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ON A GENERALIZATION OF HAMBURGER'S THEOREM

AKINORI YOSHIMOTO

Introduction

The relationship between Poisson's summation formula and Ham-
burger's theorem [2] which is a characterization of Riemann's zetafunction
by the functional equation was already mentioned in Ehrenpreis-Kawai
[1]. There Poisson's summation formula was obtained by the functional
equation of Riemann's zetafunction. This procedure is another proof of
Hamburger's theorem. Being interpreted in this way, Hamburger's theo-
rem admits various interesting generalizations, one of which is to derive,
from the functional equations of the zetafunctions with Grossencharacters
of the Gaussian field, Poisson's summation formula corresponding to its
ring of integers [1], The main purpose of the present paper is to give a
generalization of Hamburger's theorem to some zetafunctions with Grossen-
characters in algebraic number fields. More precisely, we first define the
zetafunctions with Grossencharacters corresponding to a lattice in a
vector space, and show that Poisson's summation formula yields the func-
tional equations of them. Next, we derive Poisson's summation formula
corresponding to the lattice from the functional equations.

§ 1. Notations and formulation of the theorem

We denote by R and C the field of real numbers and the field of
complex numbers respectively. Let F be an algebraic number field of
degree n with signature [ru r2]. We can naturally embed F into RTl X
Cr\ Put V = Rri X Cr\ Then V may be regarded as a commutative
ring. For x = (x(1), , x^+r*) e V, we put trx == Σ?=i2 trRxw, Nx =
Ulι=ir*\NnXip)\, Φ) = exp(2π<f^ϊ trx). We define a lattice in V as a sub-
group of V having a basis {au , an} independent over R. Let L be a
lattice in V. Then its dual can be defined as the set L* consisting of
all x e V such that e(xy) = 1 for all y e L. We can show easily that L*
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is a lattice in V. Let OF be the ring of integers of F and EF be the

group of units of F, Throughout this paper, we consider only L satisfying

OFL c L.

Next, if D is a real number satisfying D ^ 1, we define the functions

Afatb)(s), B£6)(β) as follows:

ΛL (q\ _ v cmλa(m)pb(m)
im) Nms

Έ>L* ((Λ _ y dvλa(v)μb(v)

for Res > A where (m), (y) runs through £Ji,\L - {0}, EF\L* - {0} and

cm, dv are complex numbers. Moreover we define

where a = (α r i + 1, , α r i + r 2), 6 = (bu , 6r i+r2) and ap (p = rt + 1, , rx

+ r2) are integers and bp are real numbers such that ΣpL+/2 δ p = 0. μb is

complex conjugate to μb, and for ίy 6 EF, we assume that c,m = cm, d7V =

dy, λa(η) = 1, /£,(,) = 1.

We further assume that Afaib)(s) and jBfα* δ)(s) both absolutely converge

in the domain {s e C|Re s > 1}, and can be analytically continued to the

whole plane as meromorphic functions having at most simple poles at

s = 1 if (a, b) = (0,0) and can be analytically continued to the whole

plane as entire functions if (α, 6) Φ (0, 0). Moreover we assume that

(5 — l)Afayb)(s) and (s — ϊ)Bf*ib)(s) are entire functions of finite order.

Let Φ(x) = Φ(x{1\ , x ( r i+r2)) be in £fv which is the Schwartz space

over V when we regard V as Rn. Moreover we define

Φ*(y) = f Φ(x)e(xy)dx ,

where

dx = ds ( 1 ) -dxiri)\dx{ri+1) A dx{ri+1)\ | dx ( r i + r 2 ) Λ d x ( r ι + r

We put
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where the meaning of (m) is the same as before.

We further put

M = ' £ " \ap\, N= rΣ bp, A(L) =
,2X1/2

(2TΓ)

detl '

Then our proposition and theorem are stated as follows:

PROPOSITION. The functions Zfα,6)(s) satisfy

( 1 )

fί
i

x

4-

) 1 - 8 ff
i

? +
v Γ ~ ΐ 6 i '

2 2

/or αZZ Λα, /i6.

THEOREM. Suppose that the functions Afatb)(s) and Bf*ib)(s) satisfy

Δ

2 2

r^d - s)

ML)- ft r(±
i \ Δ

X ft
P=ri +

for all λa, μb.

Then we have

ΣL cmΦ*(m) = ciL)-1 Σ^ dβ(v) .

Moreover the coefficients cm9 dv are all equal.

% 2. Proof of Proposition

As is widely known, Poisson's summation formula is stated as

follows:

Σ Φ*(m) = ciL)-1 Σ ΦV) ,



70 AKINORI YOSHIMOTO

where Φ(x) is in S?r. Put

Φ(x) = exp(-τr|x ( 1 ) + u^\%) - exp(-2ττ|x ( r i + r 2 ) + u^+r^\%1+r2)

in (3), where tl9 , tri+r2 > 0, uσ\ , w(ri) are real variables and u(ri+1\

w(ri+r2) are complex variables. Then we can readily show

where

(p = r, + 1, , Λ + r2) .

Put w(1) = . . . = ŵ > = 0 in (4). Then we obtain

p = i

We denote by R+ the group of positive real numbers. We put G =

(R+Y*+r* and ||*|| = Π ^ tp UrA?+ι % for t - (tu , ίri+r2) e G. Moreover

let G° be the subgroup consisting of all yeG such that ||y|| = 1. Then

we have a product G = R+ X G°, where p = (̂ o1 ,̂ , p1/n) e G for /? 6 R+.

Let PF be the image of the group of units EF in G, and E be a funda-

mental domain for W2 in G°, where W2 = {x2\xe W}.

We denote the left hand side of (5) by θ(t, L). Then we have

( 6 ) θ(t,L) *

On the other hand, we see

S/2Or! \S/2 / Q \n

w ) Γ ( f ) Γ(s)' Zf »(s)

f Σ
G (m)

where
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= i έ - Γ ί Wyc>L) -
WF Jo JE

VF Jo JE y

where d*c means the appropriate measure on G°, t = yc(y eR+, ce G°), and

WF is the number of roots of unity in F

{θ(yc,L)-ϊ)d*cys'^
WF

X - λ - Γ f Wye, L) -

By using (6), we obtain

Γ ί (θ(yc, L) - l)d*cys<2^
Jo J E y

[
S Jo JE

_ 2μ*(E) _ 2

(1 - s)

+ Γ ί c{L)-\θ(yc,L*) -

where μ*(E) denotes the integral of 1 over E with respect to d*c. There-

fore we have

using c(L)c(L*) = 1.

We denote by Da the differential operator given as the product of all

(dldu(p))a*(p = n + 1, , r, + r2) for non-negative αp and all (3/3w(ί)+r2))"αί)

(p = Λ + 1, , Λ + r2) for negative αp. Assume (α r i + 1, , α rχ+r2) ^

(0, , 0), and put u(ί) = = w(n) = 0 after operating Da on the both

sides of (4), Then we obtain

( 7 ) meL

rtn+n f-\ap\
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with

We denote the left hand side of (7) by θa(t, L). Then we have

θa(t,L) = cίL)-> J l ^ L(8) ^ p
On the other hand, we see

ri + ra rι + r%
2 δj,/2 / On \s/2

Ϊ — + 1 ( ^ )

i a
- Σ ip/2 -

(2JΓ) J ) = r i + 1 2

x

with

[7

iff2 r(β + %

= 4r ί Σ^(n»)β
VV^ JG (m)

p=l

.^-1, L ) .

/ ΐ l .
~ l b /

T
p=n+i

with

C = (Cι9 ' ' , Cri + r2) 6 Or ,

Y Y jp J i. J Mi

1 C1 C

H > JO J E

By using (8), we obtain

Γ f θa(yc9 L)μb/2(yc) ^ff'
JOJE p=rl+l

Therefore we have

2 2
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= A(L*y- fl CL
l

This completes the proof of the proposition.

§ 3. Proof of Theorem

Let Φ(x) be in Sfγ. Put Φe(x) = Σ*eEF Φ(εx), |x ( p ) | = Pp (p = 1, , r λ

* ( p ) = pP exp ( Λ Λ = 1 ^ ) ( P = Γi + 1, , Γj + r2), p = /o1 p2

r i + r 2. Moreover let

P(p) be the set of x = (x(1), , x( r i+r2)) e V with a common p. Then ε e EF

operates on P(p) by x-> εx and P(^) has a compact fundamental domain

EF\P(p). On the space V we define a measure

σri+ί

and on P(p) the induced measure dP(ρ). Then Φe(x) has a multiplicative

Fourier expansion

( 9 ) Φe(χ) = ΣΨi(p)Kχ),

where λ(x) = λ_a{x)μ_b{x), the sum extends over λ satisfying the condition

that λa, μb are well defined. Moreover

(10) ψλ(p) = cλ Φe(x)λ(x)dP(p) ,
jEF\P(p)

where c = ( dP(ρ)) .
\jEF\P(p) J

On the other hand, we see

(11) Φ*(x) = Σ fiipYKx),

where Φ*(x) = 2 ε e ^i , Φ*(εx). We further note

(12) ί Ψλ(P)λ{x)e{xy)dx = ^ ( ^ ( y ) ,

where y = (y^, , y ^ + ^ ) , l/ p ) i = ^ ( P = 1, , r λ y(p) =

(p = n + 1, , n + r2), p' = pΊ - - p'r1+r2- We assume that Γj =̂ 0. Other-

wise we can put p — pi pr2 and prove Theorem similarly. We put p[

= t, pf2 = - tf1+ri - 1, ^ r i + 1 = . . . = = ^ 1 + r 2 = 0 in (12), and take the

integral of both sides with respect to t from 0 to co after multiplying
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them by ts~\ Before proceeding further, we recall the following formulas:

(13) Ja(z) = -A- Γ+a exp 0 / = Ί (aθ - z sin θ))dθ ,
2 J

(14) joχja{χy)(χy) dx-2 y Γ(_μ/2 + a/2 + 1/4) ( y > 0 ) ,

Π5) f°° x8"1 ̂ Λc» « /ί* — 9s-1-1/2 Γ{sj2)
Jo Γ((l - β)/2) '

where e α̂(z) is the Bessel function. Thus by a direct computation using
(13), (14) and (15), we have

(16) M(t}, .) = ( »L.)""V=I 2 - " ' fi
— 8)12 — V—

^ Γ(s + \aP\/2 + S^ΪK/2) M(ψ _ .

where M(Ψλ9s)= Γ Ψλ(p)psdp/p. Combining (16) with (2), we finally
Jo

obtain

(17) M(Ψh β)Afβti)(β) = c{L)-*M{Ψh 1 - s)Bf:a,_i)(l - s) .

Consider, on the other hand, the inverse Mellin transform of the left hand
side of (17) along the line Re s = 1/2, and shift the integral to the line
Re s = σx (σj > D) using the Phramen-Lindelδf theorem. Then, provided
that (α, b) Φ (0, 0), the result is

(18) Σ cMm) ,
(wι)

where Φ-λ(m) = ¥-2(Nm)λ(m). Similarly, if we consider the inverse Mellin
transform of the right hand side of (17) along the line Re s = 1/2, in turn
shift the integral to the line Re s = 1 — ax (σ1 > D) provided that (a, b) Φ
(0, 0), then we have

(19) c(L)-*ΣdM»),

where Φλ{ι>) = Ψλ{Nv)λ{v). Therefore by (18) and (19), we obtain

(20) Σ cΛ(m) = c(L)-' Σ dβλ{v) .
(TO) (v)

Even if (a, b) = (0, 0), the same arguments lead to
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cΛ(m) - M(ΨU

(21)
= c(L)-1 Σ ^ . W - M(ΨU l )β c(L)-1 ,

where we denote by A, B the residue of AfOtO)(s), jBfo*O)(s) at s = 1 respec-

tively. Hence by (20), (21), and the definition of Φe(x), we obtain

(22)

We can

that

(23)

Similarly we

(24)

Σ <v
meL-{0}

Φ*(m) + M

vQ L*— {0}

simplify the expression .

M(ΨU 1)

have

Jo

M(Wul)B-c

P

= Γ c f Φe{x)dl
Jo JEF\P(P)

= c Γ ί Φ(x)dP(p)
Jθ JP(p)

= c Φ*(β)

M(th 1) - c Φ(O) .

1)A.

<L)-J. It follows from (10)

P
dp
p

Putting c0 = c B-c(L)'\ d0 = c A c(L) and using (23) and (24), we obtain

(25) Σ cmΦ*(m) = c{L)->
L

Σ
vGL*

Next we shall show that the coefficients cm, dv in (25) are all equal.

To do this we define ψo(x) as a function on V which vanishes except in

a sufficiently small neighborhood of x = 0 and satisfy the condition that

ψo(O) = 1. For i 6 L*, we put ψ£(x) = ψo(x - £), and put ψ/x) = ψo(x - ^)

in (25). Then we have

-

On the other hand, we see

Jv

-I

Σ cmff(m) .
meL

ψ£(x)e(xm)dx

ψo(x — £)e(xm)dx
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= ί Ψo(t)e(tm)dte(£m) ,
Jv

with t = x — £9 and note e(Zτn) = 1 for all m e L . Therefore we have de

= d0. Similarly, using Φ**(JC) = Φ(— x), we have cm = c0 for all meL.

Thus we obtain

On the other hand, since ΣmeL Φ*(m) = c{L)~ι Σvez,*Φ(V) holds, we have

c0 = dQ. This completes the proof of Theorem.

Remarks. 1. In the special case where F = the field of rational

numbers and L = the ring of rational integers, our theorem reduces to

Hamburger's theorem.

2. According to Hecke's theorem (Satz 176 in Hecke [5]), the different

21 of a field F can be expressed as e2ί2, where e e F, Sί is an ideal of F.

Hence if F is a totally imaginary field and L = (yΊΓSl)"1, we obtain L = L*.
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