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A CONNECTION BETWEEN BLOWING-UP AND GLUINGS
IN ONE-DIMENSIONAL RINGS

GRAZIA TAMONE

Introduction

Let C be an affine curve, contained on a non-singular surface X as
a closed 1l-dimensional subscheme. If P is a closed point on C, the
blowing-up C’ of C with center P (induced by the blowing-up of X with
center P) is an affine curve. It is known that there is a sequence:

(-) C=C-—C,,—>-+—>C,—>C,=C,

where C is the normalization of C, and each C,,, is the blowing-up of
C; with center a singular point P, on C, i =0, ---,k — 1).
The sequence (-) induces a sequence of rings:

(%) R=RCRcCc.---CcR..,CR.,=R,

where, for j=0,.--,k, R; is the coordinate ring of C;; for each i =
0,---,k—1, R,,, 1s called the ring “obtained from R,; by blowing-up the
maximal ideal of R, corresponding to P,”.

On the other hand, there is also a sequence between R and R:

(%) R=B,cB,,c---cBcB,=R,

where each B;,; 1 =0,---,n — 1) is a “gluing of primary ideals of B,
over a prime ideal of R” (see [6]).

In this paper we wonder under what assumptions a sequence (x) is
also a sequence (xx) of gluings between R and RE; in this case, the method
of “gluing” defined in [6] is “inverse” of the process of “blowing-up” used
to obtain the desingularization of C. We give necessary and sufficient
conditions on (x) in order that (x) is also a sequence of gluings like (xx);
then, we show some classes of rings satisfying the required condition, in
particular the rings considered in the last theorem of [7].
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§1.

Let C be an affine curve, P,, - .-, P, the singular points on C, R the
coordinate ring of C. For i =1, -.,n, the maximal ideal of R corre-
sponding to P, is a prime ideal belonging to the conductor b of R in R.
Then, if Ass(R/0) = {m,, ---,m,}, and S=R — Um, the ring A =S"'R
is semilocal, and its maximal ideals are exactly m,A, ---, m,A, so that
the maximal ideals of A correspond to the singular points of C. Besides,
if R’ is the coordinate ring of the blowing-up of C with center P,
(i=1,---,n), the ring “obtained from A by blowing-up m,A” is cano-
nically isomorphic to S™'R’ ([4], p. 663). Owing to these facts, we can
consider A instead of R without loss of generality.

Since A is semilocal, the ring “obtained from A by blowing-up a
maximal ideal m” can be described in various ways, according to [4] and
[56]. In fact, if A is a semilocal 1-dimensional Cohen-Macaulay ring, the
ring obtained by blowing-up m € Spm (A) coincides with the ‘“first neigh-
bourhood of A”: A = {bfa|bem*, a is superficial of degree s}, defined in
[6], Chapter XII. This ring can also be written as A[z/x, - - -, 2,/x], where
{z,, -+, 2} is a set of generators of m, x € m is m-transversal; besides, this
ring coincides with m": m" = {a e A|am” C m"} for all sufficiently large n
(see [4], Proposition 1.1, Definition 1.7, Lemma 1.8, and [2], Corollary 3.5).

In this paper, unless we give further notice, A will mean a semilocal
1-dimensional Cohen-Macaulay ring. Besides, we shall denote the “em-
bedding dimension” and the “multiplicity” of a local ring S respectively
by: emdim (S) and e(S).

First of all, we prove some lemmas we need to study some conductors
which we are interested in.

LEmMMA 1.1. Let p be a maximal ideal in A, A be the ring obtained
from A by blowing-up p. If A + A, the conductor of A in A is a p-primary
ideal.

Proof. Let a be the conductor of A in A. As seen before, 4 = p": p*
for a suitable n, so, for each x € §, y € 4 we have: yx" € p”, thence x"4 C A.
It follows: x"ea for each xep, so p C 4/ a. Now, p is maximal and a is
a proper ideal, then we have p = 4/ a and a is p-primary.

COROLLARY 1.2. Let b be the conductor of A in A, A be the ring
obtained from A by blowing-up a maximal ideal p belonging to b. If p
coincides with the p-primary component of b, the conductor of A in Ais p.
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Proof. We first have: A == A: in fact, A = 4 implies p = p4 = x4 =
xA for some regular element xe A ([4], Proposition 1.1, (ii)), so A, is
regular, then A, = A, while pe Ass(A/b). So, A Z A C A; then, if a is
the conductor of A in 4, we have b C a, and also 4/ a = p (Lemma 1.1).
Let q be the p-primary ideal belonging to b; the reduced primary decom-
position of b is like this: b =q N (Ngq,;). Then, if p = q, owing to the
above facts we have: p N (Ng)DaN(Ng)Db=qgN(Ng)=9pN(Nay,
hence:

() pN(Ng)=an(Nqg), with ya =p.

It follows that the two sides of (-) are two reduced primary decom-
positions of the same ideal b, whose primary components are all isolated;
then, owing to the uniqueness of these components, we have, in particular,
p=q.

Remarks. 1) In general, if p doesn’t coincide with the p-primary
component of b, one has: p = a. As an example, let us consider the ring
A = E[#, #]. The conductor b of A in A = k[t] is p-primary, where
p = (& 1t°). We have: 4 = A[¢}/¢, t*/t*] ([4], Definition 1.7, Lemma 1.8, and
the beginning of Section 1) = k[t*, t]. Let a be the conductor of A in 4.
One ean easily show that a = p, seeing that #* €, £* ¢ a because ' = ' ¢ A.

2) The inverse of Corollary 1.2 is not true, i.e. in some cases the
conductor of A in 4 is p, but p is not a primary ideal belonging to b.
For example, if A = k[#, ¢], we have: A = k[t], b = (¢, ) is (& t9)-
primary, and b == (% #). One has: 4 = A[#/&, £*/t*] ([4], Proposition 1.1,
Definition 1.7, Lemma 1.8) = k[#, #*]. Now, we show the conductor a of
Ain 4 is (&, ¢). Owing to the maximality of (& #°) it is enough to prove:
(#, ) C a. So, for each xe(#,¢), we must prove x4 C A. Let xe (& ),
yed; then, x =13 a,;t"t + 3 b, "%, y =, ¢, t’?t% So, xy =
D7 Cpt?(xt).  Now, xt'7 = (3] @, ) * + (3] by ™ 55)0+5 = 3 @, 7 +37+30+2
+ D7 byt 5 and we have: 20 + 5f + 3¢ + 2> 4, 0or =2 for i,j,q9 €N,
2h 4+ b6k + 3¢ +5>17, or =5 for h,k,gqe N. So, xt**c A. Then, xy =
D CptP(xt*) € A, since also 7 € A for each p.

CoroLLARY 1.3. Let p, A be as in Lemma 1.1. If p' is a prime ideal
of A, and Y + p, there is a unique prime in A over y'.

Proof. Owing to Lemma 1.1, the conductor a of A in 4 is such that
J a = p; then, if p’ + p, one has P’ 2 a (otherwise p’ D p, and this implies
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p’ = p). It follows: A, = A, ,, so there is a unique prime ideal in 4 over
p’ (since there is one-to-one correspondence between {8 € Spec 4/B N A = p’}
and Spec (4, /54, ,) = Spec (A,/i'A,) = Spec (k(y)).

The next lemma holds in the general case: so, the rings considered
here are not necessarily of the above type.

LemmA 1.4. Let A, B, C be rings such that A € BC C, and let a,b, b’
be respectively the conductor of A in B, of A in C, of B in C. Then,
ab’ C b in B.

Proof. For each xea, ye?, ce C we have (in B): (xy)c = x(yc), where
yce B, since yeb’; so, x(yc)e A because xeca. Then, (xy)ce A, so that
xyeb. It follows that ab’ Cb.

Levmma 1.5. Under the assumptions of Corollary 1.2, let a, b’ be respec-
tively the conductor of A in A and of A in A. If p,€ Ass (Afb) — {p}, and
S=A —p, we have bS~'4 = t/S~'A.

Proof. We have b4 C ’, since (0A)A CHA C A C 4, so bS~'A C b'S-'A.
On the other hand, in 4 one has abt’ ©b (Lemma 1.4), so (aS™*A)H'S~'4)
= (ab)S~'4 < 6S-!4, hence 0'S~'4 C bS-'4 because aS-'4 = S-'/ owing to
the assumptions and Lemma 1.1.

Using the above results, we can prove some facts concerning the
conductor of 4 in A. We assume that A is a finite A-module.

ProposITION 1.6. Let b be the conductor of A in A, and Ass (A[b) =

{9y, - - -, pa}.  Let A; be the ring obtained from A by blowing-up v; (1 <j < n),
b, be the conductor of A; in A. The following facts hold:
1) for each ic{l, -- -,j, .-+, n} there is a unique prime ideal B, in A,

over b, and (B, -+, J, -+, Pa} € Ass (4,/6)
2) for each prime ideal B in A; such that PN A+p, (i=1---,n)
we have: P g Ass (4,/5;).

Proof. 1) For each ie{l,---,], -, n} we have p; =+ p,, so (Corollary
1.3) there is a unique prime in A, over p, say B,. For each ;e
(B, -7, -+, P} we have B,N A = p, Db, so B, Db, thence if S = A — p,,
the ideal $,S7'4; is proper, and contains 06S'4;, Now, owing to Lemma
1.5, 684, = 0,8'4;, Then, we have: B,S7'4;, Db,5'4;; this implies
B,S'4; is in Ass (S7'4,/6,87'4;), hence §, € Ass (4,/b;).

2) Let P eSpec(4;) be such that p=FLNA£p, for i=1,---,n.
Then, p b, so A, = A,_,; it follows: A, C (4),.,C A, , = A,, so (4)),_,
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= A, , Hence, the conductor b,(4,),_, is not a proper ideal, so e
Ass (4,/6,) (otherwise %(4,),_,, which is a proper ideal, would contain
61(/11')11—;: = (AJ)A—p)'

ProposiTioN 1.7. Under the assumptions of Proposition 1.6, if p; co-
incides with the p;-primary ideal belonging to b, then:

{BeSpec 4;|B N A = p;} & Ass (4;/b,), so
{BeSpec 4, N A=p}N Ass(4,/b;) is empty.

Proof. Let S= A — p,; then, S7'A = S-'A, and the ring obtained
from S-'A by blowing-up §,S~'A is canonically isomorphic to S-'4; (see
the beginning of Section 1). Since p; equals the p,-primary component
of b, the conductor of A in 4, is p; (Corollary 1.2), so p,S-'4, < S~'A,
then p,S-'4; = p,S'A. Tt follows: S-'A; = {xe S'A|xp,S—'A C p,S-'A}
([4], Proposition 1.1 (i), Definition 1.3); besides, the conductor of S-!'A in
S-'A is p,S~'A. All this allows us to prove: S-'4;, = S-'A. Indeed, for each
xe S-'A we have: x(p,S'A) C p,STTA C S'A, so x(p,S'A) C p;ST'A N S'A
= p,S7'A, then xe S-'4;. Now, let 8 € Spec 4, be such that £ N A = p,;
if B e Ass (4,/6,), we have PS4, € Ass (S7'4,/6,S7'4;), while BS-'4; is a
proper ideal, and b,S-'4, is not a proper ideal, since S-'4; = S~'A. So,
the result follows.

Remark. There are examples of rings A such that p; doesn’t equal
the p,-primary component of b, and Ass(4,/b;) contains a prime ideal R
such that P N A =p;, The ring A = E[#’, ] and the ideal p, = (&, £
considered in remark 1) after Corollary 1.2 are an example of that. In
fact, A, = k[#}, ¢’], and the conductor b, is B = (&, #’); it is easily seen
that $ N A = (&, ) = p,.

From Proposition 1.6 and Proposition 1.7 it follows immediately:

CoroLLARY 1.8. Under the assumptions of Proposition 1.6, if p; coin-
cides with the p;-primary component of b, then Ass (4,/6,) ={B,, - - e B,
where B, is the only prime ideal in A; over p,, for i =1, - -,f, N

The following proposition shows another connection between the
properties of the conductors b and b;.

ProposiTioN 1.9. Let A, p;, A; be as in Proposition 1.6, and P, be the
only prime ideal in A, over y,, for i =1, .- gy n If 9, coincides with
the p,-primary component of b, then R, coincides with the B,-primary ideal
belonging to b,.
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Proof. Let S = A — p,, a be the conductor of A in 4;. Since p, # p,,
we have: p, p a, because a is p;-primary (Lemma 1.1) and p, is maximal;
so, S'A = S-'4,. Moreover, bS~'4; = 6,S-'4,, owing to Lemma 1.5. So,
b,S7'4;, = bS-'4; = bS~'A, and this last ideal coincides with p;S-*A because
of the assumptions on p,. Now, if Q, is the §,-primary component of b,,
we have: 0,574, = Q,S°'4;,. Then, Q,5°'4;, =9pS'A. It follows that
0,87'4, is a prime ideal; so, it coincides with its own radical ,S-'4,.
Thence, Q, = §,;, because Q,; is P, -primary.

From Corollary 1.8 and Proposition 1.9 we get the following

CororrArY 1.10. Let A, A; be as in Proposition 1.6 and let B, be the
only prime ideal in A, over p, for ief{l,---,j,---,n}. If b="Yb =
71 p; then Bj = AJ“/—B: = (Nigj B

§2.
Now, let

(%) A=ACAC. ---CA,_,CA =A4A

be a sequence where each A,,, is the ring obtained from A; by blowing-
up a prime ideal B; in 4; (j =0, ---,k — 1). We want to find necessary
and sufficient conditions in order that (x) is also a sequence

(++) A=B,cB,,c-.-cBcB =24,

where each B,., is the gluing, over a prime ideal p of A, of the primary
ideals belonging to pB; (j =0, ---,n — 1). Now, A; in () is the gluing,
over a prime ideal p e Spec A, of the primary ideals of pA;.,, if and only
if A, is the gluing, over B, N A, of the primary ideals of (; N A)A,,.
In fact, if A, is the gluing, over a prime p’ of A, of the primary ideals
of YA,,,, we have: A; = A + p'A,,,, and P = p’A,,, is a maximal ideal
(see [7], Lemma 1.2, 1)); besides, " is the conductor of A, in A,,, (since
PA,, =pA,, CA, and § is maximal). Now, since A;,; is obtained
from A; by blowing-up P, the conductor a of A; in A;,,; is such that
va =9, (Lemma 1.1). Then, we have: a =%, v =+va =%,, so B,
=%, It follows: p =R N A =%,N A, so A, is the gluing, over F, N A,
of the primary ideals belonging to (, N A)A,,,. On the contrary, if each
A, is the gluing, over B, N A, of the primary ideals belonging to
(B; N A)A,.,, then obviously () is a sequence like (¥x). So, our problem is
to require conditions in order that each A, is the gluing, over p =, N A,



ONE-DIMENSIONAL RINGS 81

of the primary ideals of pA;,,. We note that the property we are inter-
ested in implies the following (weaker) omne: for j=0,.--,k—1, A,
is the gluing, over %, of the primary ideals of ,4,.,, owing to the
equality %, = pA;,, and [7], Lemma 1.2, 1), 2). This last property can be
characterized through certain properties of A;, as we show in the follow-
ing lemma, which therefore gives a necessary condition for the property
of (¥) we are studying. The following lemma is also a generalization of
Lemma 1.3 of [7].

LEMmA 2.1. Let p be a maximal ideal of A, A, A’ respectively be the
ring obtained from A by blowing-up p, and the gluing, over p, of the pri-
mary ideals belonging to pA. Then the following conditions are equivalent:

1) the rings A, A’ coincide.

2) emdim (4,) = e(4A)).

3) the conductor of A in A is p.

Proof. We put S = A — p, and we remember that S-'/ is the ring
obtained from S~'A by blowing-up pS-'A. We have:

1)= 2) The gluing over pS~'A of the primary ideals of pS-'4 is
B = SA + pS-'4 ([7], Lemma 1.2, 1)). Now, pS~'4 C S'A, since p4 C A’
([7], Lemma 1.2, 1)) € A; then, BC S-'A, so it is enough to apply [7],
Lemma 1.3, 1) = 2).

2) = 3) Owing to [7], Lemma 1.3, 2) = 3), the conductor of S—'A in
S-'4 is pS—*A. Let a be the conductor of A in A; we have J/a =y
(Lemma 1.1). Then, pS!'A = aS~'A4, where a is p-primary; it follows: p = a.

3)=1) We have: A’ = A + 94 ([7], Lemma 1.2, 1)) C A, since ) is
the conductor; so, A’ = A.

Owing to this lemma and the above remarks we have: the condition
“emdim ((4,)y,) = e((A,)y,) for each A; in (x)” is necessary to get the
property of (x) we are studying, but it is not sufficient (consider for ex-
ample A = k[#, ), t']: the sequence () is A C k[£, £*] C k[t] = A, where
emdim ((4,))y,) = e((A,)y,) for each A;, B,, and () doesn’t coincide with (xx),
as Proposition 3.2 of [7] shows). The following results allow us to find
also sufficient conditions for the property of (x) we are interested in.

The next lemma holds in the general case, not only for semilocal
one-dimensional rings.

Lemma 2.2. Let A C B be rings, p a maximal ideal in A, A’ be a
ring between A and B, such that A’ C A + pB. If Y is a prime ideal in
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A’ over p and pB + B, then B = pB.

Proof. Theideal pB is maximal in A + pB, since A + pB/pB= A/pBNA
= A/p, which is a field. Besides, pB = (pA’)B C p’B, because pA’ C {';
s0, PpB C ¢'B, and pB is maximal. It follows: pB = p’'B.

The next lemma recalls a well-known fact:

LEmMA 2.3. Let (A, m, k) be a local ring, k = A/m and M be a k-
module. Then, 1,(M) = 1,(M).

ProrosiTioN 2.4. Let A, p, A be as in Lemma 2.1, B be a ring between
A and A, be a prime ideal in B over p. Besides, let A be the ring
obtained from B by blowing-up B. Let us suppose B is a finite A-module,
B is the only prime ideal in B over p, and the residue fields k(p), kR(R) are
canonically isomorphic. The following conditions are equivalent:

1) pd = BA

2) e(A) = e(By).

Proof. We put: R = A, S = By = B,_, (see, for example, [1], p. 40),
L=4A4,, L' = 4,_,. Then, L is obtained from R by blowing-up PR, so
there i1s xe R, x regular in L such that pL = xL ([4], Proposition 1.1),
and we have: e(R) = 1,(R/xR) ([4], Remark a) p. 657) = 1,(L//xL") ([4],
Remark b) p. 657, where J = L/, x 1s regular in R since is regular in L)
= (I (x)L)) = 1,(I/)(pL)L') = 1,(L'/pL’). On the other hand, there is
also ye B, y regular in A’ and such that 4’ = yA’ ([4] Proposition 1.1),
so there is ye€ S, ¥ regular in L/, such that LL’ = yI/. Then, as before
we have: e(S) = 1,(L'/yL’) = 1,(L/|RL).

Besides, L'/pL’ (resp. :L/QL’) is an Afp = k(p)-module (resp. :a B/P
= k(R)-module), where the scalar product, induced by the structure of L/,
coincides with the inner product. Then, (Lemma 2.3) we have: e(R) =
1(L'[pL) = Ly, (L'[pL"), e(S) = 1(L'[PL’) = 1, (L'/RL’). Moreover, k(p) =
R(B). Then, if 1) holds, in particular pL’ = BL’, so we have: e(R) =
1oL = 1, (I IBL) = 1,(L/[BL) = e(S), ie. 2). On the contrary,
if 2) holds, 1,,(L'/pL’) = e(R) = e(S) = Luw(L'/PL’) = 1,,(L'/BL’), so M =
L[l and N = L//BL’ are two k(p)-vector spaces of the same dimension.
On the other hand, since pL’ < BL/, we have: M/RL'[pL’) and N are
isomorphic as k(p)-vector spaces. Then, putting P = RL//pL’, it follows:
dim,, (M) = dim,, (N), and also dim,, (M) — dim,, (P) = dim,, (V).
Therefore, dim,, (P) = 0, so pL’ = RL’; this equality implies pA’ = RA'.
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From Proposition 2.4 and Lemma 2.2 it follows

CorOLLARY 2.5. Let A, B, A’ as in Proposition 2.4. If B coincides with
the gluing, over p, of the primary ideals belonging to pA’, and B is the
only prime ideal of B over p, the equivalent conditions of Proposition 2.4
are satisfied.

Proof. We have: B= A + pA’ ([7], Lemma 1.2, 1)), so (Lemma 2.2):
pA" = BA’, then 1) of Proposition 2.4 holds.

Using the above results and Section 1 we can find necessary and
sufficient conditions in order that in (x) each A; is a gluing, as required.
We notice that in (x) each blowing-up concerns a prime ideal %,e
Ass (A,/b;) such that %, N Ae Ass (A/b), where b, b are respectively the
conductor of A, in A and of A in A. In fact, according to the definition
of (x), 8, is an associated prime of the conductor a of 4;in A,,, (Lemma
1.1); besides, b, C a since A, C A,;,, C A. Then, B, D b,, so B, € Ass (A,/b)).
This implies: p = B, N A€ Ass (A/0). In fact, putting S = A — p, we have
S—'A; € S'A (otherwise (App, = (STTADs 14,9514, = (SAZ)SﬂAJ—ﬂstﬂAj =
A, 4, with P, e Ass(A4,/0,), contradiction); then, a fortiori we have:
S-'A C S'A, so peAss(AfD).

Let Ass(AJb) = {p, ---, 0, }. In general (see remark after Proposition
1.7), for each p, € Ass(A/0) there are in (x) n, > 1 rings obtained by
blowing-up prime ideals which are over p,. So, we write (x) in such a
way to point out this fact:

A=4C---Cd,Ccd,,C---CA,CA,,
c-cd,cd ., =4,=4,

(=)

meaning that, fort=0, -- -,k —~1, 4, .., ---, 4, ., are obtained by blowing-
up respectively ., eSpec(4,,.,), --,%,,  €Spec(4, ), where B, ,, N A
== gBjHl NA=p,., (weput:j, =0).

THEOREM 2.6. With the above notations, we assume: RCE;) = k(p) for
each %3, € Spec 4;, p € Spec A such that p =%, N A. The following condi-
tions are equivalent:

1) in the sequence (x) each /A; is the gluing, over p = R, N A, of the
primary ideals belonging to pA;,, (j=1,---,n—1)

2) forj=1,---,n—1,%,is the only prime ideal in A, over p = ;N A,
and emdim ((4,)y,) = e((4)y,) = e(A,).
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Proof. It is enough to prove: 1) & 2) for each i =0,---,k— 1 and
each je{j, +1,---,Ji}
Let us localize () at S= A — p,,,. We obtain:

A, =8"4C--- 84, CSU,.,C S,
c---C84,, c---CSA,

where, for each j, S7'4;., is the ring obtained from S-'4; by blowing-up
$,87'4,. Now, we have: S~'4, = --- =874, ,,= A, . Infact, these rings
are obtained by blowing-up prime ideals which are not over p,,,4,,,,; so,
after calling a, the conductor of 4,,,,in S-'4, (j = 2, - - -, j, + 1), we have:
v/a; contains a product of prime ideals %, ---B,,, where £, N A,,, #
D1y o Baw N A,,,, # DiniA,,., (see Lemma 1.1 and Lemma 1.4), so that
no prime ideal belonging to a, coincides with p,,, for j=2,---,j, + 1.
Besides, S7'4,, . = -+ =8"4;,=8"'A = A,,,. Infact, forj=j. +1,
.-+, Js because of the definition of (x¥), no prime ideal belonging to the
conductor of 4, in A lies over p,,, so that the conductor of S-!4, in
S-'A = A, ., is not a proper ideal. Owing to these facts, the localization
of () at S is:

Ay =S, C 8, L, C e C 87U,

;. CA,,.
i+1

Pi+1

where the first blowing-up concerns 9,,,4, ...

1)=2) For each je{j, + 2, --,j..:}, B; is the only prime ideal in
A, over p,., ([6], osserv. II); besides, S~'/, contains the ring obtained
from A, ., by blowing-up p;.,A,,., it coincides with the gluing, over
p:.114,,,,, of the primary ideals belonging to p,,,8°'4,,,, and contains
B;S7'4; as the only prime ideal over p,.,A,,,,. Then (Corollary 2.5) we
have: e(A,,,,) = e((S7'4)g,5-14), s0 e(A, ) = e((4,)s,) because (S7'4,)y;5-1,,
= (4;)g;; Moreover, in 4; ., P, ., is the only prime ideal over p,,, and
we have also: S7'4;., = A4, . So, A, =S"4;. = ), then
e(Api“) = e((/ljin)ﬂsji“)- So, for je{j,+ 1, ---,j.} we have: e(APi+1) =
e((4))s,). On the other hand, 4, being the gluing over p,,, of the pri-
mary ideals of p,,,4;,,, is also the gluing, over §,, of the primary ideals
of B,4;., ([7], Lemma 1.2, 2)); then, owing to Lemma 2.1: emdim ((4,))
= e((4,)g,). Tt follows: emdim ((4))y,) = e((4,)) = e(4A,,,) forje{j, +1,---,
Jiig)e

2)=>1) Letie{0,.---,k—1}. For each je{j, + 1, --,j..:}, we have
emdim ((4;)g,) = e((4,)s,), so (Lemma 2.1): A; coincides with the gluing,
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over B, of the primary ideals of $,4;,,. Then, owing to [6], Proposition
1.5 we have: 4; = {xe 4;,,|x mod (,4,.,) € f(kR(E,))}, where f is the canon-
ical embedding: k(R,) =—> T7'(4,,,/B,4;.,), T = 4,/B, — {0}. We want to
prove: /A, is the gluing, over p,,,, of the primary ideals of p,,,4,,,, that
is Ay = {xe 4;,,|xmod (p;.,4;,,) € p(k(p;,1)}, where ¢ is the canonical map:
k() =—> U (4, fp.id, ), U= Afp,,, — {0},

Now, U = k(p,.;) — {0} = k(B,) — {0} (for the assumptions) = T, so the
hypothesis on 4; can be written: 4; = {xe 4,,,]x mod (B,4,,,) € pk(p,..))},
and it is enough to prove: p;..4;,, = B4,

Let S= A — p,,;. As before seen, for je{j, + 2, ---,j...}, S'4, is
local, with maximal ideal $,S7'4;, and contains the ring S-'4, ,,, obtained
from A, ., by blowing-up p;,;A,,,,. Moreover, e((4))y,) = e(4,,,,), so e(4,,,,)
— e((S"'4,)g,5-1); besides, k(B,S~4,) = h(B,) = k(p..) = k(p..,A,,.,). Then,
owing to Proposition 2.4, we have: p,,,S7'4;, = B,57'4,, and this implies
Piad;s = B,4;.,, for the assumptions on S. So, the result follows for
jelji+2,--+,ji}. As regards 4., we know that S™'4;,, = A4,,, so
its maximal ideal %,,.,S74;,,, equals p,,A,,, =S4, .,; then,
By, 18 45,00 = 9218 45,4, Then, the result follows for each je
i+ 1, Juk

Now, we show certain classes of rings, such that (x) satisfies the two
equivalent conditions of Theorem 2.6.

CoROLLARY 2.7. Under the same assumptions as in Theorem 2.6, a
ring A such that Vb =0,b = A : A, satisfies condition 1) of Theorem 2.6.

Proof. We shall prove that A satisfies 2) of Theorem 2.6; it is enough
to show that this condition holds for each i€ {0, ---, k. — 1}, je{j, + 1, ---,
Jiad, if /6 =0b. So, let ie{0,---,k— 1}, S= A — p,,,. At the begin-
ning of the proof of Theorem 2.6 we showed that the localization of (x)
at S is:

A, =S4, cSU,,c-- 84, CA,

Jit+1 Pi+1 *
In this particular case, we have: A = S“A“+l - S“/Iji+2 =...=A,
since (as we shall prove) the conductor of S-'4, ,,in A,,,, is not a proper

ideal. Let b, ., be the conductor of 4;,., in A; then, the conductor of

Pt Pi+1

S-'4;,., in A,,,, is b; ,,S7'4,,,,. If this ideal is proper, it is the intersec-
tion of the prime ideals B, -+, B, of S7'4;,, such that {§, N A4,,,
j=0,---,r} = Ass (A,,../04,,,) — {v...4,,.,} (see Corollary 1.10); but bA,,
= p,.A4,,,, since b =“Y/b, so b, ,,S"'4, ., is not proper.
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So, it follows that in (x)’ the only “link” concerning blowing-up of prime
ideals over p,., is 4;,.; C 4, .,; then, it is enough to show that 4, ,, satisfies
2) of Theorem 2.6. Indeed, we have: in 4,,,,, ,,,, is the only prime ideal
over p,.,, because S7'4; ., = A, 1is local, and its maximal ideal is
$B,,4:87'4;,.1. So, we have also: (4 .1)y,,., = S'4;,.; ([1], p. 40) = A, ...
Besides, since ‘v b = b, the conductor of A4, , in A, is p,,.A,,,, then,
owing to the above facts, we have also: the conductor of S~4;,.1 in
S~'4;,42 i8 94874, .1, which equals %;,,,87'4, ,,. It follows (Lemma 2.1):
emdim ((S™'4; . )y, 15145, 00) = e((S_lAji-rl)mji+18"l/lj,~+1)’ Le. emdim ((4;,.)y,,.,)
=e((4;,+)g,,..)- S0, 4;,., is as required.

Pit1

CoroLLARY 2.8. Under the same assumptions as in Theorem 2.6, if A
is seminormal, then A satisfies condition 1) of Theorem 2.6.

Proof. If A is seminormal, then “v/ b = b; so, we can apply Corollary
2.7.

CoroLLARY 2.9. Under the same assumptions as in Theorem 2.6, let
A be local, analytically irreducible and such that emdim (A) = 2. Then,
condition 1) of Theorem 2.6 holds if and only if e(A) = 2.

Proof. If A satisfies 1) of Theorem 2.6, in particular we have: e(4)
= emdim (A) = 2. (Theorem 2.6). On the contrary, suppose e(A) = 2. For
each 4, in (x), 4, is a local ring (since A is a discrete valuation ring,
see [3], p. 748), so it is enough to prove: emdim (4;) = e(/4,) = e(A) = 2.
Let m (vesp.: ;) be the maximal ideal of A (resp.: of 4;). We have:
e(4,) < e(A). In fact, e(A) = 1,(A/xA) (for a suitable regular x) = 1,(A/mA)
(see [4], Remark a), b) p. 657, Lemma 1.8), and also e(4,) = 1,(1,/%;4;)
(see [4], as above). Now, A, = A, so e(d;) = 1Aj(Z/?BjZ). Besides, owing
to Lemma 2.3, putting % = k(m) = k(B,), we have: 1,(A/mA) = 1,(A/mA),
1,(A/B,A) = 1,(A/R,;A). We have also: A/B,A is isomorphic to
(A/mA)/(B,A/mA) as a k-vector space. So, e(4;) = 1,(A[R,A) = 1,(A/mA)
— 1,(B;A/mA) < 1,(A/mA) = e(A).

Then, we have: emdim (/4;) < e(4;) ([4], Corollary 1.10) < e(A) (as before
seen) = 2, On the other hand, emdim (4;) > 2, because 4, is not regular.
It follows: emdim (/4,) = e(4;) = e(A) = 2.

So, Corollary 2.9 shows that, if C is an analytically irreducible plane
curve with singular point P, the local ring of C at P satisfies condition
1) of Theorem 2.6 if and only if P is a double point. Also for a larger
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class of analytically irreducible curves we can characterize the rings A
satisfying condition 1) of Theorem 2.6: see the next Corollary 2.10, which
shows how Proposition 2.3 of [7] can be deduced from Theorem 2.6.

Let A be the local ring of a monomial curve: A = k[t™, .-, t"?],
with % algebrically closed. By S = {(n,, ---,n,> we denote the semigroup
generated by n,, - -, n,.

CoroLLARY 2.10. Let A = k[t™, - - -, t"], where n, < - .. < n, generate
minimally S ={n,, ---,n,y. Then, condition 1) of Theorem 2.6 holds if
and only if n, =1 mod (n,), n; = n,_, + 1 for 3<j <p.

Proof. Since each /; in (x) is local, it is enough to prove: “emdim (/;)
=e(d)=e(A) for j=1,.--.,n —1” if and only if “n, =1 mod (ny), n, =
N, + 1 for 3<h <p” (see Theorem 2.6). One has: the condition “e(/;)
=e(A) for j=1,---,n —1"7 is equivalent to “n, =1 mod (n,)”. In fact,
if e(4;) = e(A), je{l, --,n — 1} then e(/4,) = n,; it implies that the re-
mainder r of the division of n, by n, is equal to 1, otherwise there is
a /; such that e(4)) =r<n,, for a je{l,---,n — 1} (see [7], Lemma 2.1).
Contrariwise, if n, =1 mod (n,), owing to Lemma 2.1 of [7] we have:
e(d;)=n,for j=1,---,n—1, so e(/4,) = e(A)

Now, it is enough to apply Proposition 8.1 and Theorem 1.5 of [7],
to complete the proof.
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