N. Ishii Nagoya Math. J. Vol. 98 (1985) 117-137

CUSP FORMS OF WEIGHT ONE, QUARTIC RECIPROCITY AND ELLIPTIC CURVES

NOBURO ISHII

§1. Introduction

Let m be a non-square positive integer. Let K be the Galois extension over the rational number field Q generated by $\sqrt{-1}$ and $\sqrt[4]{m}$. Then its Galois group over Q is the dihedral group D_4 of order 8 and has the unique two-dimensional irreducible complex representation ψ . In view of the theory of Hecke-Weil-Langlands, we know that ψ defines a cusp form of weight one (cf. Serre [6]). This cusp form is denoted by $\theta(\tau, K)$. The present paper consists of two parts. In the first part (§ 2 and § 3), we shall study the number theoretic properties of $\theta(\tau, K)$ deduced from K. We show firstly that $\theta(\tau, K)$ has three expressions by definite or indefinite theta series. We may consider these expressions of $\theta(\tau, K)$ as the identities between cusp forms of weight one. This point of view gives a number theoretic explanation for the identities between cusp forms ([3]). Further we show that the Fourier coefficients of the cusp form $\theta(\tau, K)$ determine the decomposition law of the extension K/Q and especially the quartic residuacity of m. These results are obtained from that K has three quadratic subfields over which K is abelian. In particular, for the case m is prime, we write down the above expressions of $\theta(\tau, K)$ explicitly by determining the class group corresponding to K in each quadratic subfield. We deduce from this a special case of quartic reciprocity law. In this part we also establish the "higher reciprocity law" of the defining equation of K.

Let *E* be the elliptic curve defined by the equation: $y^2 = x^3 + 4mx$. Then *K* is generated over *Q* by certain torsion points of *E*. The purpose of the second part is to study the property of $\theta(\tau, K)$ related to *E* through *K*. Let $\vartheta(\tau, E)$ denote the inverse Mellin transform of the *L*-function of *E*. Then $\vartheta(\tau, E)$ is a cusp form of weight two (cf. Shimura [8]). In

Received April 13, 1984.

Section 4, we shall show, under certain assumption on m, the following congruence:

$$\theta(\tau, K) \equiv \vartheta(\tau, E) \mod 4$$
.

We remark that this result provides an answer for the problem proposed by Koike (cf. Koike [4]).

The author would like to express his hearty gratitude to Professor T. Hiramatsu for encouraging him to consider these problems and Dr. Y. Mimura for very helpful discussions.

\S 2. Quartic residuacity and cusp forms of weight one

Let m be a non-square positive integer such that m has the following decomposition in prime numbers p:

(1)
$$m = \prod_{a} p^{e(p)}, \quad 0 \leq e(p) \leq 3.$$

Let $K = Q(\sqrt{-1}, \sqrt[4]{m})$ be the field generated by $\sqrt{-1}$ and $\sqrt[4]{m}$ over the rational number field Q. Then K is a Galois extension over Q of degree 8 and its Galois group G = G(K/Q) is isomorphic to the dihedral group D_4 of order 8. Let σ and ρ be the two generators of G defined by

$$\begin{aligned} \sigma(\sqrt[4]{m}) &= \sqrt{-1} \sqrt[4]{m}, \qquad \sigma(\sqrt{-1}) &= \sqrt{-1}; \\ \rho(\sqrt[4]{m}) &= \sqrt[4]{m}, \qquad \rho(\sqrt{-1}) &= -\sqrt{-1}. \end{aligned}$$

Then the following Diagram 1 of subfields of K is obtained:

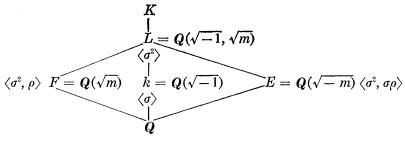


Diagram 1.

To the field K we shall define a cusp form $\theta(\tau, K)$ of weight one. Let ψ be the two-dimensional complex irreducible representation of G defined by

$$\psi(\sigma) = \begin{pmatrix} \sqrt{-1} & 0 \\ 0 & -\sqrt{-1} \end{pmatrix}, \qquad \psi(\rho) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Then the representation det ψ of G defined by $(\det \psi)(g) = \deg \psi(g)$ induces a Dirichlet character ε such that

$$arepsilon(n) = (-1/n)$$
.

Denote the Artin L-function associated with ψ by

$$L(s, K|Q, \psi) = \sum_{n=1}^{\infty} a(n) n^{-s}$$
.

Then $L(s, K/Q, \psi)$ has the Euler product:

(2)
$$L(s, K/Q, \psi) = \prod_{p \mid N} (1 - a(p)p^{-s})^{-1} \prod_{p \nmid N} (1 - a(p)p^{-s} + \varepsilon(p)p^{-2s})^{-1},$$

where N denotes the conductor of ψ . Now we define the function $\theta(\tau, K)$ by

$$heta(au, K) = \sum_{n=1}^{\infty} a(n) q^n$$
, $q = \exp(2\pi \sqrt{-1} au)$.

It follows from the well-known theory of Hecke-Weil-Langlands that $\theta(\tau, K)$ is a cusp form (new form) of weight one with character ε on the Hecke group $\Gamma_0(N)^{i_0}$.

We are going to give explicit form of $\theta(\tau, K)$. At first we explain the notation used below. Let Ω and Λ be fields such that Ω is abelian over Λ . Then $F(\Omega|\Lambda)$ (resp. $f(\Omega|\Lambda)$) denotes the conductor (resp. the finite part of conductor) of Ω over Λ . Let M be one of the quadratic fields appeared in Diagram 1. Then \mathcal{O}_M denotes the ring of integers of M and $N_{M/Q}$ denotes the norm of M over Q. Let α be an integral ideal of M. If M is imaginary (resp. real), then $H_M(\alpha)$ denotes the group of ray classes (resp. narrow ray classes) modulo α of M. Furthermore $P_M(\alpha)$ denotes the subgroup of $H_M(\alpha)$ generated by principal classes (resp. principal classes represented by totally positive elements). If \mathfrak{b} is an ideal prime to α , then [\mathfrak{b}] denotes the class of $H_M(\alpha)$ represented by \mathfrak{b} . If b is an element of Mand (b) is the principal ideal generated by p, then [b] denotes [(b)]. Finally let $C_M(K)$ (resp. $C_M(L)$) denote the subgroup of $H_M(f(K/M))$ corresponding to the field K (resp. L).

Let ψ and M be as above. Then the restriction of ψ to the abelian group G(K/M) decomposes into two distinct linear representations ξ_M and ξ'_M of G(K/M). Via Artin reciprocity law, we can identify ξ_M and ξ'_M with

¹⁾ See Serre [6], for example.

characters of $H_M(f(K/M))$ trivial on $C_M(K)$. We denote these characters by the same notation. If c_M and c'_M are the finite part of conductors of ξ_M and ξ'_M respectively, then c_M is conjugate to c'_M over Q. Let $\tilde{\xi}_M$ (resp. $\tilde{\xi}'_M$) be the primitive character of ξ_M (resp. ξ'_M) and $L(s, \tilde{\xi}_M)$ (resp. $L(s, \tilde{\xi}'_M)$) the Hecke *L*-function associated with $\tilde{\xi}_M$ (resp. $\tilde{\xi}'_M$). Then it is well-known that

(3)
$$L(s, K/Q, \psi) = L(s, \tilde{\xi}_{M}) = L(s, \tilde{\xi}'_{M}).^{2}$$

Let $\tilde{C}_{\mathcal{M}}(K)$ and $\tilde{C}_{\mathcal{M}}(L)$ be the images of $C_{\mathcal{M}}(K)$ and $C_{\mathcal{M}}(L)$ by the canonical homomorphism of $H_{\mathcal{M}}(f(K/M))$ to $H_{\mathcal{M}}(c_{\mathcal{M}})$ respectively. Then, as shown in [3],

$$L(s, \tilde{\xi}_{\scriptscriptstyle M}) = \sum_{\substack{\mathfrak{a} \subset \mathscr{O}_{\scriptscriptstyle M} \\ [\mathfrak{a}] \in \tilde{\mathcal{O}}_{\scriptscriptstyle M}(L)}} \chi_{\scriptscriptstyle M}(\mathfrak{a}) N_{\scriptscriptstyle M/\mathcal{Q}}(\mathfrak{a})^{-s} ,$$

where

$$\mathfrak{X}_{\mathtt{M}}(\mathfrak{a}) = egin{cases} 1 & ext{if } [\mathfrak{a}] \in \widetilde{C}_{\mathtt{M}}(K) \ -1 & ext{otherwise.} \end{cases}$$

Applying the inverse Mellin transformation on the both sides of (3), we obtain

(4)
$$\theta(\tau, K) = \sum_{\substack{\mathfrak{a} \subset \mathcal{O}_M \\ [\mathfrak{a}] \in \tilde{\mathcal{O}}_M(L)}} \chi_M(\mathfrak{a}) q^{N_M/Q(\mathfrak{a})} \, .$$

Therefore $\theta(\tau, K)$ has three expressions according to quadratic fields F, Eand k. To determine $C_{\mathcal{M}}(K)$ and $C_{\mathcal{M}}(L)$, it is necessary to know the conductors of K/M and L/M. Let \mathscr{K}, \mathscr{L} and \mathscr{F} be fields such that $\mathscr{K} \supset \mathscr{L} \supset \mathscr{F}$ and $[\mathscr{L}: \mathscr{F}] = 2$. Assume \mathscr{K} is abelian over \mathscr{F} . Then $f(\mathscr{K}/\mathscr{F})$ is determined by $f(\mathscr{K}/\mathscr{L})$ and the different $D(\mathscr{L}/\mathscr{F})$ of \mathscr{L} over \mathscr{F} . Thus we have

LEMMA 1. For a prime ideal \mathfrak{P} of \mathcal{L} , let $f(\mathfrak{P})$ (resp. $g(\mathfrak{P})$) denotes the \mathfrak{P} -exponent of $f(\mathcal{K}|\mathcal{L})$ (resp. $D(\mathcal{L}|\mathcal{F})$). Put

$$e(\mathfrak{P}) = \max\left(0, g(\mathfrak{P}) - f(\mathfrak{P})\right).$$

Then

$$f(\mathscr{K}/\mathscr{F}) = f(\mathscr{K}/\mathscr{L})D(\mathscr{L}/\mathscr{F}) \prod_{\mathfrak{P}} \mathfrak{P}^{e(\mathfrak{P})}$$

2) See [3].

Proof. This is deduced from the proof of Lemma 1 in [3].

It follows from [L:M] = 2 that $f(L/M) = D(L/M)^2$. And D(L/M) is deduced from the following equalities:

$$egin{aligned} D(L|m{Q})^2 &= D(F|m{Q})D(E|m{Q})D(k|m{Q}) \;; \ D(L|m{Q}) &= D(L|M)D(M|m{Q}) \;. \end{aligned}$$

In view of Lemma 1, to obtain F(K/M) it is sufficient to determine F(K/L). Write

$$m=2^{e_{(2)}}m_{_1}\,,\qquad 0\leq e_{(2)}\leq 3\,,\quad (m_{_1},2)=1\,.$$

Let

$$n_1 = \prod_{\substack{p \mid m_1 \\ e(p): \text{ even}}} p, \qquad n_2 = \prod_{\substack{p \mid m_1 \\ e(p): \text{ odd}}} p.$$

Furthermore put $n = n_1 \sqrt{n_2}$. Then the conductor F(K/L) is as follows.

e (2)	1, 3	0			2			
$m_1 \mod 8$		1	5	3, 7	1, 5	3	7	
F(K/L)	4n	n	2n	4n	4n	2n	n	

Table	1.
-------	----

In the next Table 2, we give F(K/M), F(L/M) and c_M in only the cases needed below, thus, the cases where m are prime numbers $p \geq 5$.

$p \mod 8$	F(K/E)	F(L/E)	c_E	F(K/k)	F(L/k)	c_k	F(K/F)	F(L/F)	c_F
1 5	$\boxed{\begin{array}{c} \sqrt{-p} \\ 2\sqrt{-p} \end{array}}$	1	$\sqrt{-p}$ $2\sqrt{-p}$	$p \\ 2p$	p	$p \ 2p$	$4\sqrt{p} \infty_1 \infty_2$	$4\infty_1\infty_2$	$rac{\mathfrak{p}_2^2\sqrt{p}}{4\sqrt{p}}$
3 7	$8\sqrt{-p}$	4	$8\sqrt{-p}$	4p	p	4p	$4\sqrt{p}\infty_1\infty_2$	$\infty_1 \infty_2$	$4\sqrt{p}$

Table 2.

In the above Table 2, \mathfrak{p}_2 denotes a prime ideal of F dividing 2 and ∞_i (i = 1, 2) denote infinite places of F. From this we know that $\tilde{C}_M(L) = C_M(L)$ and $\tilde{C}_M(K) = C_M(K)$ except the case $p \equiv 1 \mod 8$ and M = F.

Assume that *m* is a prime *p* congruent to 5 mod 8. Denote by $\theta(\tau, M)$ the right side of (4). In (I) through (III) below, we shall determine $\theta(\tau, M)$ explicitly for M = E, k and *F* respectively. In the following we write simply H_M and P_M in place of $H_M(f(K/M))$ and $P_M(f(K/M))$ respectively.

Further for a prime ideal \mathfrak{P} of M denote by $r(\mathfrak{P})$ a generator of the group $(\mathcal{O}_M/\mathfrak{P})^{\times}$. And, for an integral ideal \mathfrak{a} dividing f(K/M), denote by $K(\mathfrak{a})$ the kernel of the canonical homomorphism of P_M to $P_M(\mathfrak{a})$.

(I) The case $M = E(=Q(\sqrt{-p}))$. Put $\mathfrak{P} = (\sqrt{-p})$. Let ω and λ be integers of E satisfying the following properties:

$$\left\{egin{array}{ll} \omega\equiv\sqrt{-p}\ \mathrm{mod}\ 2\ , & \{\lambda\equiv1\ \mathrm{mod}\ 2,\ \lambda\in Z^+\ \lambda\equiv r(\mathfrak{P})\ \mathrm{mod}\ \mathfrak{P}\ . \end{array}
ight.$$

Then it is easy to see

$$egin{aligned} P_{\scriptscriptstyle E} &= \langle [\omega], [\lambda]
angle \,, \qquad K(\mathfrak{P}) &= \langle [\omega]
angle \,, \ K((2)) &= \langle [\lambda]
angle \,. \end{aligned}$$

Since $F(K|E) = 2\mathfrak{P}$ and F(L|E) = 1, we see

 $C_{\scriptscriptstyle E}(L) \supset P_{\scriptscriptstyle E}; \quad C_{\scriptscriptstyle E}(K)
eq P_{\scriptscriptstyle E}, \quad K(\mathfrak{P}), K((2)).$

This implies

$$[P_{\scriptscriptstyle E}:P_{\scriptscriptstyle E}\,\cap\, C_{\scriptscriptstyle E}(K)]=2\,,\qquad C_{\scriptscriptstyle E}(K)
i$$

From this, noting that $[\lambda]^2 \in C_E(K)$, we have

$$P_{\scriptscriptstyle E} \ \cap \ C_{\scriptscriptstyle E}(K) = \langle [\omega] \cdot [\lambda]
angle$$

It follows from the genus theory that the class number h(E) of E is even and that the number of square classes in H_E/P_E equals to $\frac{1}{2}h(E)$. Let α_i $(i = 1, \dots, \frac{1}{2}h(E))$ be integral ideals of E such that $[\alpha_i]^2$ represent all square classes in H_E/P_E . Since G(K/E) is a Klein four group, $[\alpha_i]^2 \in C_E(K)$ and the following coset decompositions are obtained:

$$egin{aligned} C_{\scriptscriptstyle E}(L) &= C_{\scriptscriptstyle E}(K) + \, C_{\scriptscriptstyle E}(K)[\omega]\,, \ C_{\scriptscriptstyle E}(K) &= \sum\limits_i \, [\mathfrak{a}_i]^{-2} (P_{\scriptscriptstyle E} \,\cap\, C_{\scriptscriptstyle E}(K))\,. \end{aligned}$$

If α is an integral ideal of E prime to $2\mathfrak{P}$ and $[\alpha] \in C_{\mathbb{B}}(L)$, then there exist unique α_i and an element $a + b\sqrt{-p}$ of α_i^2 such that

$$egin{aligned} \mathfrak{a} &= \mathfrak{a}_i^{-2}(a + b\sqrt{-p})\,, \ (a,p) &= 1\,, \ a
ot \equiv b \mod 2\,. \end{aligned}$$

Furthermore

$$[\mathfrak{a}] \in C_{\scriptscriptstyle E}(K) \Longleftrightarrow (a/p)(-1)^{\flat} = 1$$
.

Hence we obtain

$$\theta(\tau, E) = \frac{1}{2} \sum_{i=1}^{h(E)/2} \{ \sum_{\substack{a \neq b \text{ mod} \\ a+b \sqrt{-p \in a_i^2}}} (-1)^b (a/p) q^{(a^2 + pb^2)/A_i^2} \},$$

where $A_i = N_{E/Q}(a_i)$.

(II) The case $M = k (= Q(\sqrt{-1}))$. Let $p = \mathfrak{P}\mathfrak{P}'$ be the decomposition in prime ideals of p in k. Choose integral elements η and λ of k satisfying the congruent relations:

$$\left\{ egin{array}{ll} \eta \equiv \sqrt{-1} egin{array}{c} \mathrm{mod} \ 2 \ \eta \equiv 1 \ & \mathrm{mod} \ \mathfrak{P} \end{array}
ight. ; \ \left\{ egin{array}{ll} \lambda \equiv 1 egin{array}{c} \lambda \equiv r(\mathfrak{P}) egin{array}{c} \mathrm{mod} \ \mathfrak{P} \ \lambda \equiv 1 egin{array}{c} \mathrm{mod} \ \mathfrak{P} \end{array}
ight.
ight.
ight.$$

Let λ' be the conjugate of λ over Q. Then it is easy to see $P_k = \langle [\lambda], [\lambda'], [\eta] \rangle$ and $K((p)) = \langle [\eta] \rangle$. It follows from the values of conductors in Table 2 that

Since G(K/k) is cyclic of order 4, we know

 $C_k(L) \in [\lambda]^2$, $C_k(K) \not\ni [\lambda]^2$.

Further the commutativity (resp. non-commutativity) of G(L/Q) (resp. G(K/Q)) implies that

 $C_{k}(L) \ni [\lambda]^{-1} \cdot [\lambda']$ (resp. $C_{k}(K) \not\ni [\lambda]^{-1}[\lambda']$).

Therefore

$$egin{aligned} C_k(L) &= \langle [\lambda]^2, [\lambda]^{-1}[\lambda'], [\eta]
angle \, , \ C_k(K) &= \langle [\lambda]^2[\eta], [\lambda][\lambda']^{-1}[\eta]
angle \ &= \langle [\lambda]^4, [\lambda][\lambda']^{-1}
angle \, . \end{aligned}$$

Thus for integral ideals a of k prime to 2p, we obtain

$$[\mathfrak{a}] \in C_k(L) \iff \mathfrak{a}$$
 has a generator $x + \sqrt{-1}y$ such that
 $(x^2 + y^2/p) = 1, \ x \equiv 1, \ y \equiv 0 \mod 2:$

Furthermore

$$[\mathfrak{a}] \in C_k(K) \Longleftrightarrow (x + sy/p)(x^2 + y^2/p)_4 = 1$$
,

where s is an integer such that $s^2 \equiv -1 \mod p$.

Hence

$$heta(au, k) = rac{1}{2} \sum\limits_{x,y} (x + sy/p) (x^2 + y^2/p)_4 q^{x^2 + y^2},$$

where the summation is over all pairs of integers (x, y) such that $x \equiv 1$, $y \equiv 0 \mod 2$ and $(x^2 + y^2/p) = 1$.

(III) The case $M = F(=Q(\sqrt{p}))$. Let $\mathfrak{P} = (\sqrt{p})$ and $\omega = \frac{1}{2}(1 + \sqrt{p})$. For $\alpha \in \mathcal{O}_F$, take an element α^* of \mathcal{O}_F such that

$$\left\{ egin{array}{l} lpha^* \mbox{ is totally positive,} \ lpha^* \equiv lpha \ {
m mod} \ 4 \ , \ lpha^* \equiv 1 \ {
m mod} \ {
m \mathfrak P} \ . \end{array}
ight.$$

Let $\xi \in \mathcal{O}_F$ such that ξ induces an element of order 3 in the group $(\mathcal{O}_F/4)^{\times}$. Let λ be a positive integer such that $\lambda \equiv 1 \mod 4$ and $\lambda \equiv r(\mathfrak{P}) \mod \mathfrak{P}$. Put $\eta = 1 + 2\omega$. Then it is easy to see

$$egin{aligned} P_{\scriptscriptstyle F} &= \langle [\xi^*], [\eta^*], [3^*], [\lambda]
angle \, , \ K((2)) &= \langle [\eta^*], [3^*], [\lambda]
angle \, , \quad K((4)) &= \langle [\lambda]
angle \, . \end{aligned}$$

Taking account of the values of conductors, we have

$$egin{aligned} & [P_{_F}:C_{_F}(L)\,\cap\,P_{_F}] = [C_{_F}(L)\,\cap\,P_{_F}:C_{_F}(K)\,\cap\,P_{_F}] = 2 \ ; \ & C_{_F}(L)\supset K((4)), \
ot \supset K((2)); \ C_{_F}(K)
ot \supset K((4)) \ . \end{aligned}$$

If $[\eta^*]'$ is the conjugate class of $[\eta^*]$, then

$$[\eta^*]' = [3^*] \cdot [\eta^*]$$
.

Since $C_F(L)$ is closed under the conjugation, thus $C_F(L)' = C_F(L)$, and $C_F(L) \not\supseteq P_F$, we know

$$C_F(L) \not\ni [\eta^*], \ [\eta^*] \cdot [3^*].$$

Therefore

(5)
$$C_F(L) \cap P_F = \langle [\xi^*], [3^*], [\lambda] \rangle.$$

The non-commutativity of G(K/Q) shows that $C_F(K) \ni [3^*]$.

This implies

$$(6) C_F(K) \cap P_F = \langle [\xi^*], [3^*][\lambda] \rangle$$

Let h(F) be the narrow class number of F. By the genus theory, h(F) is odd. Let \mathfrak{b}_i $(i = 1, \dots, h(F))$ be integral ideals such that $[\mathfrak{b}_i]$ represent

all classes of H_F/P_F . Then we have the coset decompositions:

$$egin{aligned} & C_F(L) = C_F(K) + C_F(K) [3^*] \,, \ & C_F(K) = \sum\limits_I [\mathfrak{b}_i]^{-2} (C_F(K) \,\cap\, P_F) \end{aligned}$$

Let μ be a totally positive element of \mathcal{O}_F prime to $4\mathfrak{P}$. If $\mu \equiv 1 \mod 2$, then we can put $\mu = u + v\sqrt{p}$, $u \equiv v + 1 \mod 2$. Further in view of (5) and (6), we obtain

(7)
$$\begin{cases} [\mu] \in C_F(L) \iff [\mu] \in \langle [3^*], [\lambda] \rangle \iff v \equiv 0 \mod 2, \ (p, u) = 1; \\ [\mu] \in C_F(K) \iff (u/p)(-1)^{(u+v-1)/2} = 1, \ v \equiv 0 \mod 2. \end{cases}$$

If $\mu \not\equiv 1 \mod 2$, then we can put $\mu = \frac{1}{2}(s + t\sqrt{p})$, s: odd. Choose a = 1 or 2 such that $\mu \xi^{*a} \equiv 1 \mod 2$. Put $\mu \xi^{*a} = u + v\sqrt{p}$, $u \equiv v + 1 \mod 2$. Since $N_{F/Q}(\xi^*) \equiv 1 \mod 4$, we have

$$N_{\scriptscriptstyle F/\it O}(\mu)\equiv u^2-v^2\,{
m mod}\,4$$
 .

Therefore

$$v \equiv 0 \mod 2 \iff N_{F/o}(\mu) \equiv 1 \mod 4.$$

Further if $v \equiv 0 \mod 2$, then

$$\frac{1}{2}(u+v-1) \equiv \frac{1}{2}(s+1) \mod 2$$
.

Noting $s \equiv 2u \mod p$, it follows from (7) that

$$[\mu] \in C_F(L) \iff v : \text{even} \iff N_{F/O}(\mu) \equiv 1 \mod 4$$
;

Furthermore

$$[\mu] \in C_F(K) \Longleftrightarrow (u/p)(-1)^{(u+v-1)/2} = 1 \Longleftrightarrow (s/p)(-1)^{(s-1)/2} = 1$$

To obtain $\theta(\tau, F)$, we must consider the effect of units of F. Let

$$E^{+} = \{ \varepsilon \in \mathcal{O}_{F} | \varepsilon : \text{ totally positive units} \},$$

 $E_{0} = \{ \varepsilon \in E^{+} | \varepsilon \equiv 1 \mod f(K/F) \}.$

Put $e = [E^+: E_0]$ and $B_i = N_{{\scriptscriptstyle F}/{\scriptscriptstyle Q}}({\mathfrak b}_i).$ Then

$$\begin{split} \theta(\tau,F) &= e^{-1} \sum_{i=1}^{h(F)} \left\{ \sum_{\mu_1} (s/p) (-1)^{(s-1)/2 + t} q^{(s^2 - 4pt^2)/Bt^2} \right. \\ &+ \sum_{\mu_2} (s/p) (-1)^{(s-1)/2} q^{(s^2 - pt^2)/4Bt^2} \right\}, \end{split}$$

where the summation with respect to μ_1 (resp. μ_2) is over all representatives

mod E_0 of the set of totally positive elements of \mathfrak{b}_i^2 such that $\mu_1 = s + 2t\sqrt{p}$; $s, t \in \mathbb{Z}$ and $s \equiv 1 \mod 2$ (resp. $\mu_2 = \frac{1}{2}(s + t\sqrt{p})$; $s, t \in \mathbb{Z}$, $s \equiv 1 \mod 2$ and $N_{F/Q}(\mu_2) \equiv 1 \mod 4$).

Let ℓ be a prime number. Then we have

$$(-1/\ell) = (p/\ell) = 1 \iff \ell ext{ splits completely in } L \ \iff a(\ell) = \pm 2 ext{ ;}$$

Furthermore

 ℓ splits completely in $K \iff a(\ell) = 2$.

(See Corollary 2 of Section 3 in the present paper). Consequently we have

THEOREM 1. Let $p \equiv 5 \mod 8$ and keep the notation as above. Then (i) $\theta(\tau, K)$ is a new form of weight one, with character $\varepsilon(n) = (-1/n)$ on the group $\Gamma_0(16p^2)$;

(ii) For a prime number ℓ such that $(-1/\ell) = (p/\ell) = 1$,

$$(p/\ell)_4 = \frac{1}{2}a(\ell)$$

(iii) $\theta(\tau, K)$ has the following three expressions:

$$\begin{split} \theta(\tau, \mathsf{K}) &= \frac{1}{2} \sum_{i=1}^{h(E)/2} \sum_{\substack{a \neq b \mod 2 \\ a+b \sqrt{-p \in a_i 2}}} (-1)^b (a/p) q^{(a^2 + pb^2)/A_i^2} \\ &= \frac{1}{2} \sum_{x,y} (x + sy/p) (x^2 + y^2/p)_i q^{x^2 + y^2} \\ &= e^{-1} \sum_{i=1}^{h(F)} \{ \sum_{\mu_1} (s/p) (-1)^{(s-1)/2 + t} q^{(s^2 - 4pt^2)/B_i^2} \\ &+ \sum_{\mu_2} (s/p) (-1)^{(s-1)/2} q^{(s^2 - pt^2)/4B_i^2} \} \end{split}$$

Especially from the second expression of $\theta(\tau, K)$ in (iii), we obtain a reciprocity law of quartic residue:

COROLLARY 1. Let ℓ be a prime number such that $(-1/\ell) = (p/\ell) = 1$. Put $\ell = x^2 + y^2$ with $x \equiv 1 \mod 2$. Then

$$(p/\ell)_4 = (x + sy/p)(\ell/p)_4.$$

To avoid diffuseness, for other primes, we shall state only the results corresponding to (iii) in the next Remarks.

Remark 1. Let p = 2 or 3. Then $\theta(\tau, K)$ is expressed as follows.

(p = 2)

$$\theta(\tau, K) = \frac{1}{2} \vartheta_4(16\tau) \vartheta_3(16\tau) = \sum_{a,b} (-1)^a q^{(4a+1)^2 + bb^2}$$
 (via E)

$$= \frac{1}{2} \vartheta_2(8\tau) \vartheta_0(32\tau) = \sum_{x,y} (-1)^y q^{(4x+1)^2 + 16y^2}$$
 (via k)

$$= \vartheta_+(16\tau, 1, \mathscr{O}_F, 4\sqrt{2}) + \vartheta_+(16\tau, 3, \mathscr{O}_F, 4\sqrt{2})$$

= $\sum_{s>6|t|} (-2/s)q^{s^2-32t^2}$ (via F),

where $\vartheta_0, \vartheta_2, \vartheta_3$ and ϑ_4 are theta series defined by

and ϑ_+ denotes the Hecke indefinite theta series (see [3]).

$$\begin{aligned} (p = 3) \\ \theta(\tau, K) &= \eta(24\tau) \vartheta_3(24\tau) = \sum_{a,b} (-1)^a q^{(6a+1)^2 + 12b^2} & \text{(via } E) \\ &= \sum_{x,y} (-1)^y q^{(6x+1)^2 + 12y^2} + \sum_{x,y} (-1)^{x+1} q^{4(3x+1)^2 + 9(2y+1)^2} & \text{(via } k) \\ &= \vartheta_+(24\tau, 1, \mathcal{O}_F, 4\sqrt{3}) - \vartheta_+(24\tau, 7 + 2\sqrt{3}, \mathcal{O}_F, 4\sqrt{3}) \\ &= \sum_{s>4|t|} (s/6)(-1)^t q^{s^2 - 12t^2} & \text{(via } F), \end{aligned}$$

where $\eta(\tau)$ is the Dedekind eta function.

Remark 2. Let $p \equiv 3 \mod 4$ or $p \equiv 1 \mod 8$. Keep the notation as above. Let $\{a_i\}$ (resp. $\{b_i\}$) be the set of the integral ideals of E (resp. F) such that $\{[a_i]^2\}$ (resp. $\{[b_i]^2\}$) represent all square classes in H_E/P_E (resp. H_F/P_F). Put $A_i = N_{E/Q}(a_i)$ and $B_i = N_{F/Q}(b_i)$. Then we have the following expressions of $\theta(\tau, K)$.

 $(p \equiv 3 \bmod 4)$

$$\begin{split} \theta(\tau, K) &= \sum_{i=1}^{h(E)} \{\sum_{\omega_1} (-1)^b (a/p) q^{(a^2 + 4pb^2)/A_i^2} \} \\ &+ \begin{cases} 0 \quad \text{if } p \equiv 7 \mod 8, \\ \sum_{i=1}^{h(E)} \sum_{\omega_2} (-1)^{(N_E/\mathcal{Q}(\omega_2) + 3)/4} (a/p) q^{(a^2 + pb^2)/4A_i^2} \text{ otherwise}; \end{cases} \\ &= \sum_{\lambda} \{x + \sqrt{-1}y/p\}_4 (-1)^{y/2} q^{x^2 + y^2} \\ &= e^{-1} \sum_{i=1}^{h(F)/2} \{\sum_{\mu_1} (a/p)(-1)^{t/2} q^{(s^2 - pt^2)/B_i^2} \\ &+ \sum_{\mu_3} (s/p)(-1)^{s/2} q^{(s^2 - pt^2)/B_i^2} \}, \end{split}$$

where $\{x + \sqrt{-1}y/p\}_{4}$ denotes a cyclic character of $(\mathcal{O}_{k}/p)^{\times}$ of order 4 and the summations are as follows:

$$\begin{split} \sum_{\substack{a_1 \\ a_1}} : & \omega_1 = a + 2b\sqrt{-p} \in \mathfrak{a}_i^2, \ a + 2b \equiv 1 \bmod 4 \ ; \\ \sum_{\substack{a_2 \\ a_2}} : & \omega_2 = \frac{1}{2}(a + b\sqrt{-p}) \in \mathfrak{a}_i^2, \ a \equiv 3 \bmod 4 \ ; \\ \sum_{\substack{a_2 \\ a_2}} : & \lambda = x + \sqrt{-1}y, \ x \equiv 1 \bmod 4, \ y \equiv 0 \bmod 2, \ (x^2 + y^2/p) = 1 \ ; \\ \sum_{\substack{a_1 \\ \mu_1}} (\text{resp.} \sum_{\substack{\mu_2 \\ \mu_2}}) : & \mu_1 \ (\text{resp.} \ \mu_2) \ \text{runs over all representatives mod} \ E_0 \ \text{of} \\ & \text{the set of totally positive elements} \ s + t\sqrt{p} \in \mathfrak{b}_i^2 \ \text{such that} \ s \equiv 1, \\ & t \equiv 0 \ (\text{resp.} \ s \equiv 0, \ t \equiv 1) \mod 2. \end{split}$$

 $(p \equiv 1 \operatorname{mod} 8)$

Let \mathfrak{p}_2 be a prime ideal of F over 2. Put

$$E'_0 = \{u \in E^+ | u \equiv 1 \mod \mathfrak{p}_2^2(\sqrt{p})\}.$$

Let $e' = [E^+ : E'_0]$. Take $s \in \mathbb{Z}$ such that $s^2 \equiv -1 \mod p$. Then

$$\begin{split} \theta(\tau, K) &= \frac{1}{2} \sum_{i=1}^{h(F)/2} \sum_{\omega} (-1)^{b} (a/p) q^{(a^{2}+pb^{2})/A_{i}^{2}} \\ &= \frac{1}{4} \sum_{\mathbf{i}} (x + sy/p) (x^{2} + y^{2}/p)_{4} q^{x^{2}+y^{2}} \\ &= e^{\prime-1} \sum_{i=1}^{h(F)} \left\{ \sum_{\mathbf{\mu_{I}}} (-1)^{(s-t-1)/2} (s/p) q^{(s^{2}-pt^{2})/B_{i}^{2}} \\ &+ \sum_{\mu_{2}} (-1)^{(s-t-2)/4} (-1)^{(p-1)/8} (s/p) q^{(s^{2}-pt^{2})/4B_{i}^{2}} \right\}. \end{split}$$

where the summations are as follows;

$$\begin{split} &\sum_{\boldsymbol{\omega}}: \quad \boldsymbol{\omega} = a + b\sqrt{-p} \in \mathfrak{a}_i^2, \ a \not\equiv b \ \text{mod} \ 2 \ ; \\ &\sum_{\boldsymbol{\lambda}}: \quad \boldsymbol{\lambda} = x + \sqrt{-1}y, \ (x^2 + y^2/p) = 1 \ ; \\ &\sum_{\mu_1} (\text{resp.} \ \sum_{\mu_2}): \quad \mu_1 \ (\text{resp.} \ \mu_2) \ \text{runs over all representatives mod} \ E_0' \ \text{of} \\ & \text{ the set of totally positive integers such that} \ \mu_1 = s + t\sqrt{p} \ (\text{resp.} \\ &\mu_2 = \frac{1}{2}(s + t\sqrt{p})) \in \mathfrak{b}_i^2 \ \text{and} \ s \equiv t + 1 \ \text{mod} \ 2 \ (\text{resp.} \ s \equiv 1 \ \text{mod} \ 2 \ \text{and} \\ & s - t - 2 \equiv 0 \ \text{mod} \ 4). \end{split}$$

§3. Higher reciprocity law

Let the notation be as in Section 2. Consider the polynomial $f(x) = x^4 - m$. Then the cusp form $\theta(\tau, K)$ has close relation to the decomposition law of K/Q and the "higher reciprocity law³)" of f(x). We shall

³⁾ For the higher reciprocity law, see Hiramatsu [2] and Moreno [5].

explain these properties of $\theta(\tau, K)$. To this purpose, let us consider the expression of $\theta(\tau, K)$ in (4), for M = k. Since ξ_k is primitive we obtain

(8)
$$\theta(\tau, K) = \sum_{\substack{\mathfrak{a} \subseteq \mathscr{O}_k \\ [\mathfrak{a}] \in C_k(L)}} \chi_k(\mathfrak{a}) q^{N_k/Q(\mathfrak{a})}$$

Let $m = 2^{e(2)}m_1$, $(m_1, 2) = 1$. Put

$$(9) m_1^* = \prod_{p \mid m_1} p.$$

Then the conductor F(K|k) of K over k is given in the next Table 3.

e(2)	1, 3		0		2			
$m_1 \mod 8$		1	5	3, 7	1, 5	3	7	
F(K/k)	8m1*	m_1^*	$2m_1^*$	$4m_1^*$	$4m_1^*$	$2m_{1}^{*}$	<i>m</i> ₁ *	
Table 3.								

Let f be the positive integer such that F(K/k) = (f). Then the level N of $\theta(\tau, K)$ is given by

(10) $N = 4f^2$.

Now the decomposition law of K/Q is described by $\theta(\tau, K)$ as follows.

PROPOSITION 1. Let p be a prime number not dividing f. Denote by f_p the relative degree of the prime ideals of K over p. Then the following assertions hold;

(i) If $p \equiv 1 \mod 4$, then

$$egin{aligned} &f_p=1 & \Longleftrightarrow a(p)=2 \ ; \ &f_p=2 & \Longleftrightarrow a(p)=-2 \ ; \ &f_p=4 & \Longleftrightarrow a(p)=0 \ . \end{aligned}$$

(ii) If $p \equiv 3 \mod 4$, then a(p) = 0, $f_p = 2$ or 4. Further

$$egin{aligned} &f_p=2 \Longleftrightarrow a(p^2)=1\ ;\ &f_p=4 \Longleftrightarrow a(p^2)=-1 \end{aligned}$$

(iii) If p = 2, then $f_p = 1$ or 2. Further

$$f_p = 1 \iff a(p) = 1;$$

 $f_p = 2 \iff a(p) = -1$

Proof. Let \mathfrak{P} be a prime ideal of k over p and $f_{\mathfrak{P}}$ the relative degree

of \mathfrak{P} . Denote by \mathfrak{P}' the conjugate ideal of \mathfrak{P} . Since G(K/k) is cyclic, it is easy to see

$$\begin{split} [\mathfrak{P}] \in C_k(L) \ (\text{resp. } C_k(K)) & \Longleftrightarrow \mathfrak{P} \ \text{splits completely in } L \ (\text{resp. } K) \\ & \Longleftrightarrow f_p/f_\mathfrak{P} = 1 \ \text{or} \ 2 \ (\text{resp, } f_p/f_\mathfrak{P} = 1) \ ; \\ [\mathfrak{P}] \notin C_k(L) \Longrightarrow [\mathfrak{P}] \neq [\mathfrak{P}'] \ . \end{split}$$

From this, for a prime p such that p = 2 or $p \equiv 3 \mod 4$ we have

Therefore our assertions are deduced immediately from (8).

 $[\mathfrak{P}] \in C_k(L)$ and $f_p/f_{\mathfrak{P}} = 1$ or 2.

q.e.d.

COROLLARY 2. Let p be a prime number such that (-1/p) = (m/p) = 1. Then

$$(m/p)_4 = \frac{1}{2}a(p).$$

Next we shall treat the higher reciprocity law of f(x). Consider all irreducible representations of G and they are listed below.

	σ	ρ						
ψo	1	1						
ψ_1	1	-1						
ψ_2	-1	1						
ψ3	-1	-1						
¥	$\left(\begin{array}{cc} \sqrt{-1} & 0 \\ 0 & -\sqrt{-1} \end{array}\right)$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$						
	Table 4.							

Let χ be the character of ψ . For a prime number p unramified at K ($\iff p \nmid N$), denote by σ_p the Frobenius substitution of p. Then

(11)
$$\psi_1(\sigma_p) = (-1/p), \qquad \psi_2(\sigma_p) = (m_0/p), \\ \psi_3(\sigma_p) = (-m_0/p), \qquad \chi(\sigma_p) = a(p),$$

where m_0 is the square free part of m:

$$m_0 = \prod_{e(p): \text{ odd}} p$$

For a prime number p, put

$$S(p) \equiv \# \left\{ a \in F_p | f(a) \equiv 0 ext{ mod } p
ight\}.$$

Then we have

PROPOSITION 2. Let p be a prime number not dividing N. Then

$$egin{aligned} S(p) &= 1 + a(p) + (m_{\scriptscriptstyle 0}/p) \ &= a(p) + a(p^2) - (-m_{\scriptscriptstyle 0}/p) \,. \end{aligned}$$

Proof. Put $H = \langle \rho \rangle$. Then H is the subgroup of G corresponding to the subfield $Q(\sqrt[4]{m})$. Let 1_H be the identity character of H and ν its induced character of G. Let d(f) be the discriminant of f(x). Then N and d(f) have the same prime divisors. Therefore we obtain for $p \nmid N$,

$$\nu(\sigma_{p}) = S(p)$$
.

Computing inner product of ν with all irreducible characters of G, we have

$$egin{aligned} & (
u|\psi_i) = egin{cases} 0 & ext{if} \ i=1,3\,, \ 1 & ext{otherwise}\ ; \ & (
u|\chi) = 1\,. \end{aligned}$$

Therefore

 $\nu = \psi_0 + \psi_2 + \chi.$

It follows from (11) that

$$S(p) = 1 + (m_0/p) + a(p)$$
.

In view of (2), we obtain $(\S 3.3 \text{ of Shimura [7]})$

$$a(p)^2 = a(p^2) + (-1/p)$$
.

On the other hand, by (11) we see

$$\alpha(p)^2 = \chi(\sigma_p^2) + 2(-1/p)$$
.

Therefore

$$a(p^2) = \chi(\sigma_p^2) + (-1/p)$$
.

Since the correspondence: $g \to \chi(g^2)$ is a class function of G, by computing inner products with irreducible characters of G, we have

$$lpha(\sigma_p^2) = 1 - (-1/p) + (m_0/p) + (-m_0/p)$$
 .

From this we have

$$a(p^2) = 1 + (m_0/p) + (-m_0/p); \hspace{0.2cm} S(p) = a(p) + a(p^2) - (-m_0/p) \,.$$
q.e.d.

Let $\text{Spl}\{f(x)\}\$ be the set of all primes p such that $f(x) \mod p$ factors into a product of distinct linear polynomials over F_p . Then we have

PROPOSITION 3. (Higher Reciprocity Law of f(x)). Let p be a prime number not dividing N. Then

$$p \in \operatorname{Spl}{f(x)} \iff a(p) = 2$$

Proof. This is obvious from Propositions 1 and 2.

§4. Elliptic curves and cusp forms of weight one

Let the notation be as in preceding sections. Consider the elliptic curve E over Q defined by

$$E: y^2 = x^3 + 4mx.$$

Then E has a complex multiplication J such that

(12)
$$J(P) = (-x, -\sqrt{-1}y),$$

for all points P = (x, y) on E.

Since $J^2 = -1_E$, the subalgebra \mathcal{O} generated by J over Z is identified with the maximal order \mathcal{O}_k of $k = Q(\sqrt{-1})$. Denote the L-function of E by

$$L(s, E) = \sum_{n=1}^{\infty} c(n) n^{-s}.$$

Let c(E) be the conductor of E. Further put

$$\vartheta(\tau, E) = \sum_{n=1}^{\infty} c(n) q^n$$
.

Since *E* has complex multiplications, we know $\vartheta(\tau, E)$ is a cusp form of weight 2, with trivial character on the group $\Gamma_0(c(E))$ (Shimura [8]). In this section we shall show that the cusp form $\theta(\tau, K)$ of weight one is associated with the cusp form $\vartheta(\tau, E)$ of weight 2 under a congruent relation. At first we determine the conductor c(E). Since *E* has complex multiplications it is easy to see that c(E) takes the form

$$c(E) = 2^x 3^y m_2^2$$

where $x, y \in \mathbb{Z}$ and m_2 is the product of all prime divisors of m which are prime to 6. Let e(2) and e(3) be the 2-exponent and 3-exponent of m respectively. Then by Tate's argorithm in Tate [10], we know y = 0 or 2 according to e(3) = 0 or not. Further x are as follows.

e (2)	0		1	2	3	
$m_1 \mod 4$	1	3		1	3	
x	5	6	8	6	5	8
			able 5.			

Let m_1^* be the integer defined by (9). Then we have from this

$$c(E) = 2^{x} m_{1}^{*^{2}}$$
.

Therefore it follows from Tables 3 and 5 that the level c(E) of $\vartheta(\tau, E)$ equals to the level N of $\theta(\tau, K)$ up to a power of 2 and that c(E) = N if e(2) is odd. For a prime number p not dividing c(E), denote by E_p the reduction of $E \mod p$. Then E_p is again an elliptic curve with complex multiplications \mathcal{O}_k . Let $\mathfrak{Q} = (1 + \sqrt{-1})$ be the prime ideal of k dividing 2. Denote by E(n) (resp. $E_p(n)$) the group of \mathfrak{Q}^n -division points of E (resp. E_p). Then

$$egin{aligned} E(2) &= \{(x,\,0)|x^{\scriptscriptstyle 3}+\,4mx\,=\,0\}\cup\{0_{\scriptscriptstyle E}\}\,,\ E(3) &= \{(x,\,y)|(x^{\scriptscriptstyle 2}-\,4mx)(x^{\scriptscriptstyle 2}-\,4m)\,=\,0,\,y^{\scriptscriptstyle 2}\,=\,x^{\scriptscriptstyle 3}\,+\,4mx\}\cup\{0_{\scriptscriptstyle E}\}\,, \end{aligned}$$

where 0_E denotes the identity element of the group structure on E. From this we obtain

(13)
$$P = (x, y) \in E(3) - E(2) \iff x^2 - 4m = 0.$$

Further K is generated over Q by all Ω^{3} -division points of E. Denote by N_{p} and T(p) the number of F_{p} -rational points of E_{p} and $E_{p}(3)$ respectively. Then we have following Proposition.

PROPOSITION 4. Keep the notations as above. Let

$$\mu(p) = \{1 - (-1/p)\}\{1 + (2/p)\}.$$

Then

(i)
$$T(p) = S(p) + (-m_0/p) + 3$$
;
(ii) $N_n \equiv T(p) + \mu(p) \mod 8$.

Proof. Let M (resp. M(n)) be the subset of F_p -rational points of E_p (resp. $E_p(n) - E_p(n-1)$). Let

$$\Lambda = \{a \in F_p | f(a) \equiv 0 \bmod p\}.$$

For $p \nmid 2m$, by (13) we have a bijection φ of Λ to M(3) defined by

$$\varphi(a) = (2a^2, 4a^3), \qquad a \in \Lambda$$
.

Therefore

$$S(p) = |\Lambda| = |M(3)|.$$

Further it is easy to see

$$|M(2)| = 1 + (-m_{\scriptscriptstyle 0}/p)\,, \qquad |M(1)| = 2\,.$$

Hence

$$T(p) = |M(3)| + |M(2)| + |M(1)| = S(p) + (-m_0/p) + 3$$

This shows (i). Next we shall prove (ii). The following is easily obtained:

(14)
$$S(p) = \begin{cases} 4 & \text{if } (-1/p) = (m/p)_4 = 1, \\ 2 & \text{if } (-1/p) = -1 \text{ and } (m/p)_4 = 1, \\ 0 & \text{otherwise}. \end{cases}$$

Let $p \equiv 3 \mod 4$. Then it follows from (14) and (i) just proved that

$$T(p) \equiv 4 \mod 8$$
 .

On the other hand it is easily obtained

 $N_{p} = p + 1$.

Therefore

$$N_p\equiv T(p)+\mu(p) \ \mathrm{mod} \ 8$$
 .

Let $p \equiv 1 \mod 4$. Then by (12), the endomorphism J_p of E_p induced by J is defined over F_p . Let U be the subgroup of $\operatorname{Aut}_{F_p}(E_p)$ generated by J_p . Then U is a cyclic group of order 4 and M becomes a U-module. Let $P \in M$ and denote by O(p) the U-orbit of P. Then we have

(15)
$$|O(P)| = \begin{cases} 1 & \text{if } P \in M(1), \\ 2 & \text{if } P \in M(2), \\ 4 & \text{otherwise.} \end{cases}$$

Let

$$M^* = \bigcup_{n=1}^{\infty} M(n)$$
, $M^{**} = \{x \in M | \text{order of } x \text{ is odd} \}$.

 $\mathbf{134}$

Then M^* and M^{**} become U-modules and $M = M^* \oplus M^{**}$. From (15) we know

$$|M^{**}| \equiv 1 \mod 4.$$

Let t be the largest integer such that $M^* \supseteq E_p(t)$. If there exists an element P of M(3), then it follows from (15) that

$$|M(3)| = 4$$
, $|M(2)| = 2$.

This implies that $t \ge 3$. Therefore

$$egin{aligned} |M^*| &= 2 \Longleftrightarrow t = 1 \Longleftrightarrow T(p) = 2 \ ; \ |M^*| &= 4 \Longleftrightarrow t = 2 \Longleftrightarrow T(p) = 4 \ ; \ |M^*| &\equiv 0 \mod 8 \Longleftrightarrow t \geq 3 \Longleftrightarrow T(p) = 8 \ . \end{aligned}$$

Hence by (16).

$$N_p = |M^*| \cdot |M^{**}| \equiv T(p) \mod 8. \qquad \qquad \text{q.e.d.}$$

Consider the L-function L(s, E) of E. Since E has complex multiplications, the Euler product and p-th coefficient c(p) of L(s, E) are as follows (Tate [9]):

(17)
$$L(s, E) = \prod_{p \nmid c(E)} (1 - c(p)p^{-s} + p^{1-2s})^{-1},$$
$$c(p) = \begin{cases} 1 + p - N_p & \text{if } p \nmid c(E), \\ 0 & \text{otherwise.} \end{cases}$$

Furthermore we have

PROPOSITION 5. Let p be a prime number such that $p \nmid c(E)$. Let $\gamma(p) = \{1 + (-1/p)\}\{1 - (2/p)\}$. Then

$$c(p) \equiv a(p) + i(p) \mod 8$$
.

Proof. Let ρ_{σ} denote the character of the regular representation of G. Then

 $ho_{\scriptscriptstyle G} = 1 + \psi_{\scriptscriptstyle 1} + \psi_{\scriptscriptstyle 2} + \psi_{\scriptscriptstyle 3} + 2 {\tt X}$.

Since G is of order 8, for all $g \in G$ we have

$$\rho_{G}(g) \equiv 0 \bmod 8.$$

In this congruent equation, put $g = \sigma_p$ for $p \nmid c(E)$, then by (11),

 $2a(p) + 1 + (m_0/p) + (-m_0/p) + (-1/p) \equiv 0 \mod 8.$

On the other hand, Propositions 2 and 4 imply

$$c(p)\equiv -a(p)-\mu(p)+p-2-\{1+(m_{\scriptscriptstyle 0}/p)+(-m_{\scriptscriptstyle 0}/p)\} ext{ mod } 8$$
 .

Thus

$$c(p) \equiv a(p) - \mu(p) + p - 2 + (-1/p) \mod 8$$
.

It is easy to see

$$\gamma(p) \equiv p - 2 - \mu(p) + (-1/p) \mod 8$$
.

Therefore

$$c(p) \equiv a(p) + \tilde{\gamma}(p) \mod 8$$
. g.e.d.

Note that a(p) = 0 if p|f, c(p) = 0 if p|c(E), and $\tilde{\gamma}(p) \equiv 0 \mod 4$. Further it follows from Tables 3 and 5 that c(E)/f is a power of 2. Therefore we have:

COROLLARY 3. Let p be an odd prime. Then

 $a(p) \equiv c(p) \mod 4.$

Furthermore, if f is even, then

$$a(2) \equiv c(2) \mod 4.$$

It follows from (2) and (17) that Fourier coefficients a(n) and c(n) are both multiplicative. Therefore we know that $a(n) \equiv c(n) \mod 4$, if n is odd and that $c(n) \equiv 0 \mod 4$ if n is even. Let

$$heta'(au, K) = \sum\limits_{n: \; ext{odd}} a(n) q^n \, .$$

Then $\theta'(\tau, K)$ is a cusp form of weight one, with character ε' on the group $\Gamma_0(4N)$, where ε' is a character mod 4N induced by ε (Lemma 2 in Shimura [8]). Consequently we obtain the next Theorem.

THEOREM 2. Keep the notation as above. Then

$$heta'(au,K)\equiv artheta(au,E) mod 4$$
 .

If f is even, we have further

$$\theta(\tau, K) \equiv \vartheta(\tau, E) \mod 4.$$

Remark 3. The number of rational points N_p is computed as follows. For $p \nmid c(E)$,

CUSP FORMS OF WEIGHT ONE

$$N_p = egin{cases} p+1 & ext{if } p \equiv 3 egin{array}{c} & mod \ p+1 - \pi (-4m/\pi)_4 - \pi (-4m/\pi)_4 & ext{otherwise} \ , \end{array}$$

where π and $\bar{\pi}$ are prime elements of $k = Q(\sqrt{-1})$ such that $p = \pi \cdot \bar{\pi}$ and $\pi \equiv 1 \mod (2 + 2\sqrt{-1})$ (Davenport and Hasse [1]). From this it is comparatively easy to deduce Proposition 4 and Theorem 2. However we could attain to Theorem 2, without using this result, along the following process:

$$c(p) \longrightarrow N_p \longrightarrow T(p) \longrightarrow S(p) \longrightarrow a(p)$$
.

References

- H. Davenport and H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen, J. reine u. angew. Math., 172 (1934), 151-182.
- [2] T. Hiramatsu, Higher reciprocity law and modular forms of weight one, Comm. Math. Univ. St. Paul., 31 (1982), 75-85.
- [3] T. Hiramatsu, N. Ishii and Y. Mimura, On indefinite modular forms of weight one, preprint.
- [4] M. Koike, Higher reciprocity law, modular forms of weight 1 and elliptic curves, Nagoya Math. J., 98 (1985),
- [5] C. Moreno, The higher reciprocity law: an example, J. Number Theory, 12 (1980), 57-70.
- [6] J. P. Serre, Modular forms of weight one and Galois representations, Proc. Symposium on Algebraic Number Fields, Academic Press, London, 1977, 193-268.
- [7] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Iwanami Shoten Publisher and Princeton Univ. Press, 1971.
- [8] —, On elliptic curves with complex multiplication as factors of the jacobians of modular function fields, Nagoya Math. J., 43 (1971), 199-208.
- [9] J. Tate, The arithmetic of elliptic curves, Invent. Math., 23 (1974), 179-206.
- [10] —, Algorithm for determining the type of a singular fiber in an elliptic pencil, Lecture Notes in Math., 476 (1975), 33-52.

Department of Mathematics University of Osaka Prefecture Sakai, Osaka 591 Japan ,