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CONGRUENCE RELATIONS OF ANKENY-ARTIN-CHOWLA TYPE

FOR PURE CUBIC FIELDS

HIROSHI ITO

§ 1. Introduction

Ankeny, Artin and Chowla [1] proved a congruence relation among

the class number, the fundamental unit of real quadratic fields, and the

Bernoulli numbers. Our aim of this paper is to prove similar congruence

relations for pure cubic fields. For this purpose, we use the Hurwitz

numbers associated with the elliptic curve defined by y2 = 4x3 — 1 instead

of the Bernoulli numbers (§ 3). As a corollary to the main theorem (§ 5),

we have the following:

For a prime number p congruent to — 1 modulo 9, let h and

t + UΛ/ p + v Λ/ p2 > 1 be the class number and the fundamental unit of

the pure cubic field Q(Vp) respectively, where t, u and v are rational

numbers. Then we have:

2uh ΞΞ G(ί,2_1)/3modj9,

2(2ϋ — u2)h ΞΞ G2(ί,2_1)/3 modp .

Here Gk (k I> 2) are rational numbers defined by the power series expansion

of the Weierstrass p-function satisfying p'(z)2 = 4p(zf — 1:

Z

Let m > 0 be a cube-free rational integer which has a prime divisor

p Φ 2, 3, and p a prime ideal of K = Q(V — 3) over p. In this paper, we

shall prove similar congruence relations modulo p for the pure cubic field

Q(fym). For this purpose, we first translate, in Section 2, the analytic

class number formula into the form

(the fundamental unit)71 = (the elliptic unit),
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96 HIROSHI ITO

and then, following the idea of Robert [11], we take Rummer's logarithmic
derivatives of both sides. In the final section, we shall give some discussion
concerning the p-adic L-functions of Lichtenbaum [6].

Throughout, we denote by Q the algebraic closure of the rational
number field Q, C the complex number field, and Cv the completion of
the algebraic closure of the p-adic number field Qp. We fix an embedding
ίoo of Q into C and an embedding ip of Q into Cp such that ip(p) is con-
tained in the valuation ideal of Cp. Via these embeddings, the algebraic
numbers in C will be identified with the algebraic numbers in Cp. Denote
by h and ε > 1 the class number and the fundamental unit of the pure
cubic field Q(δ) respectively. Here δ is the real cube root of m.

§2. The analytic class number formula

In this section, we translate the analytic class number formula for
Q(δ) into the form which is suitable for the later applications ((2), (7)).
Until the end of Section 3, the discussion will take place inside C. Put H —
K(δ) and denote by Θκ the ring of integers of K. Note that m is uniquely
expressed as m — ab2, where a and b are positive integers which are
square-free and prime to each other. Then the conductor of the abelian
extension HjK is given by the ideal (/) = fφκ. Here / is the rational
integer defined as follows (cf. Hasse [4] and LeVeque [5]):

( ab if α2ΞΞ 62mod9,

[3ab otherwise.

The ray class group Cl(/) of iΓ modulo (/) is naturally isomorphic to
(®κlf@κ)xlp> where μ is the image of the group μ of units of K in (&κίf@κ)x

By the assumption on m, f has a prime divisor p ^ 2, 3, so that μ has order
6. If a e Θκ is prime to /, we denote by Ca the element of Cl(/) represented
by (a).

Denote by (a/β)3 the cubic residue symbol in K and put X = (m/')3.
Then the map Ca H * X(a) is well-defined and gives a character of Cl(/)
corresponding to H/K. We denote this character also by %. For the
Dedekind zeta function ζQ{δ)(s) of Q(δ), we see

Cβ(«(s) = ζ(s)Lx(s, X)

from Meyer [8]. It follows from the analytic class number formula that
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Let Hf be the ray class field of K modulo (/). Take and fix ΐ e Θκ such

that (Γ, 6/) = 1 and X(ΐ) ^ 1 . If we use the ray class invariant φf(C)

modulo (/) defined in Section 2 of Robert [10], we see

12/ CSOK/)

12/

Hence we obtain

\Δ ) 6 —

Since NHf/H(φf(Cr)) = NH^^^C;1)), we also have

(3) ε 1 2 / Λ = Π φΛG)'™***™-*.
cecuf)

Now we consider the /-th root (> 0) of the right hand side of (2).

Our technique here is borrowed from [10]. Let p(z) be the Weierstrass

p-function which satisfies

V\zf = 4p(z)3 - 1.

Denote by L the period lattice of p(z). We may write L = ΘKΩ with Ω

real and positive. For a e ΘKi denote by a! the conjugate of a and put

Na = aa!. Let σ(z) be the Weierstrass σ-function of L, and put

θ(z) = A(L)σ"(z),

φ(z;a)=θ(az)lθ(z)N* (μeθκ).

Here Δ{L) is the discriminant of L which is equal to — 27. It should

be remarked that φ(z; a) is an elliptic function with respect to L. More

precisely, we have

( 4 ) φ(z; a) = a*J(Ly-»« [Ί <P(«) - P(β)f ,
βφQ

where the product is taken over the non-zero α-division points β of C\L

(Corollary 2.6 of [6]).

Because the number of roots of unity in H is equal to that of K, by

Lemma 6 of [10], we can take βj e Θκ and rrijeZ (j e J) such that

Σ
(5)

U = 1, (&,6/) = l (jeJ).
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Here J is a finite index set. We fix {βj}jeJ and {mj}jeJ which satisfy (5)

throughout this paper. Set τ = f~ιΩ, and put

jeJ

LEMMA 1. (i) ηeHf.

(ii) NHf/H(Vy = NHf/s(φf(Cr)lφ,(Cd).

Proof. It is seen from (4) that φ(z; a) is a polynomial of p(z) with

coefficients in if and φ(ζz; a) = φ(z; a) for all ζeμ. Therefore φ(τ;a)eHf

for any a e 0^, from which follows (i). To prove (ii), we note that

( 6 ) φ(τ;ay

if (a, f) = 1, and that

NHf/H(φf(Cβ)) = NHilu(9i{Cx))

for all jeJ (cf. § 2 and § 10 of [6]). Then, from (5), we see

= NHίlH(Ψj(Cr)lΨj{Cd),

which completes the proof.

Since ε > 0 and NHf/H(ηη) = \NHf/H(r/)\2 > 0, we obtain

( 7 ) £^=

from (2). Note that

§ 3. The generalized Hurwitz numbers

We first summarize some notation and facts concerning the elliptic

curve E defined by the equation

( 8 ) / = 4 x 3 - l .

The map z •-> ξ(z) = (p(z), p'(z)) gives an isomorphism from CjL onto the

complex points of E. As usual, we identify 0K with the endomorphism

ring of E in such a way that the endomorphism corresponding to a e Θκ

is given by ξ(z) •-• ξ(az). For a e Θκ, we denote by Fa the field obtained

by adjoining to K the coordinates of <x-division points of E. It is known

that FJK is abelian and every prime ideal of K which ramifies in Fa is a
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divisor of 6a. For a e Θκ, (a, 6) = 1, denote by α* the generator of the

ideal (a) such that

(9) a* = (-^LL) mod3,
\ a /2

where (— l/α)2 is the quadratic residue symbol in K. Then the next

lemma follows from the results of Davenport and Hasse [3].

LEMMA 2. Let v, μ e ΘKί (v, 6μ) = 1, αzzd Ze£ Qμ be a μ-divίsion point

of E. Then

w/iere σv is £/ιe Arίm automorphism of the ideal (v) with respect to FJK.

Let π be the generator of p such that π* = π and set q = iVπ. Define

/o, moe(Pκ by / = τr/0, m = πm0. It is seen from (1) that (π, fQ) = 1. Hence

there exist τu τ2e C, which are uniquely determined modulo L, such that

τ = τi + 2̂> ^^i = /oτ2 = 0 mod L .

Here τ —f~xΩ as in Section 2. Define the points P, P1? iVof E by

P = f(τ), P ^ f ί τ , ) (i = 1, 2).

Let n be an integral ideal of if. We call a function Λ: Θk -> Q a

Dirichlet character defined modulo n if there exists a character λ of ((Pκ/n)x

such that Λ(α) = 3(α mod n) for (#, n) = 1, and λ(a) = 0 otherwise. We can

define the conductor of Λ by the usual way. A Dirichlet character is called

primitive if it is defined modulo its conductor. In the following, all

Dirichlet characters we consider will be primitive. Write m = ab2 as

explained in Section 2. We can assume p\a without loss of generality by

replacing m by m2/63 if necessary. Then a Dirichlet character X2 modulo

(/0) is defined by

(10) X(a) = U«)U"\ U«)

for a e ΘKy (a, f) = 1. We also view X and Xγ as Dirichlet characters de-

fined modulo (/) and (π) respectively.

Denote by ζ(z) the Weierstrass ζ-function of L, i.e., ζ(z) = (d/dz)logσ(z).

For any ί e L there is a constant κ(S) such that

ζ(z +£) = ζ(z) + fc(£).
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The function & ι-> κ(β) is clearly linear in t9 and we extend it by JMinearity

to a function on C. Let w e C/L and take a representative rwe C of w.

Then ζ(z + rw) — A:(ΓW) does not depend on the choice of rw. We put

ζ*(z; w) = ζ(z + rw) - κ(rw) (cf. Lemma 3.1 of [6]). For λ = X2 or χ,-1, we

define the generalized Hurwitz numbers Gktλ (k ̂  0), following [6], by

(11)

It is easily seen that

G = ί - i if(/o) = ( l ) ,

\ 0 otherwise.

As is shown in Section 7 of [6], G M (k I> 1) are numbers related to Hecke

L-functions associated with K. Because — (d/dz)ζ(z) = p(z)9 we have

GkX = Gk (k ̂ > 2) if (/0) = (1), where Gk are the numbers defined in the

introduction.

LEMMA 3. ( i ) Gfc,Z2, GktX-i e FfQ (k ̂  0).

(ii) GkiXJyτnθ9 Gfc>χ~i/γ7?z0

2 6 K (k ̂  0).

(iii) When q = p2, we have

if Vm0 is real.

Proof. We only consider the assertions concerning to the numbers

Gfc)X2, because those concerning to GkyX-i can be proved similarly. If

(/0) = (1), them m0 = - 1, G0,X2 = - 1, GUX2 = 0, and Gfc,χ2 = Gk(k^ 2),

from which all the assertions follow. Assume (/0) =^(1). Because X2(—ϊ)

= 1, we have

(12) \- Σ
2 Γ7d)ί

by Lemma 3.3 of [6]. Then the assertion (i) is clear from the definition

of Fft.

To prove (ii), let (v) be an integral ideal of K prime to 6/, and σv

the Artin automorphism of (v) with respect to Ffo(\/m0)IK. By Lemma 2,

- Σ Gί:,.*'-1 = 1 p / ( )
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P'(z)
« jP(0j — p{p oίτ2)

1 ^ p/(a;)

2 « ί)(z) — Ϊ I (

Hence

On the other hand,

Thus (ii) is proved.

Finally assume q = p2. Then it is easily seen that GkiU are real.

This proves (iii).

§4. Rummer's logarithmic derivatives

In this section, we introduce certain group homomorphisms ψk

(1 <̂  k <I q — 1) which are used in [11] and were referred to as Rummer's

logarithmic derivatives in the introduction (See also § 3 and § 4 of Coates

and Wiles [2].). Let Mo be a finite abelian extension of K such that the

prime ideal p does not ramify at M0JK9 and put M = M0L9 where L = Fπ.

Then, since LjK is an abelian extension of degree q — 1 where p ramifies

completely, the prime ideal q of MQ corresponding to the fixed embedding

ip : Q cr—> Cp ramifies completely at M/Mo and [M: Mo] = q — 1. Denote

by £} the prime ideal of M above q. Let ΛfQ and M M be the completions

of M and Mo at £1 and q respectively. For any subfield N of Cp9 denote

by <9(N) the ring of integers of N, m(N) the maximal ideal of d)(N). Put

$ Q = Φ(MQ), mo = m(MD), Θq = (P(MOtX and mq = m(MOtq). We remark here

that, in the later sections, we shall apply the argument of this section

to Mo = Ff0.

For any prime element A of M o we can define group homomorphisms

as follows. First, suppose u is a unit of Afo congruent to 1 modulo mo.

Choose a power series /(21) = 1 + Σ?=iα fcΓ
fc, with coefficients in (PQ, such
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that u = f(Λ). For 1 <J k <^ q — 1, we define ψA(w) to be the residue class

in 0q/mq of the coefficient of Tk in T(dldT)logf(T). Since MJMOt<t is

completely ramified, ψfc(w) is independent of the choice of f{T). Because

any element a of Afo is written uniquely in the form Anζu (n e Z, ζ*®'1 = 1,

u = 1 mod mo), we can extend ψfc on M o by defining

ψk(A) = ψfc(ζ) - 0 .

The homomorphisms ψfc depend on the choice of the prime element A.

We shall now make a particular choice of A. Let ψ be the prime ideal

of L over p, and let L% denote the completion of L at Sβ and iζ, the

completion of # at p. Set 0P = Θ(KP) and m, = m(iζ,). Let E be the

elliptic curve defined by (8), and let β denote the formal group over Θp

of the kernel of reduction modulo m, on E, with parameter t — — 2xjy

(Tate [12]). By the definition of π, the endomorphism π on E reduces to

the Frobenius endomorphism of E modulo p. Therefore £ is a Lubin-Tate

formal group for the uniformizing parameter π of Kp (Lubin and Tate [7]),

and is isomorphic over Θp to the formal group δ defined by the endo-

morphism

(13) [πUT) = πT+T*.

Denote by w the isomorphism from β to £ over Θp, and put A — w(t(P$)~

Then t(Pί) and A are prime elements of Lr Since MJL% is unramified,

they are also prime elements of Mo. In the following, we consider the

homomorphisms ψk (1 ^ k ^ q — 1) with respect to this A. It is seen

from [π]XA) = 0 that

(14) Λ*-1 = -π.

Although A depends on the choice of the embedding ip9 A{q~1)β gives a

cube root of — π which is independent of ίv.
X) In fact, Λ{q~λ)β is contained

in L and is determined by

Λ«z-υ/s = t(P^q-1)/z mod φ^- 1 )/^ 1 .

From this congruence, it is also seen that A{q~1)β is the real cube root

of — π = p in case q = p2.

The homomorphisms ψk have the following property which will be

1) Concerning this point, the author is indebted to Masato Kamei for pointing
out an error in the original manuscript.
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used later. If we identify Gal(MJM0J with Gal(L»/JSTp), and with Gal(L/K)

naturally, we obtain the isomorphism

(15) (Φx/pr — • Gal(Mo/Λf0,,)

by considering the actions of both groups on the group of p-division

points of E. Denote by gv the element of Gal (MG/MM) corresponding to

v modulo p e {Θκlp)x The following lemma is proved by the same way as

in Proposition 45 of [11].

LEMMA 4. Let k be an integer such that 1 <L k <L q — 1. For any

a e MQ and v e Θκ, (v, π) = 1, we have

= vkψk(a) .

§ 5. Main theorem

We define % Ίz and ^7n0 by

The generalized Hurwitz numbers Gfc)Z2, Gktχ-i and the cube root ^m0 of

m0 defined above are elements of Ffo. Although these numbers depend on

the choice of the embedding L:QC =—> C, the numbers GtetZJ%m^ and

GkiX-il%ml (k ̂  0) are elements of K which are independent of iM and ip.

Moreover they are rational numbers in case q = p2 (cf. Lemma 3).

We are now ready to state the main theorem of this paper.

THEOKEM. Let m > 0 be a cube-free rational integer which is divisible

by a prime number p Φ 2, 3 and not divisible by p2. Let p be a prime

ideal of Q(V— 3) over p and π its generator such that π = (— l/p)2 mod 3.

Define the Dirichlet character X2 of QO/^^T) by (m/ )8 = ( jp\X2 and let

Gktλ (λ = X2, X21) be the Hurwitz numbers defined in Section 3. Further let

%m0 be the cube root of m0 = m\π defined as above. Then, if we denote

by h and ε — t + u %!m + v %lm2 > 1 (t,u,ve Q) the class number and the

fundamental unit of the pure cubic field Q($/m) respectively, we have:

^ p ,

(16) / / \«\ —
2 ( 2 f ~ ( f ) r Ξ G™>-™>**-11 ^m°2 mod p -

Moreover, in case p is congruent to — 1 modulo 3, both sides of the above
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congruences are rational numbers, and 'mod p9 can be replaced by *modp\

In this case, we also have t = lmodp.

Remark. Suppose m = p = — 1 mod 9. Then we have π = — p, m0

= — 1, and ^ = - 1. We also have (/0) = (1), hence Gfc>χa = G^-i = G

(k ^ 2). Therefore the statement in the introduction follows from the

above theorem.

To prove the theorem we prepare a proposition. In the following, we

set Mo = Ff0 and use the notation of the previous section. In particular

M = Ff. As is noted in the proof of Lemma 1, φ(z; a) (a e Θκ) is a poly-

nomial of p(z) with coefficients in K and φ(ζz; a).= φ(z; a) for all ζβμ.

It follows that φizi + μτ2; a) e M for any α, μ e Φ .̂

PROPOSITION. Lei α e (P ,̂ (α, /) = 1, and let k be an integer such that

1 <L k < q — 1. If λ coinsides with 12 or %2"\ ^^ have

Σ ^C")"V*(^(^i + ^ 2 ; *)) = 12(Na - a*λ(a))GktΛ mod mq.
/ί mod /o
(i«,/o) = l

Proo/. Our proof is almost the same as that of Coates and Wiles [2]

or Robert [11]. For simplicity, we assume (/0) ^ (1). The case (/0) = (1)

is treated in [11], Proposition 46. Put φ(z) = φ(z; a). We first note that

dz

For μ e GKf (μ9 f0) = 1, we define the complex numbers dk(μ) (k ^ 0) by

Then, from the definition of Gkiλ, it is seen that

β W = - Σ
μ mod /o

Hence

(17) Σ λ{μyι[a*dk(aμ) - (Na)dk(μ)] = (Net - a*λ(a))Gkti.
μ

On the other hand, since φ(z) = θ(az)lθ(z)Na, we have

z log φ(z + μτ2) — 12 azζ(az + aμτ2) — 12(Na)zζ(z + μτ2)
dz

= 12 Σ W M - (Na)dk{μ)]z".
fc 0
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It follows from the above remark on the function φ(z) that akdk(aμ)

— (Na)dk(μ) (k >̂ 0) are elements of Mo. We shall prove that these numbers

are contained in Θq and
q

= 12[akdk(aμ) - (Na)dk(μ)] mod m,

if 1 <; k < q — 1. Then the proof will be completed by (17).

Fix an integer μeθκ such that (μ, f0) = 1. The formula (4) and the

addition theorem for p(z) give

φ(z + μτ2)

= a"A(Ly~N« Π (P(* + μ*d ~ P(β))6

(18) %o

= a?ά(Ly-« π ί- p(z) - PM + I ( ^ ) ^ ^ y 2 ) y _ p(β)Ύ #
β L 4 Vp(^) — p(μτ2) / J

Let ^ be the isomorphism over Kp from J? to the formal additive group

Ga (Gα(X, Y) = X + Y), and p(^(T)) and p ' ^ ί T ) ) the formal power series

obtained by substituting z = ^(Γ) in the Laurent expansions at the origin

of p(z) smά'p'(z) respectively. Then there exists a power series a(T)e

Z[[T]] such t h a t a(T) ΞΞ 1 mod degree 1 and

= T-2a(T),

Moreover x{P,) = t(Pd'*a(t(Pd) andy(Pi) = - 2*(P1)-3α(*(Pi))inL$ (cf. [12]).

Here x(P0 and y(Px) are the x-coordinate and the ^-coordinate of Pi

respectively. Let g(T) be the formal power series obtained from (18) by

substituting z = £(T), i.e.,

g(T) = a"J(Ly-*« Π [- T-*a(T) - p(μτ2)

4 V

Since (/0, TΓ) = 1 and (or, TΓ) = 1, we see that both p(μτ2) and p(β) are p-

integral elements of Q. Moreover the leading degree of g(T) is not negative

because, by the assumption that (/0) =̂= (1), φ(z + μτ2) is regular at z = 0.

Hence ^(Γ) 6 0q[[T]]. Since ί(ί(P,)) = ^fri + ^«) by (18), we have f{Λ) =

^(ΓJ + μr2) for the power series f(T) = g{wι{T)) e Φq[[T\]. Note that the

constant term of /(Γ) is equal to anΔι~Na \\β{p(μτ2) — p(β))\ which is a

unit of Θq. Then we have the expansion

TΊ-&btT
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with bkeΘq. From the definition of ψfc, it is seen that

Ψk(Φ(τi + μτά) = bk mod mq

for I <L k <C q — 1. As is well-known (see, for example, Lemma 7 of [2]

or Lemma 44 of [11]), we have, for the isomorphism Sow'1 from S to Ga,

£ o u)~\T) ΞΞ T mod degree q .

Hence

f{T) ΞΞ g(£-\T)) mod degree q.

Here the right hand side is equal to the power series obtained from (18)

by replacing z by T. Therefore,

bk = 12[akdk(aμ) - (Na)dk(μ)} if k < q .

This completes the proof.

Proof of the theorem. The congruences (16) will be obtained by

applying Ψ^-D/S and ψ^β-υ/a to both sides of (7). We only consider the

first congruence because the second one can be proved similarly. Put

k = (q — l)/3. Let Γ, βj e Θκ and πij e Z (je J) be the integers fixed in

Section 2. We first calculate ψk(NHj/H(φ(τ\f))). Set φ(z) = φ(z;T). By

Lemma 2, we have

φ(τy* = φ(a*τ) = φ(aτ)

for any a e ΘK9 {a, 6/) = 1. Here σa is the Artin automorphism of (a)

with respect to M/K. Since Cl(/) is isomorphic to (®κlf®κ)xlfl and the

number of elements of μ is 6, we see

NHf/H(φ(τ)r= Π ΦipcτY
a mod /
Z(«)=l

= Π ^ ( t f r ) 1 + *(*) + *-1(α)

α mod /
( / ) l

( Π
α mod /

Because iK(u) = 0 for u e AΓOiq, we obtain

Σ (Z(«) + Z-i(α))ψ»(^(αr))
α mod /

Σ Σ (ZOί + vΛ) + χ-'C« + vfMt(φ((μ + vQ(τ, + r2)))
μ mod /o υ mod π
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= Σ Σ (Hμ + v
μ

= Σ

By Lemma 4 and by the fact that Xx{v) = (ι>/π)3 = vk mod p9 we have

τi + μτ2)
gv)

= X1(ιdψk(φ(τ1 + μτ2))

if v is prime to π. Hence, by the Proposition,

Σ Σ
μ v mod π

()l

= W - 1) Σ *Λ
μ

= 12(rfcX2(r) - Nϊ)Gk^ mod mq

= 12(χ(7) - Nϊ)GktX2 mod mq.

Similar formulas hold for φ(τ;Y')9 φ(τ; βj) and φ(τ; β'j) (jeJ), and we get

= I- W) + W) -2NT + Σ mMβj) + *(#) - 2Nβs)]GktU mod mq.

Note that X(a') = X'\a) for any a e Oκ. Then it follows from (5) that the

number in the square bracket is equal to

- 1 - 2NT + 2 Σ "*ί(l - iV&) = - 3 .

This gives

Ψt(NHf/H(ηη)) = - 2Gfc,Z2 mod m,.

On the other hand, we have, by the definition of ^m0,

(19) i- = 1 - î /noΛ* + i ^

Therefore,

= ψ f c (—) = -~)

Hence, by (7),
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— 2— h ΞΞ G^J^frήo mod m q .
t

We complete the proof of the first congruence of (16) by observing that

the both sides of the above congruence are contained in K.

Finally, suppose p = — 1 mod 3. Then NQiδ)/Q(ε) = 1 gives f = 1 modp,

hence t = 1 mod p.

EXAMPLE. Take m = 10, p = 5. Then Λ = 1, ε = (23 + 11 ̂ Ϊ0 + 5 ̂ Ϊ02)/3

(Wada [13]), and

- 2uh = 1, 2(2u - u2)h = 2 mod 5 .

On the other hand, we see / = 10, f0 ~ — 2, and

where the bar denotes the residue class modulo f0. By (10),

Furthermore, the equations 4p(τ2)
3 — 1 = p'(τ2)

2 = 0 (r2 = β/2) give

p(ζr2) = ζp(τ2) = C VT-1 if ζ3 = 1.

Hence, we see from (12)

Similar formula holds for Gktϊ-ι. The differentiation of v'(zf = 4p(2)3 — 1

gives ^"(z) = §p{zf, from which follows

z2 28 10192

Thus we obtain

Since %m0 = — Λ/ 2 ,

G8,χβrn0 = - - J — = 1 mod 5 ,
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= 2 modδ,

and we see the congruence (16) hold.

Remark. Let K± be a real pure quartic field and K2 the quadratic
subfield of if4. Let H+ be the group of positive relative units of KJK2)

and ε0 (> 1) the generator of H+, i.e.,

H+ = {εβ E\e > 0, NKi/K2(ε) = 1} = <εo> .

Here E denotes the group of all units of if4. Then, we can formulate a
class number formula such as

εhju2 = ^ e eiiiptic u n i t ) ,

where Λ4 and h2 denote the class number of K^ and that of K2 respectively
(cf. Nakamula [9] and the papers quoted there). Taking Rummer's
logarithmic derivatives of both sides, we will be able to obtain congruence
relations similar to (16).2) The same procedure will apply to pure sextic
fields.

§6. P-adic Z-functions

In the special case that p splits in K, we can also derive our congru-
ence relations (16) from the discussion concerning the p-adic L-functions
associated with the elliptic curve E. Throughout this section, we assume
p = 1 mod 3. Recall that the algebraic numbers in Cp are identified with
those in C via &«, and ip. We shall work mainly in Cp.

Let SΓ = (E, dx/2y, r) be a triple consisting of our elliptic curve E,
the invariant differential dx/2y on E, and an isomorphism r of formal
groups from the formal multiplicative group Gm (i.e., Gm(X, Y) = X + Y
+ XY) to ί!, with coefficients in Θ(K^nr). Here K^nr denotes the com-
pletion of the maximal unramified extension of Kr The existence of r
follows from Lemma 2 of [7]. Further, put X = (ml')3 and let P be the
/-division point on E fixed in Section 3. With these data, Lichtenbaum
[6] associated C^-valued continuous functions L(T, 1, P)(s) and L(^, X~\ P)
(s) on Zp. Take a positive integer N such that X(N) Φ 0, 1. Then by
Theorem 8.11 of [6] any by the definition of L(̂ ~, X, P), we can write

, x, P)(s) =

2) These congruence relations have been obtained by Masato Kamei.
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for some h(T) e &(CP)[[T]]. Here, (N) is a p-adic integer determined by

N = ω{N)(N} ,

ωiN)"-' = 1, ω(N) = N mod p .

Hence, we have

(20) L{SΓ, 1, P) (m) = USΓ, χ, P) (n) mod p

for any rational integers m and n.

Now, taking the p-adic logarithms of (3), we obtain

(21) 12/7ί logpe
6 ?.3W

Define a primitive p-th root of unity ζ by ζ — 1 = r~'(<(.?,)), and put

Sz = τ(Z1; 0 / A HZI, 0 = Σ Ua)ζa .
α = l

By Corollary 4.2 of [6], we can define a unit u0 of K~nr by

(22) ^^(Γ) = r(eUoT - 1).

Then, if we put k = (p - l)/3, it follows from Corollary 9.4 of [6] (Note

that the left hand side of the formula of Corollary 9.2 and the right

hand side of [the formula of Corollary 9.4 should be multiplied by 1/2),

the formula (20), and Theorem 8.2 of [6], that

/Σ
Ό/ « mod /

u^G^ mod p .

LEMMA 5. ( i ) Sς1 = - π\k^-1u^kΛ1c mod p .

(ii) ul'1 = π' mod p .

The proof will be given later. By this lemma, we get

~ Σ X-K") logPφf(Cβ) = - 6Gktϊ2Λ
k mod p .

Similar consideration gives

h Σ Z(α) logpφ,(Cβ) = - 3G2fc,xΓ^2fc mod p .

On the other hand, we see, from t3 = 1 mod p and (19),
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logpe = log,(j) = - jSMΛ« + γ(2J- (jf)VmW mod p .

Then we obtain the congruences (16) from (21).

Proof of Lemma 5. By (22),

r(T) = u^T mod degree 2 ,

hence

(23) C - l = «oί(P,) Ξ κ0Λ mod J 2 .

On the other hand, as is well-known (e.g., see Weil [14]), we have

)" m o d i " J \

(24) τ(Iu 0 3 = - ( -

It follows from (14) that

τ(X

Then, by (23) and (24),

r(X1( ζ)/Λ" = A!u? mod p .

Therefore we obtain

S-1 = - π'Λik\τ(lλ. 0 Ξ - jrXA!)-1^-"^ mod p .

To prove (ii), observe that the isomorphism r from Gm to E satisfies

r([p]aJT)) = Mi(r(M β .(T)))

Comparing the coefficients of Tp, we obtain (ii).
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