A REMARK ON SMITH'S RESULT ON A DIVISOR PROBLEM IN ARITHMETIC PROGRESSIONS

KOHJI MATSUMOTO

§1. Introduction

Let $d_{k}(n)$ be the number of the factorizations of n into k positive numbers. It is known that the following asymptotic formula holds:

$$
\sum_{\substack{n \leq x \\ n \equiv r(\bmod q)}} d_{k}(n)=\varphi(q)^{-1} x P_{k}(\log (x))+\Delta_{k}(q ; r),
$$

where r and q are co-prime integers with $0<r<q, P_{k}$ is a polynomial of degree $k-1, \varphi(q)$ is the Euler function, and $\Delta_{k}(q ; r)$ is the error term. (See Lavrik [3]).

In 1982, R. A. Smith [5] proved that if $(r, q)=1$, then for $x \geqq q^{\frac{1}{(k+1)}}$,

$$
\begin{equation*}
\Delta_{k}(q ; r)=F_{k}(0)+O\left(x^{(k-1) /(k+1)}(\log (2 x))^{k-1} d_{k}(q)\right) \tag{1.1}
\end{equation*}
$$

where the function $F_{k}(s)$ is the meromorphic continuation of the Dirichlet series

$$
\sum_{n \equiv r(\operatorname{med} q)} d_{k}(n) n^{-s}
$$

The proof of Smith depends essentially on Deligne's famous work concerning Weil's conjecture [1].

A remaining problem is the estimation of the term $F_{k}(0)$. In the "Note added in proof" of [5], Smith announced the estimate $F_{k}(0) \ll q^{\frac{1}{2} k}(\log (q))^{k}$, so the explicit upper bound of $\Delta_{k}(q ; r)$ obtained by Smith is as follows:

$$
\begin{equation*}
\Delta_{k}(q ; r)=O\left(q^{\frac{1}{k}}(\log (q))^{k}+x^{(k-1) /(k+1)}(\log (2 x))^{k-1} d_{k}(q)\right) . \tag{1.2}
\end{equation*}
$$

Furthermore, Smith conjectured that the upper bound of $F_{k}(0)$ can be improved to $q^{\frac{1}{2}(k-1)+\varepsilon}$ for any $\varepsilon>0$. He said, "I will return to this problem at another time." But, unfortunately, he suddenly passed away in March 1983, at forty-six years old.

[^0]In this note we shall prove this conjecture of Smith:
Theorem. If $(q, r)=1$, then for any $\varepsilon>0$,

$$
F_{k}(0)=O\left(q^{\frac{1}{2}(k-1)+\varepsilon}\right),
$$

where the O-constant depends only on k and ε.
This result was already proved in 1982, and appeared in [4] in March 1983, without knowing the existence of Smith's paper [5].

Our method also depends on Deligne's work. We shall use Weinstein's version [7] of Deligne's result, which gives the following sharp estimate of the "hyper-Kloosterman sum".

Lemma (Deligne-Weinstein). If we put

$$
S\left(m_{1}, \cdots, m_{k} ; q\right)=\sum_{\substack{\left.1 \leq \alpha \leq \alpha \leq q \leq 1 \leq i \leq k) \\ \alpha_{1} \cdots \cdots \alpha_{k} \leq 1 \leq \bmod q\right)}} \exp \left(2 \pi i q^{-1}\left(m_{1} \alpha_{1}+\cdots+m_{k} \alpha_{k}\right)\right),
$$

then,

$$
S\left(m_{1}, \cdots, m_{k} ; q\right) \ll k^{v(q)} q^{\frac{1}{2}(k-1)}\left(m_{1}, m_{k}, q\right)^{\frac{1}{2}} \cdots\left(m_{k-1}, m_{k}, q\right)^{\frac{1}{2}},
$$

where $v(q)$ is the number of distinct prime factors of q, and (a, b, c) is the greatest common divisor of a, b and c.

In the next section, we shall prove the Theorem. In Section 3, we mention briefly further comments concerning the estimation of $\Delta_{k}(q ; r)$.

The author would like to thank Dr. Masao Toyoizumi for some simplifying of the original manuscript. He would also like to thank the referee for valuable advices.

§ 2. Proof of the Theorem

The function $F(s)=F_{k}(s)$ is defined as the Dirichlet series

$$
F(s)=\sum_{n \equiv r(\bmod q)} d_{k}(n) n^{-s}
$$

for $s=\sigma+i t, \sigma=\operatorname{Re}(s)>1$. Then,

$$
\begin{aligned}
F(s) & =\sum_{\substack{1 \leq \alpha_{1}, \ldots, \alpha_{k} \leq q \\
\alpha_{1} \cdots \alpha_{k} \equiv r}}\left(\sum_{u_{1} \equiv \alpha_{1}} u_{1}^{-s}\right) \cdots\left(\sum_{u_{k} \equiv \alpha_{k}} u_{k}^{-s}\right) \\
& =q^{-k_{s}} \sum_{\substack{1 \leq \alpha_{1}, \ldots, a_{k} \leq \underline{c} \\
\alpha_{1}, \cdots k_{k} \equiv r}} \zeta\left(s, q^{-1} \alpha_{1}\right) \cdots \zeta\left(s, q^{-1} \alpha_{k}\right),
\end{aligned}
$$

where,

$$
\zeta(s, w)=\sum_{n=0}^{\infty}(n+w)^{-s} \quad(0<w \leqq 1)
$$

is the Hurwitz zeta-function. The Hurwitz zeta-function can be analytically continued over whole plane, and holomorphic except at the pole of order one at $s=1$. And, if $\operatorname{Re}(s)<0$, then

$$
\zeta(s, w)=-i \Gamma(1-s)(2 \pi)^{s-1} \sum_{m=1}^{\infty} m^{s-1}\left\{e(m w) e\left(\frac{1}{4} s\right)-e(-m w) e\left(-\frac{1}{4} s\right)\right\},
$$

where $\Gamma(s)$ is the Γ-function, and $e(x)=\exp (2 \pi i x)$. (See Titchmarsh [6], Chap. II) Hence, the function $F(s)$ is also meromorphic over whole plane, holomorphic except at $s=1$, and if $\operatorname{Re}(s)<0$,

$$
\begin{aligned}
F(s)= & q^{-k s} \sum_{\alpha_{1}, \cdots, \alpha_{k}}\left(-i \Gamma(1-s)(2 \pi)^{s-1}\right)^{k} \\
& \times \prod_{j=1}^{k} \sum_{m_{j}=1}^{\infty} m_{j}^{s-1}\left\{e\left(m_{j} \alpha_{j} / q\right) e\left(\frac{1}{4} s\right)-e\left(-m_{j} \alpha_{j} / q\right) e\left(-\frac{1}{4} s\right)\right\} .
\end{aligned}
$$

Let $\varepsilon_{j}= \pm 1(1 \leqq j \leqq k)$, and $E\left(\varepsilon_{1}, \cdots, \varepsilon_{k}\right)$ be the number of j such that $\varepsilon_{j}=-1$. Then,

$$
\begin{aligned}
& F(s)=q^{-k s}\left(-i \Gamma(1-s)(2 \pi)^{s-1}\right)^{k} \sum_{\varepsilon_{1}, \cdots, e_{k}= \pm 1}(-1)^{E\left(\varepsilon_{1}, \cdots, \varepsilon_{k}\right)} \\
& \times e\left(\frac{1}{4}\left(\varepsilon_{1}+\cdots+\varepsilon_{k}\right) s\right) \sum_{u=1}^{\infty} u^{s-1} \sum_{m_{1} \cdots m_{k}=u} \sum_{\substack{1 \leq \alpha_{1}, \ldots, \alpha_{2} \leq q \\
\alpha_{1}, \cdots \alpha_{k}=\xi}} \\
& \times e\left(q^{-1}\left(\varepsilon_{1} m_{1} \alpha_{1}+\cdots+\varepsilon_{k} m_{k} \alpha_{k}\right)\right) .
\end{aligned}
$$

Now we assume $(q, r)=1$, and estimate the right-hand side by DeligneWeinstein's lemma. Let α_{j}^{*} be the unique solution of the congruence $\alpha_{j} \alpha_{j}^{*} \equiv 1(\bmod q), 1 \leqq \alpha_{j}^{*} \leqq q$. Then, $\alpha_{k} \equiv \alpha_{1}^{*} \cdots \alpha_{k-1}^{*} r$, so the last sum of the right-hand side is $S\left(\varepsilon_{1} m_{1}, \cdots, \varepsilon_{k-1} m_{k-1}, \varepsilon_{k} m_{k} r ; q\right)$. Using Weinstein's estimate and Stirling's formula, we have

$$
\begin{align*}
F(s) & \ll\left((1+|t|)^{\frac{1}{2}-\sigma_{0}} e^{-\frac{1}{2 \pi}|t|} q^{-\sigma_{0}}\right)^{k} e^{\frac{1}{2 \pi|t| c \mid}} \\
& \times \sum_{u=1}^{\infty} u^{\sigma_{0}-1} \sum_{m_{1} \cdots m_{k}=u} k^{v(q)} q^{\frac{1}{(k-1)}}\left(m_{1}, m_{k} r, q\right)^{\frac{1}{2}} \cdots\left(m_{k-1}, m_{k} r, q\right)^{\frac{1}{2}}, \tag{2.1}
\end{align*}
$$

for $s=\sigma_{0}+i t, \sigma_{0}<0$.
Let

$$
Z(u)=\sum_{m_{1} \cdots m_{k}=u}\left(m_{1}, m_{k} r, q\right)^{\frac{1}{1}} \cdots\left(m_{k-1}, m_{k} r, q\right)^{\frac{1}{2}} .
$$

Then,

$$
|Z(u)| \leqq \sum_{m_{1} \cdots m_{k}=u}\left(m_{1} \cdots m_{k-1}, q^{k-1}\right)^{\frac{1}{1}} \ll u^{\varepsilon}\left(u, q^{k-1}\right)^{\frac{1}{t}} .
$$

So,

$$
\sum_{u=1}^{U}|Z(u)| \ll U^{\varepsilon} \sum_{u=1}^{U}\left(u, q^{k-1}\right)^{\frac{1}{2}} \ll U^{\varepsilon} \sum_{d \mid q^{k-1}} d^{\frac{1}{k}}[U / d] \ll U^{1+\varepsilon} q^{\varepsilon}
$$

Hence, by partial summation,

$$
\sum_{u=1}^{\infty} u^{\sigma_{0}-1} Z(u) \ll q^{\varepsilon} .
$$

Also, since $v(q) \ll \log (q) / \log \log (q)$, we have $k^{v(q)} \ll q^{\varepsilon}$. Substituting these estimates in (2.1), we have (for $\sigma_{0}=\operatorname{Re}(s)<0$)

$$
\begin{equation*}
F(s) \ll(1+|t|)^{\left(\frac{1}{2}-\sigma_{0}\right) k} q^{\frac{1}{2}(k-1)-\sigma_{0} k+\varepsilon} . \tag{2.2}
\end{equation*}
$$

Now, let

$$
f(s)=F(s)-d_{k}(a) a^{-s}
$$

where $a \equiv r(\bmod q)$ and $0<a<q$. Then, for $s=\sigma_{0}+i t$,

$$
\begin{equation*}
f(s) \ll(1+\mid t)^{\left(\frac{1}{2}-\sigma_{o}\right) k} a^{-\sigma o} q^{\frac{1}{2}(k-1)-\sigma o k}(a q)^{\varepsilon} . \tag{2.3}
\end{equation*}
$$

Next, it is easily shown that for $\operatorname{Re}(s)=\sigma_{1}>1$,

$$
\begin{equation*}
f(s) \ll q^{\epsilon-\sigma_{1}} . \tag{2.4}
\end{equation*}
$$

Now we introduce the function

$$
\tilde{f}(s)=f(s)-M(s),
$$

where $M(s)$ is the meromorphic part of $F(s)$ at $s=1$. Smith [5] showed that $M(s)$ has the same meromorphic part as the function $\Phi_{k}(s ; q) \zeta^{k}(s)$, where the definition of $\Phi_{k}(s ; q)$ is as follows:

$$
\Phi_{k}(s ; q)=\varphi(q)^{-1} \sum_{d \mid q} d^{-s} \mu(d),
$$

here $\mu(d)$ is the Möbius function.
Smith ([5], p. 263) proved that $\Phi_{k}(s ; q)$ has the Taylor expansion

$$
\Phi_{k}(s ; q)=\sum_{n=0}^{\infty} C_{1}(n ; q)(s-1)^{n}
$$

at $s=1$, where the coefficients $C_{1}(n ; q)$ satisfy the following estimates:

$$
n!\cdot C_{1}(n ; q) \lll q^{-1}(\log \log (3 q))^{n}
$$

So we can easily show that $M(s)$ satisfies the estimate

$$
\begin{equation*}
M(s) \ll q^{-1}(\log \log (3 q))^{k-1} \tag{2.5}
\end{equation*}
$$

in the range $\{|s-1| \geqq \varepsilon / 2\}$. Hence, $\tilde{f}(s)$ satisfies the same estimates as (2.3) and (2.4), if $\sigma_{1}-1$ is sufficiently small.

Applying the Phragmén-Lindelöf principle to the holomorphic function $\tilde{f}(s)$, we can deduce from (2.3) and (2.4) the following estimate of $\tilde{f}(s)$, for $\sigma_{0} \leqq \sigma=\operatorname{Re}(s) \leqq \sigma_{1}:$

$$
\begin{align*}
\tilde{f}(s) \leqq & \left(1+\left.|t|\right|^{\left(\frac{1}{2}-\sigma_{0}\right) k\left(\sigma_{1}-\sigma\right) /\left(\sigma_{1}-\sigma_{0}\right)} a^{-\sigma_{0}\left(\sigma_{1}-\sigma\right) /\left(\sigma_{1}-\sigma_{0}\right)}\right. \tag{2.6}\\
& \times q^{\left(\left(\frac{1}{2}(k-1)-\sigma_{0} k\right)\left(\sigma_{1}-\sigma\right)-\sigma_{1}\left(\sigma-\sigma_{0}\right)\right) /\left(\sigma_{1}-\sigma_{0}\right)}(a q)^{\varepsilon}
\end{align*}
$$

If we substitute the values $\sigma_{1}=1+\frac{1}{2} \varepsilon, \sigma_{0}=-\frac{1}{2} \varepsilon$ and $s=0$ in (2.6), we get

$$
\tilde{f}(0) \ll q^{\frac{1}{2}(k-1)+\varepsilon} .
$$

This result with (2.5) completes the proof of the theorem.

§ 3. Remarks on some estimations of $\boldsymbol{\Delta}_{\boldsymbol{k}}$

Heath-Brown [2] handled the Dirichlet series $F_{2}(s)$, and got an estimate of $\Delta_{2}(q ; r)$. A generalization of Heath-Brown's argument leads to the following estimate ([4]): If (q, r) $=1$ and $x \geqq q^{\frac{1}{(k+1)}}$, then for any $\varepsilon>0$,

$$
\begin{equation*}
\Delta_{k}(q ; r)=O\left(x^{k /(k+2)+\varepsilon} q^{-1 /(k+2)+\varepsilon}\right) . \tag{3.1}
\end{equation*}
$$

This result improves Smith's estimate (1.2) in the range $q^{\frac{1}{(k+1)}} \leqq x \leqq$ $q^{\left(k^{2}+2 k+2\right) / 2 k}$.

Now, using the estimate of our theorem, the result (1.1) leads to the estimate

$$
\begin{equation*}
\Delta_{k}(q ; r)=O\left(q^{\frac{1}{2}(k-1)+\varepsilon}+x^{(k-1) /(k+1)}(\log (2 x))^{k-1} d_{k}(q)\right) \tag{3.2}
\end{equation*}
$$

instead of (1.2), and this is sharper than (3.1) for any $x \geqq q^{\frac{1}{(k+1)}}$. (We note here that better estimates are known for some special values of k such as $k=4$. For general k, however, results as sharp as the estimate (3.2) seem to be not known before.)

Our theorem is a direct consequence of Deligne-Weinstein's lemma, so it seems difficult to improve the result (3.2) by the method of this paper. On the other hand, there is a possibility to improve the estimate (3.1), if we can refine the generalization of Heath-Brown's argument [2]. Such a result will improve the estimate of $\Delta_{k}(q ; r)$ for some range of x.

References

[1] Deligne, P., Séminaire géométrie algébrique $4 \frac{1}{2}$, Lecture notes in Math., 569, Springer, 1977.
[2] Heath-Brown, D. R., The fourth power moment of the Riemann zeta function, Proc. London Math. Soc., (3) 38 (1979), 385-422.
[3] Lavrik, A. F., A functional equation for Dirichlet L-series and the problem of divisors in arithmetic progressions, Izv. Akad. Nauk SSSR Ser. Mat., 30 (1966), 433-448. = Amer. Math. Soc. Transl., (2) 82 (1969), 47-65.
[4] Matsumoto, K., Master Thesis, Rikkyo Univ., 1983.
[5] Smith, R. A., The generalized divisor problem over arithmetic progressions, Math. Ann., 260 (1982), 255-268.
[6] Titchmarsh, E. C., The theory of the Riemann zeta-function, Oxford, 1951.
[7] Weinstein, L., The hyper-Kloosterman sum, Enseignement Math., (2) 27 (1981), 29-40.

Department of Mathematics Rikkyo University
Nishi-Ikebukuro, Toshima-ku
Tokyo 171, Japan

[^0]: Received November 22, 1983.

