$$
\begin{aligned}
& E(2)=\left\{(x, 0) \mid x^{3}+4 m x=0\right\} \cup\left\{0_{E}\right\}, \\
& E(3)=\left\{(x, y) \mid\left(x^{2}-4 m x\right)\left(x^{2}-4 m\right)=0, y^{2}=x^{3}+4 m x\right\} \cup\left\{0_{E}\right\},
\end{aligned}
$$

where 0_{E} denotes the identity element of the group structure on E. From this we obtain

$$
\begin{equation*}
P=(x, y) \in E(3)-E(2) \Longleftrightarrow x^{2}-4 m=0 . \tag{13}
\end{equation*}
$$

Further K is generated over \boldsymbol{Q} by all $\mathfrak{@}^{3}$-division points of E. Denote by N_{p} and $T(p)$ the number of \boldsymbol{F}_{p}-rational points of E_{p} and $E_{p}(3)$ respectively. Then we have following Proposition.

Proposition 4. Keep the notations as above. Let

$$
\mu(p)=\{1-(-1 / p)\}\{1+(2 / p)\}
$$

Then
(i) $T(p)=S(p)+\left(-m_{0} / p\right)+3$;
(ii) $\quad N_{p} \equiv T(p)+\mu(p) \bmod 8$.

Proof. Let M (resp. $M(n)$) be the subset of F_{p}-rational points of E_{p} (resp. $E_{p}(n)-E_{p}(n-1)$). Let

$$
\Lambda=\left\{a \in \boldsymbol{F}_{p} \mid f(a) \equiv 0 \bmod p\right\} .
$$

For $p \nmid 2 m$, by (13) we have a bijection φ of Λ to $M(3)$ defined by

$$
\varphi(a)=\left(2 a^{2}, 4 a^{3}\right), \quad a \in \Lambda .
$$

Therefore

$$
S(p)=|M|=|M(3)| .
$$

Further it is easy to see

$$
|M(2)|=1+\left(-m_{0} / p\right), \quad|M(1)|=2 .
$$

Hence

$$
T(p)=|M(3)|+|M(2)|+|M(1)|=S(p)+\left(-m_{0} / p\right)+3 .
$$

This shows (i). Next we shall prove (ii). The following is easily obtained:

$$
S(p)= \begin{cases}4 & \text { if }(-1 / p)=(m / p)_{4}=1, \tag{14}\\ 2 & \text { if }(-1 / p)=-1 \text { and }(m / p)_{4}=1, \\ 0 & \text { otherwise }\end{cases}
$$

Let $p \equiv 3 \bmod 4$. Then it follows from (14) and (i) just proved that

$$
T(p) \equiv 4 \bmod 8
$$

On the other hand it is easily obtained

$$
N_{p}=p+1 .
$$

Therefore

$$
N_{p} \equiv T(p)+\mu(p) \bmod 8
$$

Let $p \equiv 1 \bmod 4$. Then by (12), the endomorphism J_{p} of E_{p} induced by J is defined over \boldsymbol{F}_{p}. Let U be the subgroup of $\operatorname{Aut}_{\boldsymbol{F}_{p}}\left(E_{p}\right)$ generated by J_{p}. Then U is a cyclic group of order 4 and M becomes a U-module. Let $P \in M$ and denote by $O(p)$ the U-orbit of P. Then we have

$$
|O(P)|= \begin{cases}1 & \text { if } P \in M(1) \tag{15}\\ 2 & \text { if } P \in M(2), \\ 4 & \text { otherwise },\end{cases}
$$

Let

$$
M^{*}=\bigcup_{n=1}^{\infty} M(n), \quad M^{* *}=\{x \in M \mid \text { order of } x \text { is odd }\} .
$$

Then M^{*} and $M^{* *}$ become U-modules and $M=M^{*} \oplus M^{* *}$. From (15) we know

$$
\begin{equation*}
\left|M^{* *}\right| \equiv 1 \bmod 4 \tag{16}
\end{equation*}
$$

Let t be the largest integer such that $M^{*} \supseteqq E_{p}(t)$. If there exists an element P of $M(3)$, then it follows from (15) that

$$
|M(3)|=4, \quad|M(2)|=2 .
$$

This implies that $t \geqq 3$. Therefore

$$
\begin{array}{r}
\left|M^{*}\right|=2 \Longleftrightarrow t=1 \Longleftrightarrow T(p)=2 ; \\
\left|M^{*}\right|=4 \Longleftrightarrow t=2 \Longleftrightarrow T(p)=4 ; \\
\left|M^{*}\right| \equiv 0 \bmod 8 \Longleftrightarrow t \geqq 3 \Longleftrightarrow T(p)=8 .
\end{array}
$$

Hence by (16).

$$
N_{p}=\left|M^{*}\right| \cdot\left|M^{* *}\right| \equiv T(p) \bmod 8
$$

Consider the L-function $L(s, E)$ of E. Since E has complex multiplications, the Euler product and p-th coefficient $c(p)$ of $L(s, E)$ are as follows (Tate [9]):

$$
\begin{align*}
L(s, E) & =\prod_{p \nmid c(E)}\left(1-c(p) p^{-s}+p^{1-2 s}\right)^{-1}, \\
c(p) & =\left\{\begin{array}{cl}
1+p-N_{p} & \text { if } p \nmid c(E), \\
0 & \text { otherwise } .
\end{array}\right. \tag{17}
\end{align*}
$$

Furthermore we have
Proposition 5. Let p be a prime number such that $p \nmid c(E)$. Let $\gamma(p)$ $=\{1+(-1 / p)\}\{1-(2 / p)\}$. Then

$$
c(p) \equiv a(p)+\gamma(p) \bmod 8
$$

Proof. Let ρ_{G} denote the character of the regular representation of G. Then

$$
\rho_{G}=1+\psi_{1}+\psi_{2}+\psi_{3}+2 \chi .
$$

Since G is of order 8 , for all $g \in G$ we have

$$
\rho_{G}(g) \equiv 0 \bmod 8
$$

In this congruent equation, put $g=\sigma_{p}$ for $p \nmid c(E)$, then by (11),

$$
2 a(p)+1+\left(m_{0} / p\right)+\left(-m_{0} / p\right)+(-1 / p) \equiv 0 \bmod 8
$$

On the other hand, Propositions 2 and 4 imply

$$
c(p) \equiv-a(p)-\mu(p)+p-2-\left\{1+\left(m_{0} / p\right)+\left(-m_{0} / p\right)\right\} \bmod 8
$$

Thus

$$
c(p) \equiv a(p)-\mu(p)+p-2+(-1 / p) \bmod 8
$$

It is easy to see

$$
\gamma(p) \equiv p-2-\mu(p)+(-1 / p) \bmod 8
$$

Therefore

$$
c(p) \equiv a(p)+\gamma(p) \bmod 8 . \quad \text { q.e.d. }
$$

Note that $a(p)=0$ if $p \mid f, c(p)=0$ if $p \mid c(E)$, and $\gamma(p) \equiv 0 \bmod 4$. Further it follows from Tables 3 and 5 that $c(E) / f$ is a power of 2. Therefore we have:

Corollary 3. Let p be an odd prime. Then

$$
a(p) \equiv c(p) \bmod 4
$$

Furthermore, if f is even, then

$$
a(2) \equiv c(2) \bmod 4
$$

It follows from (2) and (17) that Fourier coefficients $a(n)$ and $c(n)$ are both multiplicative. Therefore we know that $a(n) \equiv c(n) \bmod 4$, if n is odd and that $c(n) \equiv 0 \bmod 4$ if n is even. Let

$$
\theta^{\prime}(\tau, K)=\sum_{n: \text { odd }} a(n) q^{n}
$$

Then $\theta^{\prime}(\tau, K)$ is a cusp form of weight one, with character ε^{\prime} on the group $\Gamma_{0}(4 N)$, where ε^{\prime} is a character $\bmod 4 N$ induced by ε (Lemma 2 in Shimura [8]). Consequently we obtain the next Theorem.

Theorem 2. Keep the notation as above. Then

$$
\theta^{\prime}(\tau, K) \equiv \vartheta(\tau, E) \bmod 4
$$

If f is even, we have further

$$
\theta(\tau, K) \equiv \vartheta(\tau, E) \bmod 4
$$

Remark 3. The number of rational points N_{p} is computed as follows. For $p \nmid c(E)$,

$$
N_{p}=\left\{\begin{array}{cl}
p+1 & \text { if } p \equiv 3 \bmod 4 \\
p+1-\bar{\pi}(-4 m / \pi)_{4}-\pi(-4 m / \bar{\pi})_{4} & \text { otherwise }
\end{array}\right.
$$

where π and $\bar{\pi}$ are prime elements of $k=\boldsymbol{Q}(\sqrt{-1})$ such that $p=\pi \cdot \bar{\pi}$ and $\pi \equiv 1 \bmod (2+2 \sqrt{-1})$ (Davenport and Hasse [1]). From this it is comparatively easy to deduce Proposition 4 and Theorem 2. However we could attain to Theorem 2, without using this result, along the following process:

$$
c(p) \longrightarrow N_{p} \longrightarrow T(p) \longrightarrow S(p) \longrightarrow a(p) .
$$

References

[1] H. Davenport and H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen, J. reine \mathfrak{u}. angew. Math., 172 (1934), 151-182.
[2] T. Hiramatsu, Higher reciprocity law and modular forms of weight one, Comm. Math. Univ. St. Paul., 31 (1982), 75-85.
[3] T. Hiramatsu, N. Ishii and Y. Mimura, On indefinite modular forms of weight one, preprint.
[4] M. Koike, Higher reciprocity law, modular forms of weight 1 and elliptic curves, Nagoya Math. J., 98 (1985),
[5] C. Moreno, The higher reciprocity law : an example, J. Number Theory, 12 (1980), 57-70.
[6] J. P. Serre, Modular forms of weight one and Galois representations, Proc. Symposium on Algebraic Number Fields, Academic Press, London, 1977, 193-268.
[7] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Iwanami Shoten Publisher and Princeton Univ. Press, 1971.
[8] O_ On elliptic curves with complex multiplication as factors of the jacobians of modular function fields, Nagoya Math. J., 43 (1971), 199-208.
[9] J. Tate, The arithmetic of elliptic curves, Invent. Math., 23 (1974), 179-206.
[10] ——, Algorithm for determining the type of a singular fiber in an elliptic pencil, Lecture Notes in Math., 476 (1975), 33-52.

Department of Mathematics

University of Osaka Prefecture
Sakai, Osaka 591
Japan

[^0]: 1) See Serre [6], for example.
[^1]: 2) See [3].
