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ON THE NUMBER OF DIFFEOMORPHISM CLASSES IN A

CERTAIN CLASS OF RIEMANNIAN MANIFOLDS

TAKAO YAMAGUCHI

§ 0. Introduction

The study of finiteness for Riemannian manifolds, which has been

done originally by J. Cheeger [5] and A. Weinstein [13], is to investigate

what bounds on the sizes of geometrical quantities imply finiteness of

topological types, —e.g. homotopy types, homeomorphism or diffeomorphism

classes-— of manifolds admitting metrics which satisfy the bounds. For

a Riemannian manifold M we denote by RM and KM respectively the

curvature tensor and the sectional curvature, by Vol (M) the volume, and

by diam(M) the diameter.

CHEEGER'S FINITENESS THEOREM I [5]. For given n, Λ, V>0 there

exist only finitely many pairwise non-diffeomorphic (non-homeomorphic) closed

n(Φ4)-manίfolds (4-manίfolds) which admit metrics such that \KM\<A2,

diam (M) < 1, Vol (M) > V.

He proved directly finiteness up to homeomorphism for all dimension,

and then for n Φ 4 used the results of Kirby and Siebenmann which show

that finiteness up to homeomorphism implies finiteness up to diffeomor-

phism. For n = 4, he put a stronger bound on ||Fi?||, where VR denotes

the covariant derivative of curvature tensor R. For given n, A9 Al9 V > 0,

we denote by Wln(Λ, Aί9 V) a class of closed ^-dimensional Riemannian

manifolds M which satisfy the following bounds;

\KM\ < A\ \\VRM\\ < Au diam(M) < 1, Vol (M) > V9

and set M(Λ, Au V) = U» W>n(Λ, Λ» V).

CHEEGER'S FINITENESS THEOREM Π [5]. For given n, A, Au V > 0, the

number # d i f f Wln(A, Al9 V) of diffeomorphism classes in (SRn(A9 Al9 V) is finite.

In the proof of the Cheeger finiteness theorem and our results as
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well, an estimate of the injectivity radius i(M) of the exponential map

on M plays an important role. But since in his proof Ascoli's theorem

is used essentially, it seems to us that it is impossible to bound the

number #di f f %Jln(Λ, Al9 V) explicitly from above by using the proof as in

[5]. The main purpose of this paper is to show the existence of an upper

ΐ>ound for #di f f Tl(A9 Λu V) and express upper bounds for #dif f Tln(Λ, Aί9 V)

and #dif f Wl(A, Al9 V) explicitly in terms of a priori given constants. For

a Riemannian manifold we denote by d the distance function induced

from the Riemannian metric.

We obtain the following theorems.

THEOREM 1. For given n, A9 Au R>0 there exist εγ = ε^ή) > 0, rx =

rj(n, A9 Aί9 R) > 0 such that if complete n-dίmensional manifolds M and M

satisfy the following conditions, then M is diffeomorphίc to M;

1) 1**1, \KM\ < A\ \\PRM\\, \\FRS\\ < A, i(M), ί(M) > R,

2) for some r, r < ru and ε, ε < εl5 there exist 2~(n+8)r-dense and

2~{n+^r-discrete subsets {p^dM, {qJ c M such that the correspondence

Pi -> qt is bίjective and (1 + ε)"1 < d(qί9 q^)jd{pu p3) < 1 + ε for all pu pj

with d(pί9 Pj) < 20r. εj and Γj can be written explicitly; e.g.

£ί = 10-20(n + l ) - 8 ( τ z ! ) - 2 2 - ( 2 w 2 + 4 1 ^ ,

rx = min{i?/140, εj20A9 no-'n^2-^n2 + 17n)/2)Ar\ (10(2n2A2 + I))"1}.

For a metric space X a subset A is δ-dense iff for any x e X9 d(x9 A)

< δ. A subset A is δ-dίscrete iff any t wo points of A have the distance

at least δ.

Let ωn denote the volume of the standard unit 7i-sphere. If we set

iϊ = mm{π/A, (n — ϊ)VI(2ωn-2e
(n~ί)Λ)}9 then R gives a lower bound of the

injectivity radii i(M) for all M i n %Rn(A9 Aί9 V)9 and every M i n Έl(A9 Al9 V)

has the dimension at most n09 where n0 = 2max{[log(&fc+2/&! V)], k) + 3,

k = [πe2A+1] + 1, (§ 1. Lemma). Let εί = ε^ή), rx = r^n, A, Al9 R) be as in

Theorem 1.

THEOREM 2.

# mn(A9Aί9 V)<(2 2 n -

# m(A9Al9 V)<_
diff n=0

where, No =
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Here we descrive another application of Theorem 1. For a bi-Lipschitz
map /: X->Y between two metric spaces X and Y, set

/(/):= inf {L; L'1 < d(f(x), f(y))/d(x, y) < L for all x9y e X}.

DEFINITION. Define p(X, Y) by

finf {log l(f); f: X-+Y is bi-Lipschitz map}

\oo if any bi-Lipschitz map does not exist.

It is clear that p is symmetric and satisfies the triangle inequality.
In the case X and Y are compact, AscoiΓs theorem implies

p(X, Y) = 0 iff X is isometric to Y.

For a positive integer n we denote by %n a class of complete n-dimensional
Riemannian manifolds M with

\KM\<oo, \\FRM\\ <oo,

Of course %n contains all compact Riemannian manifolds of dimension n.
Conversely, according to [7] every noncompact n-manifold admits a metric
which belongs to the class 2Γn. A theorem of Shikata [12] states that
there exists an ε(ή) > 0 depending only on n such that if compact n-
dimensional Riemannian manifolds M and N satisfy ρ{M, N) < ε(ή), then
they are diffeomorphic. We do not know whether p is distance on SP,
but can extend the Shikata theorem to the class 2P. Let et = e^n) be as
in Theorem 1 again.

COROLLARY 3. If M and N e %n satisfy p(M, N) < log (1 + εj, then
they are diffeomorphic.

Recently M. Gromov [8], [9] states without giving detail of the proof
that a similar result to Theorem 1 holds without the assumption for ||Pβ||.
But our Theorem 1 is still valid for noncompact manifolds. However the
assumption for ||F2ϊ|| is essential in the proof of our Theorem 1. Our
proof is of course different from Gromov's one. The main tool of our
proof is a technique of center of mass which is developed in [2],

The remainder of the paper is organized as follows: Assuming The-
orem 1, the proofs of Theorem 2 and Corollary 3 are given in Section 1.
Theorem 1 is proved in Section 2 - Section 4.

The author wishes to thank Professor K. Shiohama for his advice
and encouragement.
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§ 1. Proofs of Theorem 2 and Corollary 3

For a δ > 0, a system of points {xj in a metric space X is called a

δ-maximal system of X if {#<} is maximal with respect to the property that

the distance between any two of them is greater than or equal to δ.

{xt} is a ^-maximal iff it is a <5-dense and ^-discrete subset. We show

that there exists a ^-maximal system of every Riemannian manifold M.

Take a sequence Xt of compact subsets of M such that [JiXi = M9

Xί+1Ό Xίy where A denotes the interior of a set A. We denote by i(Xk)

the inίimum of the injectivity radius of the exponential map at points

of Xk, and set rk:= jmin{δ9 i(Xk)}. Take a ^-maximal system {p]}i^i^Nt

of Xt. Notice that since the balls B(p], r^ have compact closure, they

are contained in some Xkl9 and together with the fact that B(p\, rt) are

disjoint, this implies

N, < Vol (XJ/min Vol (B(p], rj).

k

By induction, it is possible to take a <5-maximal system {Pi}i^i^Nk of X

such that p^ = p{ for every j < k and every i, 1 < i < Nj. Then the

system \Jk=ι{Pί}Nk-1+i<i<Nk is a ^-maximal system of M, where iV0:= 0.

Proof of Corollary 3 assuming Theorem 1. By the assumption there

exists a bi-Lipschitz map f: M->N such that /(/) < 1 + e^ri). We may

assume

\KM\, \KN\< Λ\ ||Fi?^||, | | F ^ | | < ^1 ? ί(M), i(N) > R,

for some A, Λu R>0. Let rx = r^n, Λ, Al9 R) be as in Theorem 1, and

take a (1 + ε1)2~(w+9)r1-maximal system {pt} of M. Since / is bi-Lipschitz,

it is surjective. Therefore it is easy to show that {/(p*)} is 2~(w+8)r!-dense

and 2" (w+9)r rdiscrete. Q.E.D.

To prove Theorem 2 we recall an injectivity radius estimate. From

now on, for given n and δ > 0, let v(δ) (resp. v(δ)) denote the volume of

a <5-ball in the n-dimensional hyperbolic space with constant curvature

— Λ2 (resp. n-sphere with constant curvature Λ2). The following lemma is

a dimension independent version of [5], [10] and [11].

LEMMA. For given Λ, V > 0, there exist n0 — no(A9 V) and Ro = R0(Λ9 V)

> 0 such that if M is an n-dimensional compact Riemannian manifold such

that \KM\< Λ2

9 diam(M) < 1, Vol(M) > V, then
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(1) n = dim M < rc0,

(2) i(M) > min {π/A, (n - l)F/(2α)n.2e<n-^)} > Ro,

where n0 and Ro can be written explicitly as

no = 2 max {[log (k«+ηkl V)], k} + 3, k = [τreu+1] + 1,

i?0 = min {π/A, (n -
2 ζ <

Proof. For (1), the Rauch comparison theorem yields

V< Vol(M) < υ(ΐ) < ωn^
n~1)Λ,

where

(2πml(m - 1)! (n = 2m)
ωn~1== {2(2ττ)m/(2m - l)(2m - 3) 3 1 (n = 2m + 1).

Notice that

lim ωn.xe^n-1)A = 0.

It is an easy calculation to estimate such an n0 that <i)n-xe
{n~1)A < V for

all n > n0. For (2), it suffices to bound the lengths of closed geodesies

from below. Suppose that there is a closed geodesic with length I. The

Rauch comparison theorem implies that Vol(M) is not greater than the

volume of the tublar neighborhood of radius 1 of a geodesic segment

with length I in the n-dimensional hyperbolic space with constant cur-

vature — A2. Therefore we get

Vol(Λf) < l ωn..2 Γ (sinh At\A)n~2 cosh Atdt
Jo

Hence l>(n~ l)Vj(ωn-2e^Λ), and this yields (2). Q.E.D.

Proof of Theorem 2 assuming Theorem 1. For each Ma e Tln(A, Au V),

take a 2" ( n + 8 )r rmaximal system {p"}̂  of Ma. Note that since diam(Mα) < 1̂

^r,)n] = No.

Set m:= UfMn(Λ, Al9 V), L:= 1/(2"<*+*>ri) and ε[ ; = βl/(2(l + e^L). Suppose

that

m > (22n + ίηε1rΐ)(ξ0)+1N0 > ([L/2εί] + l)(ί°)+1iV0.
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Then 2ftn(Λ, Au V) contains at least [mlN0] pairwise non-diffeomorphic

manifolds {Ma}a^Λ with the 2~(n+8VΓmaximal systems whose numbers are

all the same, say iVi, Nt < No. We concider the set

of all the distinct pairs of the indices of the systems {pt}i for

For each Ma and Mβ (a, β e A), and for each (ik, jk) e Σ, we set l(a, β; k) =

d(pL> PβjJld(paik, P"k)* Notice that L"1 < l(a, β; k) < L. We fix some a e A.

For (ii,ii) e Σ there is a U e [L~\ L] such that if

At : = {β e A; l(a, β; 1) 6 [t, - e{, t, + ε(]}

then # Ai > [m/iV0]([L/2εί] + I)-1. By induction, for (ίk9jk)eΣ there is a

f̂c e [L"1, L] such that if

tk
Ak :={βe Ak-t; l(a, β; k) e [tk - ε[, tk

then # Ak > [m/iV0]([L/2εί] + l)" f c. By the assumption on m, it is possible

to take distinct pair β and βf in A^. Then \l(a, β; k) — l(a, β'; k)\ < 2ε{

for all k, 1 < k < N'l9 and this implies (1 + ε,)-1 < l(β, β';k)<l + eu This

is a contradiction since by Theorem 1 Mβ is diffeomorphic to Mp. The

estimate for #di f f Wl(Λ, Λu V) is an immediate consequence of the previous

lemma (1) and the estimate for #dif f Sft̂ Λ, Al9 V). Q.E.D.

§ 2. Construction of local diffeomorphisms

The rest of this paper is devoted to the proof of Theorem 1. For

given n, Λ, i?>0, set Ro: = j min {R, π/Λ} and let r and ε be adjustable

parameters with 0 < r < i2o/7O, 0 < ε < 2"(w+14). From now on we denote by

M and M complete n-dimensϊonal Riemannian manifolds which satisfy the

conditions in Theorem 1 for r and ε. In the final part of the proof, we

will set r < ru and ε < ει# We use the bound for || FR \\ actually only in

Section 4. Let {pt} c Mand {gt} c l b e 2"(7l+8)r-dense and 2"(n+9Y-discrete

subsets as in Theorem 1. For given p e M and d > 0, we denote by Mp

the tangent space of M at p, and by B(p, δ) the d-ball with center p.

Note that all d-balls with δ < Ro in M and M are convex and that by

the Rauch comparison theorem, for any v, w e Mp with || υ ||, || w \\ < t, t < Ro

sin ί̂ί/ l̂ί < d(expp v, expp w)/|| i; — w || < sinh Λt/Λt.

The purpose of this section is to prove the following lemma.
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LEMMA 2.1. For each ί there exists a linear ίsometry It from MPi to Mqi

such that if Ft : = expαi o J t o exp;/: B(pu Ro) -* B(qu i?0), then

< Sir for every p3 with d{p^p3) < lOr, where

δ1 = 2(n + l)(6 n + 2 n!2< n / 2 ) + 1 ) 1 / 2 (40i lr + 2ε) 1 / 4 .

Proof. Set ]},: = exp^(pj) and ςr,: = exp- 1 ^). Then {£,} and {g,} are

2-<w+7>r-dense and 2~(n+10)r-discrete subsets of the lOr-ball around 0 and

satisfy (1 + ε)-V2M" < ||g, - qk\\l\\Pj - p . l l < (1 + ε)e20Λr for all j , k, j Φ k.

Hence Lemma 2.1 is a direct consequence of the following.

LEMMA 2.Γ. Let {xt} be a 2~in+7)r-dense and 2-{n+ί0)r-discrete subset

of JB(O, r) c Rn with xx = 0. If a system {yt} of points in B(0, r) with yx = 0

satisfies (1 + ε)"1 < \\yt — y31|/||xέ — ^ || < 1 + ε for every i Φj. Then there

exists a linear isometry I of Rn such that

\\I(Xi) - y*|| < (n + I)(&n+2 n\'2^2)+1'^ψzr

for every i.

For the proof of the Lemma 2.Γ, it is convenient to introduce the

following notion, a normal system, and to investigate some properties of

a normal system. This is done in Lemma 2.3-Lemma 2.5.

DEFINITION 2.2. For 0 < η < 1 and r > 0, we say that a system of n

points {Pi}i<i<n of Rn is (r, η)-normal if (1 — η)r < \\Pi || < r, \(pt, Pj)\ < ψ2

for every i Φ j .

LEMMA 2.3. For every L > n + 1, let {pji^^n &e ^^ (r? 2~L)-normal

system for Rn. If we set Pii = Pi ~ (Pu "i>Mi - - <p«, u^^u,.,, ut : =

J></l|Ptll inductively, then

(1) Hpί || > (1 - 2-<L-«>)1/2r > (1 - 2"^-'0r,

(2) ! < p f c , ^ > | < 2 - ^ - ^ r

/or euery i, A with k > i.

Proo/. For ί = 1, (1) and (2) are trivial. Assume (1), (2) for /, 1 < j

< i. Then we get

l l ^ + 1 | ί 2 - l l A + 1 | | 2 - < p ί + i , ^ i > 2 - •••• - < P * + I , ^ > 2

> ((1 — 2~L)2 — 2~2(L-ί) — — 2~2(L-ί)y2

> (1 - 2-(L" ί-1))r2 > (1 - 2-(L"ί-1))2r2,

and for k > i + 1,
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< 2(2"L + 2-2(L-1} + . . . + 2"2 ( L- i )> < 2~L+ί+1r.

Thus for L > n + 1, the Gram-Schmidt orthonormalization procedure

yields the orthonormal basis {z/J for Rn via an (r, 2~L)-normal system {pj.

LEMMA 2.4. // {pji<i<n is an (r, 2~L)-normal system for Rn, and if for

some δ > 0, x and y in Rn satisfy

ί, III* - A l l - \\y -

for all i, 1 < i < n, then \\ x - y \\ < 3(n + 2~L+n+i)δ.

Proof N o t i c e t h a t

\<Pi, χ-y>\ = 2 - Ί I | χ | | 2 - ll^ll2 + U P . - y\\2 - \\P* - *IIΊ < 3^r.

B y i n d u c t i o n , we s h o w t h a t

(*) \<ui9 x-y}\< 3(1 + 2-L+i+ί)2δ.

This is trivial for i = 1. Assume (*) for j , 1 < j < i. Then we have with

Lemma 2.3

\<ui+u χ-y}\< llPί+iir^KPi+i, x - y>l + K P * + I , " I

+ |<Pi+i, WίXKi^x-y) ! )

< 3(1 - 2-L + ί + 1)"1(l + 2-(jL"1)(l + 2"L+2)2 + . .

+ 2-<L"i)(l + 2"L + ί + 1)2)^

< 3(1 + 2~L+ί+2)(l + 2~L+2 + + 2~L+ί+ί)δ

<3(l + 2-L+i+2)2δ.

Hence we conclude that

II* - yll < Σ \<uu χ-y>\<Σ 3(1 + 2- L + ί + 1 ) 2 £ < s(n + 2-L+n+i)δ.Σ
Q.E.D.

LEMMA 2.5. For k9 1 < k < n, and L>k + 2, let {βj^^^ (zRn be a

(1, 2~L)-normal system for the linear subspace spanned by {ej with \\et\\ = 1

for all i. If two unit vectors x and y which belong to Span {e

satisfy the following inequalities)

e«, x) - < (β€, y)| < α (1 < i < Λ - 1), <x, βfc> > 3/4, <y, βfc> > 3/4,
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then <X (x,y) < 6((k - 1) + 2~L+lc+3)a, where <£ (x,y) denotes the angle

between x and y.

Proof. Notice that \{eu x) - (eί9y)\ < a (1 < i < k - 1), and

2"1 £ (x, y) < sin < (x, y)<\\x- y\\.

Hence it suffices to estimate \\x — y\\ from above. Let {wj be an ortho-

normal basis for Span {ej obtained by the Gram Schmidt process from {ej.

From Lemma 2.4 (*), we get \(uu x - y>| < (1 + 2 i + ί + 1 ) 2 ^ (1 < i < k - 1)

By Lemma 2.3,

<afc, x> > Heίll-^e,, x) - |<efc, ^ I K M ^ Λ>| |<e t, M ^

>(ek,x}-2-L+1 - ••• - 2 - L + f c - 1 > 3 / 4 ~ 2 - L + f c >

Hence the inequality;

\<uk,

implies

and this

xy-

yields

I I *

that

-y\

l<«»,

k

1

k-i

1

x - y)\<

;ι <u« x -

xy-

k-1

1

yy\ —

\<»»χ-

k-1

1

< 2

y}\,

Λ - 1

Σ

Joe

χ-y>

S((k - Q.E.D.

From now we return to the situation in Lemma 2.1'. Let {xt} be a

2-(n+7)r-dense and 2-(n+10)r-discrete subset of 5(0, r) and let {yj be a

system of points in B(0, r) with 3Ί == 0 such that

(1 + ε)-1 < \\yt - y,\\l\\x, - *ill < 1 + e for every iψj.

LEMMA 2.6. | < ( χ o ^ ) - < ( y t , y,)\ < Vn™+hίβ for every i Φ j.

Proof. Set atti:= ςC(x4, x}) and βit):— ->C(y«,ŷ ). First we show that

.jl ^ 2(n+13)ε. Set « = 1 + s, then we get

2 + I I Λ II2) - <c-z\\yi -
|| \\yt

cos βit) + (/c2 - K-*)(2in+10)K +
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cos aitj - cos βitj < (A:4 - 1) cos βitJ + (Λ:2 - ΛΓ2)(2(71+10)Λ; + Λ:2)

< 2 ( n + 1 3 )ε:

Hence we can get t h a t \cosattj — cos βitj\ < 2(n+13)ε, and this yields

< 2<n/2>+V/2 (ε < 2~(7l+14)) . Q.E.D.

LEMMA 2.7. There exist {xmj}ι^^n c {*,} and {ym,}l5^n c {yj swc/̂  ίftαt

are (r,2~(n+i))-normal systems for Rn.

Proof. Take an orthogonal basis {w}} for /?" such that \\Wj\\ =

(1 _ 2-<n+6))r, and by denseness, take {xmj}i<j<n C {xj such that ||xm/ — w3\\

<i 2'in+7)r. An easy calculation shows that {Xmj}i^j^n and the correspond-

ing* toWi<j<n have the required properties. Q.E.D.

Proof of Lemma 21'. Let {ut} and {vt} be the orthonormal bases for

Rn obtained by applying the Gram-Schmidt process to {xmi} and {ym}

respectively. A required linear isometry I of Rn is defined by I(Ui): = vt.

If we set Xk = I(xmk)l\\I(xmk)\\ and Yk = ym t/| |ym j , then we have with

Lemma 2.3 (1)

This yields

<zfc, yfc> > cos

> l ~ 2 - ( w + 2 - f c ) > 3 / 4 .

ASSERTION 1. <£ (I(xmk), ymk) < (6k - 5)6fc-\k - 1)! ε'. ε7: = 2(n/2)+8ε1/2.

Proof. From the triangle inequality and Lemma 2.6, we have

and similarly,

<^C(ym.,I(xmfc)) > <£(ymifc,yWi) - ^C(/(xTO<), ym<) - ε',

hence,

(χ r o i ),y m i ) + e'.
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Clearly, <£ (I(xmi), ymi) = 0. Assume the assertion for ί, 1 < i < k — 1,

then we get for every i (1 < i < k — 1)

\<(ymt,i(χmj) - £(y»«,y»,)l < (6* - 5)6*-2(j - i)W + s

< ((6k - 11)6S-3(A - 2)! + i y .

Notice that {ymj\\ymi\\}i<n£k is a (1, 2"(n+3))-normal system for its spanning

subspace. Hence applying Lemma 2.5 to {ymj\\ymi\\}i^i&k, Xk and YH in

place of {e{}lii1ίk, x and y, we conclude

Λ :>W) ^ (6^ - 5)6*-2(A; - 1)!ε'. Q.E.D.

ASSERTION 2. 11|/(x,) - y . J - | | y < - ym,[| | <

for every i and every &, 1 < k < n.

This and Lemma 2.4 complete the proof of Lemma 2.1'.

Proof of Assertion 2. Assertion 1 and the triangle inequality imply

that

^ <( j 4 ,y r o ι ) + ((6ft - S)6"-2(k - l ) ! + i y ,

and similarly,

<(i(χi),ym*) > < (y»y~J - ((βft - 5)β"-%k - 1 ) ! + i y ,

hence,

K(ί(χ*),y»») - <(yi,ymt)\ < ((6ft - 5)6*-2(£ - i ) ! + i y .

Therefore we have

) - y-J* - lly*-y.,IH

- HyilH + 211̂ 11111̂ 11 cos

-| |I(*<)| | cos £(/(*,), y»»)l,

w h e r e | | | 7 ( x i ) | | 2 - | | 3 ' ί | |
2 | < 2 £ r 2 and

11|yt\\ cos <(y 4 , jm f t) - \\I(xt)\\ cos < ( I ( Λ ( ) , y»,)|

< r<\%(yifynt) - <(I(x 4),y»J + e)

< ((6ft - 5)6*-2(Λ; - 1)! + 2)ε'r.

Hence the inequality

III/(**) - y.»ll - l|y« - y.»ll I < III*(*«) - ymJ - \\y* - y^ΛT

implies the required estimate. Q.E.D.
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§3. Reduction and C°-estimates

In this section we average the local diffeomorphisms Fu constructed
in the previous section, with a center of mass technique to obtain a
smooth map F: M-+M and control the C° error between F and Ft. Let
ψ be a smooth function such that

ψ|[0,4] = l, ψ|[5,oo) = 0, 0 > ^ > - 2 .

For every x e M, define the weight φι(x) of Ft(x) by

&(*): = ψ(d(x,Pί)lr)/Σ Ψ(d(x,Pj)lr).
3

Notice that all p3 with d(x, p3) < 5r are finite and the corresponding
Fj(x) are contained in some convex ball B. It is easy from convexity
argument to see that for a fixed xeM, the function Cx: M-+R defined
hy Cx(y) = iΣi Φi(χ)d2(y, Ft(x)) is C°° strongly convex on B, and has a
unique minimum point on M. Setting

F(x): = the unique minimum point of Cx

we define a map F: M-+M. We show that F is smooth. Define a map
V from a sufficiently small neighborhood of the graph of F in M X M to
the tangent bundle TM by

V(x, y): = - Σ &(

Since V(x,y) = (grad C,)(y), we have V(x, F(x)) = 0. Let iί: ΓΓM-
be the connection map, and define a map D2ViXty): My-+My by D2V(Xty)(y(0))
= Pφu»V(χ9y(t))9 where we consider V(x,;y(£)) as a vector field along a
smooth curve y(t) with y(O) = ^. Notice that

K(d/dt V(x,y(t))\t._0) = A t W f l O ) ) ,

and D2"̂ (ar,y) is a linear map. From the standard Jacobi fields estimates
(See (4.3) in the proof of Lemma 4.2),

\\D2V(x,y)(y(0)) ~ y(0)\\ <

This yields that D2V(Xyy) is a linear isomorphism, and hence for y = F(x),
the space spanned by {djdt V(x,y(t))\t=0} and the (horizontal) tangent
space of the zero section of TM at (F(x), 0) span (TM)(F{xh0). Therefore
the implicit function theorem implies the smoothness of F.

From now on we fix x0 e M and set y0: = F(xQ).
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LEMMA 3.1. dFXo has maximal rank iff

+ Σ Ψ(d(Xo, Pdlr) • d(ex^)(dFt(xφ))) Φ 0

for every smooth curve x(t) with x(0) = x0 and x(0) Φ 0.

Proof. Differentiating the curve V(x(t)9 F(x(t))) in the zero section

of TM9 we have

(3.2) djdt V(x(t), yo)\t,o + D2V(Xΰ,ya)(dF(x(0))) = 0.

Hence dFXo has maximal rank iff djdt V(x(t), yo)\t=o Φ 0. Since V(x0, y0) = 0,

dldtV(x(t),y<ί)U

(3.3) = -Σd/Λ
i

-ΣΦtixo)

This completes the proof. Q.E.D.

We will show in Section 4 that in the above (*), the norm of the

first term is smaller than that of the second if r and ε are taken sufficiently

small. To do this we must first estimate the numbers of the sum in each

term.

LEMMA 3.4. If Nx\=%{i; ψ(d(x09Pi)/r) = 1} and N2: = #{i: ψ(d(x0, Pi)/r)

Φ 0}, then NJ^ < 6\

Proof Since {pt} is 2"(7l+8)r-dense, the union of B(pi9 2"(7l+8)r) with

o> Pi) < 4r covers the 3.9r-ball around x0, and since {pt} is 2~(n+9)r-

discrete, the family of B(pί9 2~(7Z+10)r) with d{xQ,pτ) < br are disjoint and

contained in the 5.1r-ball around x0. It follows from the Rauch com-

parison theorem that

re+8)r), N2

Hence we can get an explicit bound for JVg/iVΊ. Q.E.D.

Now we fix i and k such that d(xo,Pi), d(x09pk) < 5r, and estimate

, Fk(x0)).

LEMMA 3.5. \d(qj9 Fk(x0)) - d(qj9 Ft(x0))\ < δ2r for every j with d(pί9pj),

,Pi) < lOr, where δ2 = 2(^ + 600 Λr).
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Proof. Notice that

e-™* <. d(Fk(xΰ), Fk(Pi))ld(x0,Pi) < ^ .

By Lemma 2.1,

\d(q3, Fk(x0)) - d(Fk(Pj), Fk(x0))\ < δ,r.

Hence the triangle inequality implies

(3.6) \d(pj9 x0) - d(qj9 Fk(x0))\ < (δ.r + 40Λr-d(Pj, x0)) < δ2φ.

From the same estimate for i, we have the required bound. Q.E.D.

Here we assume the following bound on ε and r in order to bound

δ2 < 1/2;

(**) e, 20Λr < 2~ι\n + l)-4(6w + 2n!2 ( n / 2 ) + 7)'2.

This bound assures that cϋCF^), ^&(*o)) < 2r/3.

LEMMA 3.7. d(Fk(xQ), F^Xo)) < δzr, where δs = 8(n + ΐ)δ2.

Proof. Take a qmoe{qt} such that d(qmo9 Fk(x0)) < 2~(7l+8)r, and let

xk and Xi denote the images of Fk(x0) and Fi(x0) by exp^o. Then from

the above bound (**) we have that \\xk\\, \\xt\\ < r. By Lemma 2.7, we can

choose {qm}i^j^n out of {gj such that if qmj denotes the image of qmj by

exp~lo, then {qm}ι<,3<,n 1 is an (r, 2~(w+4)) normal system for MqmQ. Notice

that {pmj}ι<;jίn corresponding to {qmj}i<j^n are contained in B(pk, 10r)Π

B(pi9 lOr). From Lemma 3.5 we have

I llfc, — ΛΓfc|| — \\qmj -Xi\\\< 2δ2r, 0<j<n,

and together with Lemma 2.4 this yields

d(Fk(x0)f F^)) < 8(n + ϊ)δ2r. Q.E.D.

From the definition of F it is clear that d(F(x0), Fi(x0)) < <53r for

every i with d(xo,Pi) < 5r. Hence we have with Lemma 3.4

|| Σ djdt ψ(d(x(t),pz)lr)Uo
(3.8)

< N2(2lr)δsr\\x{0)\\ <

§ 4. C^estimates

To estimate the second term in Lemma 3.1 (*) from below, we must

control the error between d(ex^)(dFi(x(0))) and d(exp-^)(dFk(x(0))). To
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do this it is essential to estimate \\dFk(x(0)) — PdFi(x(0))\\ from above,

where P denotes the parallel translation along the minimizing geodesic

from Fi(x0) to Fk(x0). This is done in Lemma 4.5.

LEMMA 4.1. For each xeM, let {qaj}: = {qt}Γ[B(x,r) and N': = %{qa}»

The map Φ: B(x, φ)-+RN' defined by Φj(y) = d\qapy) satisfies the follow-

ing;

(1) Φ is an embedding, and \\dΦ(v)\\ > r\\υ\\ for every tangent vector

v on B(x9 r/2),

(2) N' < 2n(n+n\

Proof. The convexity of each component Φι of Φ implies the injectivity

of Φ. For a given tangent vector υ on B(x, r/2), let T be a geodesic with

γ(0) = v/\\v\\. Take a qaj such that d(qap T(r/2)) < 2~(w+8)r. Comparing the

triangle with vertices (ϊ(0)9 T(r/2), qa) to a triangle with the same edge

length in the sphere with constant curvature A2, we have that cos

<£ (f(0), σ(0)) > 1/2, where σ denote a unique minimizing geodesic from

r(0) to qaj. This yields that

\\dΦ(v)\\>\dφi(v)\>r\\v\\.

The same proof as in Lemma 3.4 implies (2). Q.E.D.

We fix i and k with d(pu x0), d(pk, x0) < δr and take an embedding

Φ: B(Fk(x0), rl2)->RN' defined in the previous lemma for Fk(x0), where we

set {qaj}: = {qt} Π B(Fk(xQ), r). For a unit tangent vector v at x0, let 7, σk

and Ci be geodesies such that f(0) = v, σk(0) = dFk(v) and ά^O) =

For every qap we set

W) = d2(p«,, r φ ) , gmtl(t) = <z>̂ (Fro r φ ) ,
hmjt) = Φ'(σΛφ) , m = k,i.

LEMMA 4.2. On [0, r/2],

(1) 2{1-A%)<f; < 2(1 +A%),

2(1 - Λ2Λm>-2 M ! < ^ , , < 2(1 + Λ*hm,s)e™\

(2) \g'^-K,s\<Ωj

where Ω, = 82 +

(2) is the only place where we need the assumption for \\FR\}

Proof. We consider geodesic venations
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a(t, s) =

β(t, s) = y

Then for a fixed £, we have Jacobi fields

Jo(s) = ~(t,s) and J(s) = ^ ( * , S ) ,
ot ot

and the second variation formula yields

gZj(t) = 2«F j oJ0, To) + <J0, FΓ oJ 0»(l), K,j(t) = 2<J,

where To and ϊ 7 denote the vector fields dajds and dβ/ds. We assert that

<•) (1 - Λ2||7Ί|2)|| J(l)||2 <

which implies (1). Let τ be a geodesic with ||τ|| = HΓH in the n-sphere S

with constant curvature Λ2 and / a linear isometry from Mqa to Sr(0),

and W the vector field along τ defined by using the parallel translations

along β(t, ) and τ and /. Then a standard comparison argument implies

<J, J'Xl) = UJ, J') > UW, W) > I0(V, V) = < V,

where Jo denote the index form and V the Jacobi field along τ with

V(0) = 0 and V(l) = W(ί). It is easy to check that

|| V(s)f = s2||

where JT denote the tangential component of J. Hence we have that

<J,J '>( l )^( l - i l ) l | | 2 I | | l i ) | | J ( l ) | | ί . Let P be a parallel vector field along

j8(ί, ), then we get

|<J(β) - sJ'(s), Py\ = \s(R(T, J)T, P)\ < 2Λ*\\T\?\\J\\s.

The integration implies

<4.3) ||J(1)- J'(1)| |^^| |Γ

It follows

K^j'xi)! < wjanwjxm < α +

For (2), we get with (*)
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2|<J0, JΌXD - <J, J '

e20Λr(2 + 8Λ2r2) - e~2M

4.6r | |F / e ( 1 ) J o | | .

2|<r / β j 0,

8ΛV) + 2||Γ/0(1)J0|| 2.3r

Let {ej be an orthonormal basis for ΛfPw and {xt}, {yt} the normal coor-

dinate systems on B(pm, lOr), B(qm, lOr) based on {ej, {JOT(βf)} respectively.

Let Z7^- and Γf^ be the Cristoffel symbols with respect to {xt} and {yt}

and let c: = F W o r. Note that

4~,
dy,

ciCj = 0 ,

= Σ (δ. + Σ
k v

Σ

By the Rauch comparison theorem, we get

9

F3 , μ i,y| S e

and from a Cheeger's result (See [4], Lemma 4.3), we can estimate with

(**) in Section 3

dXj II

Therefore we conclude that \\Vtc\\ < 2n3e80ΛrΩ, and this yields (2). Q.E.D,

The following lemma is used in the proof of Lemma 4.5.

LEMMA 4.4. Let φ; [0, t] -> R be a C2-function such that φ(0) = 0 and

\φ(s)\ < a, \φf'(8)\ < tc on [0, t]. Then |^(0)| < a\t + rct/2.

LEMMA 4.5. WPdF^υ) - dFk(v)\\ < 2W(*+11)/2(11S3 + Ωxrβ\ where P de-

notes the parallel translation along the minimizing geodesic from Fi(x0) to

Fk(x0).

Proof. Let τ be a geodesic with τ(0) = PdF^υ) and let us(t): = Φj(τ(t)).

We apply the previous lemma to hkJ — ujt On [0, r/2] we have with (3.6)

and Lemma 4.2 (2)
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\hktJ - hitί\ < \hktJ - gkj + \gkJ - fA + \fj - gUj\ + \gitj - Kλ

and the Rauch comparison theorem implies

\hίtj - Uj\ < d(σ,(0), τ(0)) coshΛr 4r < 5δzr,

hence

\hkJ - Uj\ < (4δ2 + δδs + Ωφ)r\

Together with Lemma 4.2 (1), Lemma 4.4 applied to φ = hkJ — Uj yields

\dΦj(σk(0) - τ(

By Lemma 4.1, we conclude

tiv) - dFk(υ)\\ < 2n(n+n»2(llδ3 + Ωφ). Q.E.D.

Let Pfc, Pi denote the parallel translation along the minimizing

geodesies from y0 to Fk(x0), Fi(x0), and for simplicity, set

vm:= dFJv), vm:= d(exp^)(rfFm(ί;)), m = ί, k.

LEMMA 4.6. \\vk - 5,11 < δi9 where δ, = 2n^n+n^2(12δ3 + fl^/2).

Proof. From standard estimate of the Jacobi equation and an easy

comparison argument, we get

\\Pkvk-vk\\, HPί1^ - δ*ll, \\Pυt -P.P^v,|| <ΛV.

Together with Lemma 4.5, this yields

113, - 3,|| = \\Pkvk -Pkϋt\\

< \\Pkΰk - vk\\ + Hi;. - Pυt\\ + \\Pυt - P.PT^W

+ WPuP^Vt - Pkυt\\

+ flir/2). Q.E.D.

Proof of Theorem 1. By Lemma 4.6, we have

, A)/r)Di - Σ Ψ(d(xQ,pdlr)vk

ί
||Σ

i

hence with Lemma 3.4

(0.9 - β^N,.
i

If we set ε < εl9 r < ru then we get with (3.8)
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O.12V;.

By Lemma 3.1, F is an immersion. Furthermore the above inequality

and (3.3) imply

On the other hand, a standard Jacobi fields estimate (4.3) yields

WdFMV(x0, F(ΐ(t)))\\ < 4iV2||dF(ι;)||.

Hence we have with (3.2) and Lemma 3.4

\\dF(v)\\ > NJ40NI > D(2-(w+10)r)/40.6wι;(5.1r) > 0.

This conclude that F must be surjective, and hence injective since it is

a homotopy equivalence by its construction. Q.E.D.

Added in proof. Recently we have received a preprint, S. Peters

'"Cheeger's finiteness theorem for diffeomorphism classes of Riemannian

manifolds", where the finiteness of diffeomorphism classes of Cheeger

type is proved for all dimensions without the assumption for \\FR\\ by using

a similar method to our Theorem 1.

REFERENCES

11 ] R. Bishop and R. Crittenden, Geometry of manifolds, Academic Press, New-York,
1964.

|[ 2 ] P. Buser and H. Karcher, Gromov's almost flat manifolds, Asterisque, 1981.
;[ 3 ] J. Cheeger, Comparison and finiteness theorems for Riemannian manifolds, Ph. D.

Thesis, Princeton Univ., 1967.
[ 4 ] , Pinching theorems for a certain class of Riemannian manifolds, Amer. J.

Math., 91 (1969), 807-834.
:[ 5 ] f Finiteness theorems for Riemannian manifolds, Amer. J. Math., 92 (1970),

61-74.
I 6 ] J. Cheeger and D. Ebin, Comparison theorems in Riemannian geometry, North-

Holland, 1975.
1 7 ] R. Greene, Complete metrics of bounded curvature on noncompact manifolds, Arch.

Math., 31 (1978), 89-95.
1 8 ] M. Gromov, Almost flat manifolds, J. Differential Geom., 13 (1978), 231-241.
1 9 ] , Structures metriques pour les varietes riemanniennes, redige par J. Lafon-

taine et P. Pansu, Cedic-Fernand Nathan, Paris, 1981.
110] E. Heintz and H. Karcher, A general comparison theorem with applications to

volume estimates for submanifolds, Ann. Sci. Ecole Norm. Sup., 11 (1978), 451-470.
J l l ] M. Maeda, Volume estimate of submanifolds in compact Riemannian manifolds,

J. Math. Soc. Japan, 30 (1978), 533-551.
J12] Y. Shikata, On a distance function on the set of diίferentiable structures, Osaka

J. Math., 3 (1966), 65-79.



192 TAKAO YAMAGUCHI

[13] A. Weinstein, On the homotopy type of positively-pinched manifolds, Arch. Math.,
18 (1967), 523-524.

Saga University
Faculty of Science and Engineering
Saga 84-0, Japan




