A CONNECTION BETWEEN BLOWING-UP AND GLUINGS IN ONE-DIMENSIONAL RINGS

GRAZIA TAMONE

Introduction

Let C be an affine curve, contained on a non-singular surface X as a closed 1-dimensional subscheme. If P is a closed point on C, the blowing-up C^{\prime} of C with center P (induced by the blowing-up of X with center P) is an affine curve. It is known that there is a sequence:

$$
\begin{equation*}
\bar{C}=C_{k} \longrightarrow C_{k-1} \longrightarrow \cdots \longrightarrow C_{1} \longrightarrow C_{0}=C, \tag{•}
\end{equation*}
$$

where \bar{C} is the normalization of C, and each C_{i+1} is the blowing-up of C_{i} with center a singular point P_{i} on $C_{i}(i=0, \cdots, k-1)$.

The sequence (.) induces a sequence of rings:

$$
\begin{equation*}
R=R_{0} \subset R_{1} \subset \cdots \subset R_{k-1} \subset R_{k}=\bar{R} \tag{*}
\end{equation*}
$$

where, for $j=0, \cdots, k, R_{j}$ is the coordinate ring of C_{j}; for each $i=$ $0, \cdots, k-1, R_{i+1}$ is called the ring "obtained from R_{i} by blowing-up the maximal ideal of R_{i} corresponding to P_{i} ".

On the other hand, there is also a sequence between R and \bar{R} :

$$
\begin{equation*}
R=B_{n} \subset B_{n-1} \subset \cdots \subset B_{1} \subset B_{0}=\bar{R} \tag{**}
\end{equation*}
$$

where each $B_{i+1}(\mathrm{i}=0, \cdots, n-1)$ is a "gluing of primary ideals of B_{i} over a prime ideal of $R^{\prime \prime}$ (see [6]).

In this paper we wonder under what assumptions a sequence (*) is also a sequence ($* *$) of gluings between R and \bar{R}; in this case, the method of "gluing" defined in [6] is "inverse" of the process of "blowing-up" used to obtain the desingularization of C. We give necessary and sufficient conditions on ($*$) in order that ($*$) is also a sequence of gluings like ($* *$); then, we show some classes of rings satisfying the required condition, in particular the rings considered in the last theorem of [7].

[^0]§ 1.
Let C be an affine curve, P_{1}, \cdots, P_{n} the singular points on C, R the coordinate ring of C. For $i=1, \cdots, n$, the maximal ideal of R corresponding to P_{i} is a prime ideal belonging to the conductor \mathfrak{b} of R in \bar{R}. Then, if Ass $(R / \mathfrak{b})=\left\{\mathfrak{m}_{1}, \cdots, \mathfrak{m}_{n}\right\}$, and $S=R-\cup \mathfrak{m}_{i}$, the ring $A=S^{-1} R$ is semilocal, and its maximal ideals are exactly $m_{1} A, \cdots, m_{n} A$, so that the maximal ideals of A correspond to the singular points of C. Besides, if R^{\prime} is the coordinate ring of the blowing-up of C with center P_{i} ($i=1, \cdots, n$), the ring "obtained from A by blowing-up $\mathfrak{m}_{i} A$ " is canonically isomorphic to $S^{-1} R^{\prime}$ ([4], p. 663). Owing to these facts, we can consider A instead of R without loss of generality.

Since A is semilocal, the ring "obtained from A by blowing-up a maximal ideal \mathfrak{m} " can be described in various ways, according to [4] and [5]. In fact, if A is a semilocal 1-dimensional Cohen-Macaulay ring, the ring obtained by blowing-up $\mathfrak{m} \in \operatorname{Spm}(A)$ coincides with the "first neighbourhood of $A ": \Lambda=\left\{b|a| b \in \mathfrak{m}^{s}, a\right.$ is superficial of degree $\left.s\right\}$, defined in [5], Chapter XII. This ring can also be written as $A\left[z_{1} / x, \cdots, z_{t} / x\right]$, where $\left\{z_{1}, \cdots, z_{t}\right\}$ is a set of generators of $\mathfrak{m}, x \in \mathfrak{m}$ is \mathfrak{m}-transversal; besides, this ring coincides with $\mathfrak{m}^{n}: \mathfrak{m}^{n}=\left\{a \in \bar{A} \mid a \mathfrak{m}^{n} \subset \mathfrak{m}^{n}\right\}$ for all sufficiently large n (see [4], Proposition 1.1, Definition 1.7, Lemma 1.8, and [2], Corollary 3.5).

In this paper, unless we give further notice, A will mean a semilocal 1-dimensional Cohen-Macaulay ring. Besides, we shall denote the "embedding dimension" and the "multiplicity" of a local ring S respectively by: emdim (S) and $e(S)$.

First of all, we prove some lemmas we need to study some conductors which we are interested in.

Lemma 1.1. Let \mathfrak{p} be a maximal ideal in A, Λ be the ring obtained from A by blowing-up \mathfrak{p}. If $A \neq \Lambda$, the conductor of A in Λ is a \mathfrak{p}-primary ideal.

Proof. Let \mathfrak{a} be the conductor of A in Λ. As seen before, $\Lambda=\mathfrak{p}^{n}: \mathfrak{p}^{n}$ for a suitable n, so, for each $x \in \mathfrak{p}, y \in \Lambda$ we have: $y x^{n} \in \mathfrak{p}^{n}$, thence $x^{n} \Lambda \subset A$. It follows: $x^{n} \in \mathfrak{a}$ for each $x \in \mathfrak{p}$, so $\mathfrak{p} \subset \sqrt{\mathfrak{a}}$. Now, \mathfrak{p} is maximal and \mathfrak{a} is a proper ideal, then we have $\mathfrak{p}=\sqrt{ } \bar{a}$ and \mathfrak{a} is \mathfrak{p}-primary.

Corollary 1.2. Let \mathfrak{b} be the conductor of A in \bar{A}, Λ be the ring obtained from A by blowing-up a maximal ideal \mathfrak{p} belonging to \mathfrak{b}. If \mathfrak{p} coincides with the \mathfrak{p}-primary component of \mathfrak{b}, the conductor of A in Λ is \mathfrak{p}.

Proof. We first have: $A \neq \Lambda$: in fact, $A=\Lambda$ implies $\mathfrak{p}=\mathfrak{p} A=x \Lambda=$ $x A$ for some regular element $x \in A$ ([4], Proposition 1.1, (ii)), so $A_{\mathfrak{p}}$ is regular, then $A_{\mathfrak{p}}=\overline{A_{\mathfrak{p}}}$ while $\mathfrak{p} \in \operatorname{Ass}(A / \mathfrak{b}) . \quad$ So, $A \subsetneq \Lambda \subset \bar{A}$; then, if \mathfrak{a} is the conductor of A in Λ, we have $\mathfrak{b} \subset \mathfrak{a}$, and also $\sqrt{\mathfrak{a}}=\mathfrak{p}$ (Lemma 1.1). Let \mathfrak{q} be the \mathfrak{p}-primary ideal belonging to \mathfrak{b}; the reduced primary decomposition of \mathfrak{b} is like this: $\mathfrak{b}=\mathfrak{q} \cap\left(\cap \mathfrak{q}_{j}\right)$. Then, if $\mathfrak{p}=\mathfrak{q}$, owing to the above facts we have: $\mathfrak{p} \cap\left(\cap \mathfrak{q}_{j}\right) \supset \mathfrak{a} \cap\left(\cap \mathfrak{q}_{j}\right) \supset \mathfrak{b}=\mathfrak{q} \cap\left(\cap \mathfrak{q}_{j}\right)=\mathfrak{p} \cap\left(\cap \mathfrak{q}_{j}\right)$, hence:

$$
\mathfrak{p} \cap\left(\cap \mathfrak{q}_{j}\right)=\mathfrak{a} \cap\left(\cap \mathfrak{q}_{j}\right), \quad \text { with } \quad \sqrt{\bar{a}}=\mathfrak{p}
$$

It follows that the two sides of (.) are two reduced primary decompositions of the same ideal \mathfrak{h}, whose primary components are all isolated; then, owing to the uniqueness of these components, we have, in particular, $\mathfrak{p}=\mathfrak{a}$.

Remarks. 1) In general, if \mathfrak{p} doesn't coincide with the \mathfrak{p}-primary component of \mathfrak{b}, one has: $\mathfrak{p} \neq \mathfrak{a}$. As an example, let us consider the ring $A=k \llbracket t^{3}, t^{5} \rrbracket$. The conductor \mathfrak{b} of A in $\bar{A}=k \llbracket t \rrbracket$ is \mathfrak{p}-primary, where $\mathfrak{p}=\left(t^{3}, t^{5}\right)$. We have: $\Lambda=A\left[t^{3} / t^{3}, t^{5} / t^{3}\right]$ ([4], Definition 1.7, Lemma 1.8, and the beginning of Section 1) $=k \llbracket t^{2}, t^{3} \rrbracket$. Let \mathfrak{a} be the conductor of A in Λ. One ean easily show that $\mathfrak{a} \neq \mathfrak{p}$, seeing that $t^{5} \in \mathfrak{p}, t^{5} \notin \mathfrak{a}$ because $t^{5} t^{2}=t^{7} \notin A$.
2) The inverse of Corollary 1.2 is not true, i.e. in some cases the conductor of A in Λ is \mathfrak{p}, but \mathfrak{p} is not a primary ideal belonging to \mathfrak{b}. For example, if $A=k \llbracket t^{2}, t^{5} \rrbracket$, we have: $\bar{A}=k \llbracket t \rrbracket, \mathfrak{b}=\left(t^{4}, t^{5}\right)$ is $\left(t^{2}, t^{5}\right)$ primary, and $\mathfrak{b} \neq\left(t^{2}, t^{5}\right)$. One has: $\Lambda=A\left[t^{2} / t^{2}, t^{5} / t^{2}\right]$ ([4], Proposition 1.1, Definition 1.7, Lemma 1.8) $=k \llbracket t^{2}, t^{3} \rrbracket$. Now, we show the conductor a of A in Λ is $\left(t^{2}, t^{5}\right)$. Owing to the maximality of $\left(t^{2}, t^{5}\right)$ it is enough to prove: $\left(t^{2}, t^{5}\right) \subset a$. So, for each $x \in\left(t^{2}, t^{5}\right)$, we must prove $x \Lambda \subset A$. Let $x \in\left(t^{2}, t^{5}\right)$, $y \in \Lambda$; then, $x=t^{2} \sum a_{i j} t^{2 i} t^{5 j}+t^{5} \sum b_{h k} t^{2 h} t^{5 k}, \quad y=\sum c_{p q} t^{2 p} t^{3 q} . \quad$ So, $x y=$ $\sum c_{p q} t^{2 p}\left(x t^{3 q}\right)$. Now, $x t^{3 q}=\left(\sum a_{i j} t^{2 i} t^{5 j}\right) t^{3 q+2}+\left(\sum b_{h k} t^{2 h} t^{3 k}\right) t^{3 q+5}=\sum a_{i j} t^{2 i+5 j+3 q+2}$ $+\sum b_{h k} t^{2 h+5 k+3 q+5}$, and we have: $2 i+5 j+3 q+2 \geqslant 4$, or $=2$ for $i, j, q \in N$, $2 h+5 k+3 q+5 \geqslant 7$, or $=5$ for $h, k, q \in N$. So, $x t^{3 q} \in A$. Then, $x y=$ $\sum c_{p q} t^{2 p}\left(x t^{3 q}\right) \in A$, since also $t^{2 p} \in A$ for each p.

Corollary 1.3. Let \mathfrak{p}, A be as in Lemma 1.1. If \mathfrak{p}^{\prime} is a prime ideal of A, and $\mathfrak{p}^{\prime} \neq \mathfrak{p}$, there is a unique prime in Λ over \mathfrak{p}^{\prime}.

Proof. Owing to Lemma 1.1, the conductor \mathfrak{a} of A in Λ is such that $\sqrt{\mathfrak{a}}=\mathfrak{p}$; then, if $\mathfrak{p}^{\prime} \neq \mathfrak{p}$, one has $\mathfrak{p}^{\prime} \not \supset \mathfrak{a}$ (otherwise $\mathfrak{p}^{\prime} \supset \mathfrak{p}$, and this implies
$\mathfrak{p}^{\prime}=\mathfrak{p}$). It follows: $A_{\mathfrak{p}^{\prime}}=\Lambda_{A-p^{\prime}}$, so there is a unique prime ideal in Λ over \mathfrak{p}^{\prime} (since there is one-to-one correspondence between $\left\{\mathfrak{B} \in \operatorname{Spec} \Lambda / \mathfrak{\beta} \cap A=\mathfrak{p}^{\prime}\right\}$ and $\operatorname{Spec}\left(\Lambda_{A-p^{\prime} / p^{\prime}} \Lambda_{A-p^{\prime}}\right)=\operatorname{Spec}\left(A_{p^{\prime}} / p^{\prime} A_{p^{\prime}}\right)=\operatorname{Spec}\left(k\left(p^{\prime}\right)\right)$.

The next lemma holds in the general case: so, the rings considered here are not necessarily of the above type.

Lemma 1.4. Let A, B, C be rings such that $A \subset B \subset C$, and let $\mathfrak{a}, \mathfrak{b}, \mathfrak{b}^{\prime}$ be respectively the conductor of A in B, of A in C, of B in C. Then, $\mathfrak{a b} \mathfrak{b}^{\prime} \subset \mathfrak{b}$ in B.

Proof. For each $x \in \mathfrak{a}, y \in \mathfrak{b}^{\prime}, c \in C$ we have (in B): $(x y) c=x(y c)$, where $y c \in B$, since $y \in \mathfrak{b}^{\prime} ;$ so, $x(y c) \in A$ because $x \in \mathfrak{a}$. Then, $(x y) c \in A$, so that $x y \in \mathfrak{b}$. It follows that $\mathfrak{a b} \mathfrak{b}^{\prime} \subset \mathfrak{b}$.

Lemma 1.5. Under the assumptions of Corollary 1.2, let $\mathfrak{a}, \mathfrak{b}^{\prime}$ be respectively the conductor of A in Λ and of Λ in \bar{A}. If $\mathfrak{p}_{i} \in \operatorname{Ass}(A / \mathfrak{b})-\{\mathfrak{p}\}$, and $S=A-\mathfrak{p}_{i}$ we have $\mathfrak{b} S^{-1} \Lambda=\mathfrak{b}^{\prime} S^{-1} \Lambda$.

Proof. We have $\mathfrak{b} \Lambda \subset \mathfrak{b}^{\prime}$, since $(\mathfrak{b} \Lambda) \bar{A} \subset \mathfrak{b} \bar{A} \subset A \subset \Lambda$, so $\mathfrak{b} S^{-1} \Lambda \subset \mathfrak{b}^{\prime} S^{-1} \Lambda$. On the other hand, in Λ one has $\mathfrak{a b} \subset \mathfrak{b}$ (Lemma 1.4), so $\left(\mathfrak{a} S^{-1} \Lambda\right)\left(\mathfrak{b}^{\prime} S^{-1} \Lambda\right)$ $=\left(\mathfrak{a b} \mathfrak{b}^{\prime}\right) S^{-1} \Lambda \subset \mathfrak{b} S^{-1} \Lambda$, hence $\mathfrak{b}^{\prime} S^{-1} \Lambda \subset \mathfrak{b} S^{-1} \Lambda$ because $\mathfrak{a} S^{-1} \Lambda=S^{-1} \Lambda$ owing to the assumptions and Lemma 1.1.

Using the above results, we can prove some facts concerning the conductor of Λ in \bar{A}. We assume that \bar{A} is a finite A-module.

Proposition 1.6. Let \mathfrak{b} be the conductor of A in \bar{A}, and Ass $(A / \mathfrak{b})=$ $\left\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{n}\right\}$. Let Λ_{j} be the ring obtained from A by blowing-up $\mathfrak{p}_{j}(1 \leqslant j \leqslant n)$, \mathfrak{b}_{j} be the conductor of Λ_{j} in \bar{A}. The following facts hold:

1) for each $i \in\{1, \cdots, \hat{j}, \cdots, n\}$ there is a unique prime ideal $\mathfrak{ß}_{i}$ in Λ_{j} over \mathfrak{p}_{i}, and $\left\{\mathfrak{F}_{1}, \cdots, \hat{j}, \cdots, \mathfrak{B}_{n}\right\} \in \operatorname{Ass}\left(\Lambda_{j} / \mathfrak{b}_{j}\right)$
2) for each prime ideal \mathfrak{B} in Λ_{j} such that $\mathfrak{P} \cap A \neq \mathfrak{p}_{i}(i=1, \cdots, n)$ we have: $\mathfrak{\beta} \notin \operatorname{Ass}\left(\Lambda_{j} / \mathfrak{b}_{j}\right)$.

Proof. 1) For each $i \in\{1, \cdots, \hat{j}, \cdots, n\}$ we have $\mathfrak{p}_{i} \neq \mathfrak{p}_{j}$, so (Corollary 1.3) there is a unique prime in Λ_{j} over \mathfrak{p}_{i}, say \mathfrak{B}_{i}. For each $\mathfrak{p}_{i} \in$ $\left\{\mathfrak{P}_{1}, \cdots, \hat{j}, \cdots, \mathfrak{P}_{n}\right\}$ we have $\mathfrak{P}_{i} \cap A=\mathfrak{p}_{2} \supset \mathfrak{k}$, so $\mathfrak{B}_{i} \supset \mathfrak{b} \Lambda_{j}$, thence if $S=A-\mathfrak{p}_{i}$, the ideal $\mathfrak{r}_{i} S^{-1} \Lambda_{j}$ is proper, and contains $\mathfrak{b} S^{-1} \Lambda_{j}$. Now, owing to Lemma 1.5, $\mathfrak{b} S^{-1} \Lambda_{j}=\mathfrak{b}_{j} S^{-1} \Lambda_{j}$. Then, we have: $\mathfrak{P}_{i} S^{-1} \Lambda_{j} \supset \mathfrak{b}_{j} S^{-1} \Lambda_{j}$; this implies $\mathfrak{P}_{\imath} S^{-1} \Lambda_{j}$ is in Ass $\left(S^{-1} \Lambda_{j} / \mathfrak{b}_{j} S^{-1} \Lambda_{j}\right)$, hence $\mathfrak{\Re}_{i} \in \operatorname{Ass}\left(\Lambda_{j} / \mathfrak{b}_{j}\right)$.
2) Let $\mathfrak{B} \in \operatorname{Spec}\left(\Lambda_{j}\right)$ be such that $\mathfrak{p}=\mathfrak{B} \cap A \neq \mathfrak{p}_{i}$ for $i=1, \cdots, n$. Then, $\mathfrak{p} \not \supset \mathfrak{b}$, so $A_{\downarrow}=\bar{A}_{A-p}$; it follows: $A_{\downarrow} \subset\left(\Lambda_{j}\right)_{A-p} \subset \bar{A}_{A-p}=A_{\downarrow}$, so $\left(\Lambda_{j}\right)_{A-\downarrow}$
$=\bar{A}_{A-p}$. Hence, the conductor $\mathfrak{b}_{j}\left(\Lambda_{j}\right)_{A-p}$ is not a proper ideal, so $\mathfrak{B \notin}$ Ass $\left(\Lambda_{j} / \mathfrak{b}_{j}\right)$ (otherwise $\mathfrak{P}\left(\Lambda_{j}\right)_{A-p}$, which is a proper ideal, would contain $\left.\mathfrak{b}_{j}\left(\Lambda_{j}\right)_{A-\mathfrak{p}}=\left(\Lambda_{j}\right)_{A-p}\right)$.

Proposition 1.7. Under the assumptions of Proposition 1.6, if \mathfrak{p}_{j} coincides with the \mathfrak{p}_{j}-primary ideal belonging to \mathfrak{b}, then:

$$
\begin{array}{ll}
\left\{\mathfrak{B} \in \operatorname{Spec} \Lambda_{j} \mid \mathfrak{P} \cap A=\mathfrak{p}_{j}\right\} \not \subset \operatorname{Ass}\left(\Lambda_{j} / \mathfrak{b}_{j}\right), & \text { so } \\
\left\{\mathfrak{S} \in \operatorname{Spec} \Lambda_{j} \mid \mathfrak{B} \cap A=\mathfrak{p}_{j}\right\} \cap \operatorname{Ass}\left(\Lambda_{j} / \mathfrak{b}_{j}\right) & \text { is empty } .
\end{array}
$$

Proof. Let $S=A-\mathfrak{p}_{j}$; then, $\bar{S}^{-1} A=S^{-1} \bar{A}$, and the ring obtained from $S^{-1} A$ by blowing-up $\mathfrak{p}_{j} S^{-1} A$ is canonically isomorphic to $S^{-1} \Lambda_{j}$ (see the beginning of Section 1). Since \mathfrak{p}_{j} equals the \mathfrak{p}_{j}-primary component of \mathfrak{b}, the conductor of A in Λ_{j} is \mathfrak{p}_{j} (Corollary 1.2), so $\mathfrak{p}_{j} S^{-1} \Lambda_{j} \subset S^{-1} A$, then $\mathfrak{p}_{j} S^{-1} \Lambda_{j}=\mathfrak{p}_{j} S^{-1} A$. It follows: $S^{-1} \Lambda_{j}=\left\{x \in S^{-1} \bar{A} \mid x \mathfrak{p}_{j} S^{-1} A \subset \mathfrak{p}_{j} S^{-1} A\right\}$ ([4], Proposition 1.1 (i), Definition 1.3); besides, the conductor of $S^{-1} A$ in $S^{-1} \bar{A}$ is $\mathfrak{p}_{j} S^{-1} A$. All this allows us to prove: $S^{-1} \Lambda_{j}=S^{-1} \bar{A}$. Indeed, for each $x \in S^{-1} \bar{A}$ we have: $x\left(\mathfrak{p}_{j} S^{-1} A\right) \subset \mathfrak{p}_{j} \overline{S^{-1} A} \subset S^{-1} A$, so $x\left(\mathfrak{p}_{j} S^{-1} A\right) \subset \mathfrak{p}_{j} S^{-1} \bar{A} \cap S^{-1} A$ $=\mathfrak{p}_{j} S^{-1} A$, then $x \in S^{-1} \Lambda_{j}$. Now, let $\mathfrak{B} \in \operatorname{Spec} \Lambda_{j}$ be such that $\mathfrak{B} \cap A=\mathfrak{p}_{j}$; if $\mathfrak{B} \in \operatorname{Ass}\left(\Lambda_{j} / \mathfrak{b}_{j}\right)$, we have $\mathfrak{B} S^{-1} \Lambda_{j} \in \operatorname{Ass}\left(S^{-1} \Lambda_{j} / \mathfrak{b}_{j} S^{-1} \Lambda_{j}\right)$, while $\mathfrak{P} S^{-1} \Lambda_{j}$ is a proper ideal, and $\mathfrak{G}_{j} S^{-1} \Lambda_{j}$ is not a proper ideal, since $S^{-1} \Lambda_{j}=S^{-1} \bar{A}$. So, the result follows.

Remark. There are examples of rings A such that \mathfrak{p}_{j} doesn't equal the \mathfrak{p}_{j}-primary component of \mathfrak{b}, and Ass $\left(\Lambda_{j} / \mathfrak{b}_{j}\right)$ contains a prime ideal \mathfrak{P} such that $\mathfrak{P} \cap A=\mathfrak{p}_{j}$. The ring $A=k \llbracket t^{3}, t^{5} \rrbracket$ and the ideal $\mathfrak{p}_{j}=\left(t^{3}, t^{5}\right)$ considered in remark 1) after Corollary 1.2 are an example of that. In fact, $\Lambda_{j}=k \llbracket t^{2}, t^{3} \rrbracket$, and the conductor \mathfrak{b}_{j} is $\mathfrak{B}=\left(t^{2}, t^{3}\right)$; it is easily seen that $\mathfrak{P} \cap A=\left(t^{3}, t^{5}\right)=\mathfrak{p}_{j}$.

From Proposition 1.6 and Proposition 1.7 it follows immediately:
Corollary 1.8. Under the assumptions of Proposition 1.6, if \mathfrak{p}_{j} coincides with the \mathfrak{p}_{j}-primary component of \mathfrak{b}, then $\operatorname{Ass}\left(\Lambda_{j} / \mathfrak{b}_{j}\right)=\left\{\mathfrak{F}_{1}, \cdots, \hat{j}, \cdots, \mathfrak{P}_{n}\right\}$ where \mathfrak{P}_{i} is the only prime ideal in Λ_{j} over \mathfrak{p}_{i}, for $i=1, \cdots, \hat{j}, \cdots, n$.

The following proposition shows another connection between the properties of the conductors \mathfrak{b} and \mathfrak{b}_{j}.

Proposition 1.9. Let $A, \mathfrak{p}_{j}, \Lambda_{j}$ be as in Proposition 1.6, and \mathfrak{P}_{i} be the only prime ideal in Λ_{j} over \mathfrak{p}_{i}, for $i=1, \cdots, \hat{j}, \cdots, n$. If \mathfrak{p}_{i} coincides with the \mathfrak{p}_{i}-primary component of \mathfrak{b}, then $\mathfrak{\Re}_{i}$ coincides with the \mathfrak{P}_{i}-primary ideal belonging to \mathfrak{b}_{j}.

Proof. Let $S=A-\mathfrak{p}_{i}$, a be the conductor of A in Λ_{j}. Since $\mathfrak{p}_{i} \neq \mathfrak{p}_{j}$, we have: $\mathfrak{p}_{i} \not \supset \mathfrak{a}$, because \mathfrak{a} is \mathfrak{p}_{j}-primary (Lemma 1.1) and \mathfrak{p}_{j} is maximal; so, $S^{-1} A=S^{-1} \Lambda_{j}$. Moreover, $\mathfrak{b}^{-1} \Lambda_{j}=\mathfrak{b}_{j} S^{-1} \Lambda_{j}$, owing to Lemma 1.5. So, $\mathfrak{b}_{j} S^{-1} \Lambda_{j}=\mathfrak{b} S^{-1} \Lambda_{j}=\mathfrak{b} S^{-1} A$, and this last ideal coincides with $\mathfrak{p}_{i} S^{-1} A$ because of the assumptions on \mathfrak{p}_{i}. Now, if \mathfrak{Q}_{i} is the \mathfrak{P}_{i}-primary component of \mathfrak{b}_{j}, we have: $\mathfrak{G}_{j} S^{-1} \Lambda_{j}=\mathfrak{Q}_{i} S^{-1} \Lambda_{j}$. Then, $\mathfrak{Q}_{i} S^{-1} \Lambda_{j}=\mathfrak{p}_{i} S^{-1} A$. It follows that $\mathfrak{\Re}_{i} S^{-1} \Lambda_{j}$ is a prime ideal; so, it coincides with its own radical $\Re_{i} S^{-1} \Lambda_{j}$. Thence, $\mathfrak{Q}_{i}=\mathfrak{P}_{i}$, because \mathfrak{Q}_{i} is \mathfrak{P}_{i}-primary.

From Corollary 1.8 and Proposition 1.9 we get the following
Corollary 1.10. Let A, Λ_{j} be as in Proposition 1.6 and let \mathfrak{P}_{i} be the only prime ideal in Λ_{j} over \mathfrak{p}_{i}, for $i \in\{1, \cdots, \hat{j}, \cdots, n\}$. If $\mathfrak{b}=\sqrt[A]{\mathfrak{b}}=$ $\bigcap_{i=1}^{n} \mathfrak{p}_{i}$ then $\mathfrak{b}_{j}={ }^{\Lambda_{j}} \sqrt{\mathfrak{b}_{j}}=\bigcap_{i \neq j} \mathfrak{ß}_{i}$.

§ 2.

Now, let
(*)

$$
A=A_{0} \subset A_{1} \subset \cdots \subset A_{k-1} \subset A_{k}=\bar{A}
$$

be a sequence where each A_{j+1} is the ring obtained from A_{j} by blowingup a prime ideal \Re_{j} in $A_{j}(j=0, \cdots, k-1)$. We want to find necessary and sufficient conditions in order that (*) is also a sequence

$$
\begin{equation*}
A=B_{n} \subset B_{n-1} \subset \cdots \subset B_{1} \subset B_{0}=\bar{A} \tag{**}
\end{equation*}
$$

where each B_{j+1} is the gluing, over a prime ideal \mathfrak{p} of A, of the primary ideals belonging to $\mathfrak{p} B_{j}(j=0, \cdots, n-1)$. Now, A_{j} in (*) is the gluing, over a prime ideal $\mathfrak{p} \in \operatorname{Spec} A$, of the primary ideals of $\mathfrak{p} A_{j+1}$, if and only if A_{j} is the gluing, over $\mathfrak{P}_{j} \cap A$, of the primary ideals of $\left(\Re_{j} \cap A\right) A_{j+1}$. In fact, if A_{j} is the gluing, over a prime \mathfrak{p}^{\prime} of A, of the primary ideals of $\mathfrak{p}^{\prime} A_{j+1}$, we have: $A_{j}=A+\mathfrak{p}^{\prime} A_{j+1}$, and $\mathfrak{P}^{\prime}=\mathfrak{p}^{\prime} A_{j+1}$ is a maximal ideal (see [7], Lemma 1.2, 1)); besides, \mathfrak{P}^{\prime} is the conductor of A_{j} in A_{j+1} (since $\mathfrak{P}^{\prime} A_{j+1}=\mathfrak{p}^{\prime} A_{j+1} \subset A_{j}$, and \mathfrak{P}^{\prime} is maximal). Now, since A_{j+1} is obtained from A_{j} by blowing-up \mathfrak{R}_{j}, the conductor \mathfrak{a} of A_{j} in A_{j+1} is such that $\sqrt{\mathfrak{a}}=\mathfrak{B}_{j}$ (Lemma 1.1). Then, we have: $\mathfrak{a}=\mathfrak{B}^{\prime}, \sqrt{\mathfrak{B}^{\prime}}=\sqrt{\mathfrak{a}}=\mathfrak{B}_{j}$, so \mathfrak{B}_{j} $=\mathfrak{P}^{\prime}$. It follows: $\mathfrak{p}^{\prime}=\mathfrak{P}^{\prime} \cap A=\mathfrak{P}_{i} \cap A$, so A_{j} is the gluing, over $\mathfrak{P}_{j} \cap A$, of the primary ideals belonging to $\left(\Re_{j} \cap A\right) A_{j+1}$. On the contrary, if each A_{j} is the gluing, over $\mathfrak{R}_{j} \cap A$, of the primary ideals belonging to $\left(\Re_{j} \cap A\right) A_{j+1}$, then obviously $(*)$ is a sequence like $(* *)$. So, our problem is to require conditions in order that each A_{j} is the gluing, over $\mathfrak{p}=\mathfrak{B}_{j} \cap A$,
of the primary ideals of $\mathfrak{p} A_{j+1}$. We note that the property we are interested in implies the following (weaker) one: for $j=0, \cdots, k-1, A_{j}$ is the gluing, over \Re_{j}, of the primary ideals of $\Re_{j} A_{j+1}$, owing to the equality $\mathfrak{R}_{j}=\mathfrak{p} A_{j+1}$ and [7], Lemma 1.2, 1), 2). This last property can be characterized through certain properties of A_{j}, as we show in the following lemma, which therefore gives a necessary condition for the property of (*) we are studying. The following lemma is also a generalization of Lemma 1.3 of [7].

Lemma 2.1. Let \mathfrak{p} be a maximal ideal of A, A, A^{\prime} respectively be the ring obtained from A by blowing-up \mathfrak{p}, and the gluing, over \mathfrak{p}, of the primary ideals belonging to $\mathfrak{p} A$. Then the following conditions are equivalent:

1) the rings A, A^{\prime} coincide.
2) $\quad \operatorname{emdim}\left(A_{\mathfrak{p}}\right)=e\left(A_{\mathfrak{p}}\right)$.
3) the conductor of A in Λ is p.

Proof. We put $S=A-\mathfrak{p}$, and we remember that $S^{-1} \Lambda$ is the ring obtained from $S^{-1} A$ by blowing-up $p S^{-1} A$. We have:

1) \Rightarrow 2) The gluing over $\mathfrak{p} S^{-1} A$ of the primary ideals of $p S^{-1} A$ is $B=S^{-1} A+\mathfrak{p} S^{-1} \Lambda\left([7]\right.$, Lemma 1.2, 1)). Now, $\mathfrak{p} S^{-1} \Lambda \subset S^{-1} A$, since $\mathfrak{p} \Lambda \subset A^{\prime}$ ([7], Lemma 1.2, 1)) $\subset A$; then, $B \subset S^{-1} A$, so it is enough to apply [7], Lemma $1.3,1) \Rightarrow 2$).
2) $\Rightarrow 3$) Owing to [7], Lemma 1.3, 2) $\Rightarrow 3$), the conductor of $S^{-1} A$ in $S^{-1} \Lambda$ is $\mathfrak{p} S^{-1} A$. Let \mathfrak{a} be the conductor of A in Λ; we have $\sqrt{\bar{a}}=\mathfrak{p}$ (Lemma 1.1). Then, $\mathfrak{p} S^{-1} A=\mathfrak{a} S^{-1} A$, where \mathfrak{a} is \mathfrak{p}-primary; it follows: $\mathfrak{p}=\mathfrak{a}$.
$3) \Rightarrow 1)$ We have: $A^{\prime}=A+\mathfrak{p} A([7]$, Lemma 1.2, 1)) $\subset A$, since \mathfrak{p} is the conductor; so, $A^{\prime}=A$.

Owing to this lemma and the above remarks we have: the condition "emdim $\left(\left(A_{j}\right)_{\mathfrak{F}_{j}}\right)=e\left(\left(A_{j}\right)_{\mathfrak{F}_{j}}\right)$ for each A_{j} in (*)" is necessary to get the property of (*) we are studying, but it is not sufficient (consider for example $A=k \llbracket t^{3}, t^{5}, t^{7} \rrbracket$: the sequence $(*)$ is $A \subset k \llbracket t^{2}, t^{3} \rrbracket \subset k \llbracket t \rrbracket=\bar{A}$, where $\operatorname{emdim}\left(\left(A_{j}\right)_{\mathfrak{F}_{j}}\right)=e\left(\left(A_{j}\right)_{\mathfrak{F}_{j}}\right)$ for each $A_{j}, \mathfrak{\Re}_{j}$, and (*) doesn't coincide with (**), as Proposition 3.2 of [7] shows). The following results allow us to find also sufficient conditions for the property of (*) we are interested in.

The next lemma holds in the general case, not only for semilocal one-dimensional rings.

Lemma 2.2. Let $A \subset B$ be rings, \mathfrak{p} a maximal ideal in A, A^{\prime} be a ring between A and B, such that $A^{\prime} \subset A+\mathfrak{p} B$. If \mathfrak{p}^{\prime} is a prime ideal in
A^{\prime} over \mathfrak{p} and $\mathfrak{p} B \neq B$, then $\mathfrak{p}^{\prime} B=\mathfrak{p} B$.
Proof. The ideal $\mathfrak{p} B$ is maximal in $A+\mathfrak{p} B$, since $A+\mathfrak{p} B / \mathfrak{p} B \cong A / \mathfrak{p} B \cap A$ $=A / \mathfrak{p}$, which is a field. Besides, $\mathfrak{p} B=\left(\mathfrak{p} A^{\prime}\right) B \subset \mathfrak{p}^{\prime} B$, because $\mathfrak{p} A^{\prime} \subset \mathfrak{p}^{\prime}$; so, $\mathfrak{p} B \subset \mathfrak{p}^{\prime} B$, and $\mathfrak{p} B$ is maximal. It follows: $\mathfrak{p} B=\mathfrak{p}^{\prime} B$.

The next lemma recalls a well-known fact:
Lemma 2.3. Let (A, \mathfrak{m}, k) be a local ring, $k=A / \mathfrak{m}$ and M be a k module. Then, $1_{A}(M)=1_{k}(M)$.

Proposition 2.4. Let A, \mathfrak{p}, Λ be as in Lemma 2.1, B be a ring between Λ and \bar{A}, \mathfrak{F} be a prime ideal in B over \mathfrak{p}. Besides, let Λ^{\prime} be the ring obtained from B by blowing-up \mathfrak{B}. Let us suppose B is a finite A-module, \mathfrak{B} is the only prime ideal in B over \mathfrak{p}, and the residue fields $k(\mathfrak{p}), k(\mathfrak{P})$ are canonically isomorphic. The following conditions are equivalent:

1) $\mathfrak{p} \Lambda^{\prime}=\mathfrak{B} \Lambda^{\prime}$
2) $e\left(A_{\mathfrak{p}}\right)=e\left(B_{\mathfrak{F}}\right)$.

Proof. We put: $R=A_{\mathfrak{p}}, S=B_{\mathfrak{ß}}=B_{A-\mathfrak{p}}$ (see, for example, [1], p. 40), $L=\Lambda_{A-p}, L^{\prime}=\Lambda_{A-p}^{\prime}$. Then, L is obtained from R by blowing-up $\mathfrak{p} R$, so there is $x \in R, x$ regular in L such that $\mathfrak{p} L=x L$ ([4], Proposition 1.1), and we have: $e(R)=1_{R}(R / x R)$ ([4], Remark a) p. 657) $=1_{R}\left(L^{\prime} \mid x L^{\prime}\right)$ ([4], Remark b) p. 657, where $J=L^{\prime}, x$ is regular in R since is regular in L) $=1_{R}\left(L^{\prime} /(x L) L^{\prime}\right)=1_{R}\left(L^{\prime} /(\mathfrak{p} L) L^{\prime}\right)=1_{R}\left(L^{\prime} \mid \mathfrak{p} L^{\prime}\right)$. On the other hand, there is also $y \in B, y$ regular in Λ^{\prime} and such that $\Re \Lambda^{\prime}=y \Lambda^{\prime}$ ([4] Proposition 1.1), so there is $y \in S, y$ regular in L^{\prime}, such that $\mathfrak{P} L^{\prime}=y L^{\prime}$. Then, as before we have: $e(S)=1_{S}\left(L^{\prime} \mid y L^{\prime}\right)=1_{s}\left(L^{\prime} / \Re L^{\prime}\right)$.

Besides, $L^{\prime} / \mathfrak{p} L^{\prime}$ (resp. : $L^{\prime} / \mathfrak{P} L^{\prime}$) is an $A / \mathfrak{p}=k(\mathfrak{p})$-module (resp. :a B / \mathfrak{B} $=k(\mathfrak{P})$-module), where the scalar product, induced by the structure of L^{\prime}, coincides with the inner product. Then, (Lemma 2.3) we have: $e(R)=$ $1_{R}\left(L^{\prime} / \mathfrak{p} L^{\prime}\right)=1_{k(\mathfrak{p})}\left(L^{\prime} / \mathfrak{p} L^{\prime}\right), e(S)=1_{S}\left(L^{\prime} / \Re L^{\prime}\right)=1_{k(\mathfrak{\beta})}\left(L^{\prime} / \Re L^{\prime}\right)$. Moreover, $k(\mathfrak{p}) \cong$ $k(\mathfrak{P})$. Then, if 1) holds, in particular $\mathfrak{p} L^{\prime}=\mathfrak{B} L^{\prime}$, so we have: $e(R)=$ $1_{h(p)}\left(L^{\prime} / \mathfrak{p} L^{\prime}\right)=1_{k(p)}\left(L^{\prime} / \Re L^{\prime}\right)=1_{k(\mathcal{B})}\left(L^{\prime} / \Re L^{\prime}\right)=e(S)$, i.e. 2). On the contrary, if 2) holds, $1_{k(p)}\left(L^{\prime} / \mathfrak{p} L^{\prime}\right)=e(R)=e(S)=1_{k(\Re)}\left(L^{\prime} / \Re L^{\prime}\right)=1_{k(p)}\left(L^{\prime} / \Re L^{\prime}\right)$, so $M=$ $L^{\prime} / p L^{\prime}$ and $N=L^{\prime} / \Re L^{\prime}$ are two $k(p)$-vector spaces of the same dimension. On the other hand, since $\mathfrak{p} L^{\prime} \subset \mathfrak{\beta} L^{\prime}$, we have: $M /\left(\Re L^{\prime} / p L^{\prime}\right)$ and N are isomorphic as $k(\mathfrak{p})$-vector spaces. Then, putting $P=\mathfrak{B} L^{\prime} / \mathfrak{p} L^{\prime}$, it follows: $\operatorname{dim}_{k(\varphi)}(M)=\operatorname{dim}_{k(\varphi)}(N)$, and also $\operatorname{dim}_{k(\varphi)}(M)-\operatorname{dim}_{k(p)}(P)=\operatorname{dim}_{k(\varphi)}(N)$. Therefore, $\operatorname{dim}_{k(p)}(P)=0$, so $\mathfrak{p} L^{\prime}=\mathfrak{R} L^{\prime}$; this equality implies $\mathfrak{p} \Lambda^{\prime}=\mathfrak{B} \Lambda^{\prime}$.

From Proposition 2.4 and Lemma 2.2 it follows
Corollary 2.5. Let A, B, Λ^{\prime} as in Proposition 2.4. If B coincides with the gluing, over \mathfrak{p}, of the primary ideals belonging to $\mathfrak{p} \Lambda^{\prime}$, and \mathfrak{B} is the only prime ideal of B over \mathfrak{p}, the equivalent conditions of Proposition 2.4 are satisfied.

Proof. We have: $B=A+\mathfrak{p} \Lambda^{\prime}$ ([7], Lemma 1.2, 1)), so (Lemma 2.2): $\mathfrak{p} \Lambda^{\prime}=\mathfrak{P} \Lambda^{\prime}$, then 1) of Proposition 2.4 holds.

Using the above results and Section 1 we can find necessary and sufficient conditions in order that in ($*$) each A_{j} is a gluing, as required. We notice that in (*) each blowing-up concerns a prime ideal $\Re_{j} \in$ Ass $\left(A_{j} / \mathfrak{b}_{j}\right)$ such that $\mathfrak{r}_{j} \cap A \in \operatorname{Ass}(A / \mathfrak{b})$, where $\mathfrak{b}_{j}, \mathfrak{b}$ are respectively the conductor of A_{j} in \bar{A} and of A in \bar{A}. In fact, according to the definition of (*), \mathfrak{B}_{j} is an associated prime of the conductor a of A_{j} in A_{j+1} (Lemma 1.1); besides, $\mathfrak{b}_{j} \subset \mathfrak{a}$ since $A_{j} \subset A_{j+1} \subset \bar{A}$. Then, $\mathfrak{P}_{j} \supset \mathfrak{b}_{j}$, so $\mathfrak{F}_{j} \in \operatorname{Ass}\left(A_{j} / \mathfrak{b}_{j}\right)$. This implies: $\mathfrak{p}=\mathfrak{P}_{j} \cap A \in \operatorname{Ass}(A / \mathfrak{b})$. In fact, putting $S=A-\mathfrak{p}$, we have $S^{-1} A_{j} \subseteq S^{-1} \bar{A}$ (otherwise $\left(A_{j}\right)_{\mathfrak{Y}_{j}}=\left(S^{-1} A_{j}\right)_{S^{-1 A_{j}-\Re_{j} S^{-1} A_{j}}}=\left(S^{-1} \bar{A}\right)_{S^{-1} A_{j}-\mathcal{F}_{j} S^{-1} A_{j}}=$ $\bar{A}_{A_{j}-\beta_{j}}$, with $\Re_{j} \in \operatorname{Ass}\left(A_{j} / \mathfrak{b}_{j}\right)$, contradiction); then, a fortiori we have: $S^{-1} A \subsetneq S^{-1} \bar{A}$, so $\mathfrak{p} \in \operatorname{Ass}(A / \mathfrak{b})$.

Let $\operatorname{Ass}(A / \mathfrak{b})=\left\{\mathfrak{n}_{1}, \cdots, \mathfrak{p}_{k}\right\}$. In general (sea remark after Proposition 1.7), for each $\mathfrak{p}_{i} \in \operatorname{Ass}(A / \mathfrak{b})$ there are in (*) $n_{i} \geqslant 1$ rings obtained by blowing-up prime ideals which are over μ_{i}. So, we write (*) in such a way to point out this fact:
$(*)^{\prime}$

$$
\begin{aligned}
A= & \Lambda_{1} \subset \cdots \subset \Lambda_{j_{1}} \subset \Lambda_{j_{1}+1} \subset \cdots \subset \Lambda_{j_{2}} \subset \Lambda_{j_{2}+1} \\
& \subset \cdots \subset \Lambda_{j_{k}} \subset \Lambda_{j_{k}+1}=\Lambda_{n}=\bar{A}
\end{aligned}
$$

meaning that, for $i=0, \cdots, k-1, \Lambda_{j_{i}+2}, \cdots, \Lambda_{j_{i_{+1}+1}}$ are obtained by blowingup respectively $\mathfrak{ß}_{j_{i}+1} \in \operatorname{Spec}\left(\Lambda_{j_{i}+1}\right), \cdots, \mathfrak{B}_{j_{i+1}} \in \operatorname{Spec}\left(\Lambda_{j_{i+1}}\right)$, whera $\Re_{j_{i}+1} \cap A$ $=\cdots=\mathfrak{P}_{j_{i+1}} \cap A=\mathfrak{p}_{i+1}$ (we put: $j_{0}=0$).

Theorem 2.6. With the above notations, we assume: $k\left(\Re_{j}\right)=k(\mathfrak{p})$ for each $\mathfrak{R}_{j} \in \operatorname{Spec} \Lambda_{j}, \mathfrak{p} \in \operatorname{Spec} A$ such that $\mathfrak{p}=\mathfrak{R}_{j} \cap A$. The following conditions are equivalent:

1) in the sequence (*) each Λ_{j} is the gluing, over $\mathfrak{p}=\mathfrak{\Re}_{j} \cap A$, of the primary ideals belonging to $\mathfrak{p} \Lambda_{j+1}(j=1, \cdots, n-1)$
2) for $j=1, \cdots, n-1, \mathfrak{F}_{j}$ is the only prime ideal in A, over $\mathfrak{p}=\mathfrak{x}_{j} \cap A$, and $\operatorname{emdim}\left(\left(\Lambda_{j}\right)_{\mathfrak{F}_{j}}\right)=e\left(\left(\Lambda_{j}\right)_{\mathfrak{F}_{j}}\right)=e\left(A_{p}\right)$.

Proof. It is enough to prove: 1) $\Leftrightarrow 2$) for each $i=0, \cdots, k-1$ and each $j \in\left\{j_{i}+1, \cdots, j_{i+1}\right\}$.

Let us localize (*) at $S=A-\mathfrak{p}_{i+1}$. We obtain:

$$
\begin{aligned}
A_{p_{i+1}}= & S^{-1} \Lambda_{1} \subset \cdots \subset S^{-1} \Lambda_{j_{i}} \subset S^{-1} \Lambda_{j_{i}+1} \subset S^{-1} \Lambda_{j_{i}+2} \\
& \subset \cdots \subset S^{-1} \Lambda_{J_{i+1}} \subset \cdots \subset S^{-1} \bar{A}
\end{aligned}
$$

where, for each $j, S^{-1} \Lambda_{j+1}$ is the ring obtained from $S^{-1} \Lambda_{j}$ by blowing-up $\mathfrak{P}_{j} S^{-1} \Lambda_{\jmath}$. Now, we have: $S^{-1} \Lambda_{2}=\cdots=S^{-1} \Lambda_{j_{i}+1}=A_{p_{i+1}}$. In fact, these rings are obtained by blowing-up prime ideals which are not over $\mathfrak{p}_{i+1} A_{\mathfrak{p}_{i+1}}$; so, after calling \mathfrak{a}_{j} the conductor of $A_{p_{i+1}}$ in $S^{-1} \Lambda_{j}\left(j=2, \cdots, j_{i}+1\right)$, we have: $\sqrt{\overline{a_{j}}}$ contains a product of prime ideals $\mathfrak{P}_{a_{1}} \cdots \mathfrak{P}_{a_{k}}$, where $\mathfrak{P}_{a_{1}} \cap A_{\mathfrak{p}_{i+1}} \neq$ $\mathfrak{p}_{i+1} A_{p_{i+1}}, \cdots, \mathfrak{P}_{a_{k}} \cap A_{p_{i+1}} \neq \mathfrak{p}_{i+1} A_{p_{i+1}}$ (see Lemma 1.1 and Lemma 1.4), so that no prime ideal belonging to \mathfrak{a}_{j} coincides with \mathfrak{p}_{i+1} for $j=2, \cdots, j_{i}+1$. Besides, $S^{-1} \Lambda_{j_{i+1}+1}=\cdots=S^{-1} \Lambda_{j_{k}}=S^{-1} \bar{A}=\overline{A_{p_{i+1}}}$. In fact, for $j=j_{i+1}+1$, \cdots, j_{k}, because of the definition of $(*)^{\prime}$, no prime ideal belonging to the conductor of Λ_{j} in \bar{A} lies over \mathfrak{p}_{i+1}, so that the conductor of $S^{-1} \Lambda_{j}$ in $S^{-1} \bar{A}=\overline{A_{p_{i+1}}}$ is not a proper ideal. Owing to these facts, the localization of $(*)^{\prime}$ at S is:

$$
A_{\nu_{i+1}}=S^{-1} \Lambda_{j_{i}+1} \subset S^{-1} \Lambda_{j_{i}+2} \subset \cdots \subset S^{-1} \Lambda_{j_{i+1}} \subset \overline{A_{p_{i+1}}}
$$

where the first blowing-up concerns $\mathfrak{p}_{i+1} A_{\mathfrak{p}_{2+1}}$.

1) \Rightarrow 2) For each $j \in\left\{j_{i}+2, \cdots, j_{i+1}\right\}$, \mathfrak{R}_{j} is the only prime ideal in Λ_{j} over \mathfrak{p}_{i+1} ([6], osserv. II); besides, $S^{-1} \Lambda_{j}$ contains the ring obtained from $A_{p_{i+1}}$ by blowing-up $\mathfrak{p}_{i+1} A_{p_{i+1}}$, it coincides with the gluing, over $\mathfrak{p}_{i+1} A_{p_{i+1}}$, of the primary ideals belonging to $\mathfrak{p}_{i+1} S^{-1} \Lambda_{j+1}$, and contains $\mathfrak{R}_{j} S^{-1} \Lambda_{j}$ as the only prime ideal over $\mathfrak{p}_{i+1} A_{p_{i+1}}$. Then (Corollary 2.5) we have: $e\left(A_{p_{i+1}}\right)=e\left(\left(S^{-1} \Lambda_{j}\right)_{\Re_{j} S^{-1} 1_{j}}\right)$, so $e\left(A_{\mathfrak{p}_{i+1}}\right)=e\left(\left(\Lambda_{j}\right)_{\Re_{j}}\right)$ because $\left(S^{-1} \Lambda_{j}\right)_{\Re_{j} S^{-1} \Lambda_{j}}$ $=\left(\Lambda_{j}\right)_{\mathfrak{P}_{j} \cdot}$ Moreover, in $\Lambda_{j_{i}+1}, \mathfrak{P}_{j_{i}+1}$ is the only prime ideal over \mathfrak{p}_{i+1}, and we have also: $S^{-1} \Lambda_{j_{i}+1}=A_{p_{i+1}}$. So, $A_{p_{i+1}}=S^{-1} \Lambda_{j_{i}+1}=\left(\Lambda_{j_{i}+1}\right)_{\Re_{j_{i}+1}}$, then $e\left(A_{p_{i+1}}\right)=e\left(\left(\Lambda_{j_{i}+1}\right)_{\Re_{j_{i+1}}}\right)$. So, for $j \in\left\{j_{i}+1, \cdots, j_{i+1}\right\}$ we have: $e\left(A_{p_{i+1}}\right)=$ $e\left(\left(\Lambda_{j}\right)_{\Re_{j}}\right)$. On the other hand, Λ_{j}, being the gluing over \mathfrak{p}_{i+1} of the primary ideals of $\mathfrak{p}_{i+1} \Lambda_{j+1}$, is also the gluing, over \mathfrak{B}_{j}, of the primary ideals of $\mathfrak{P}_{j} \Lambda_{j+1}$ ([7], Lemma 1.2,2)); then, owing to Lemma 2.1: emdim $\left(\left(\Lambda_{j}\right)_{\mathfrak{F}_{j}}\right)$ $=e\left(\left(\Lambda_{j}\right)_{\mathfrak{F}_{j}}\right)$. It follows: $\operatorname{emdim}\left(\left(\Lambda_{j}\right)_{\mathfrak{q}_{j}}\right)=e\left(\left(\Lambda_{j}\right)_{\Re_{j}}\right)=e\left(A_{\mathfrak{p}_{i+1}}\right)$ for $j \in\left\{j_{i}+1, \cdots\right.$, $\left.j_{i+1}\right\}$.
2) \Rightarrow 1) Let $i \in\{0, \cdots, k-1\}$. For each $j \in\left\{j_{i}+1, \cdots, j_{i+1}\right\}$, we have $\operatorname{emdim}\left(\left(\Lambda_{j}\right)_{\Re_{j}}\right)=e\left(\left(\Lambda_{j}\right)_{\Re_{j}}\right)$, so (Lemma 2.1): Λ_{j} coincides with the gluing,
over \mathfrak{R}_{j}, of the primary ideals of $\mathfrak{R}_{j} \Lambda_{j+1}$. Then, owing to [6], Proposition 1.5 we have: $\Lambda_{j}=\left\{x \in \Lambda_{j+1} \mid x \bmod \left(\mathfrak{P}_{j} \Lambda_{j+1}\right) \in f\left(k\left(\Re_{j}\right)\right)\right\}$, where f is the canonical embedding: $k\left(\mathfrak{F}_{j}\right) \longrightarrow T^{-1}\left(\Lambda_{j+1} / \mathfrak{B}_{j} \Lambda_{j+1}\right), T=\Lambda_{j} / \mathfrak{B}_{j}-\{\overline{0}\}$. We want to prove: Λ_{\jmath} is the gluing, over \mathfrak{p}_{i+1}, of the primary ideals of $\mathfrak{p}_{i+1} \Lambda_{j+1}$, that is $\Lambda_{j}=\left\{x \in \Lambda_{j+1} \mid x \bmod \left(\mathfrak{p}_{i+1} \Lambda_{j+1}\right) \in \varphi\left(k\left(\mathfrak{p}_{i+1}\right)\right)\right\}$, where φ is the canonical map: $k\left(\mathfrak{p}_{i+1}\right) \longleftrightarrow U^{-1}\left(\Lambda_{j+1} / \mathfrak{p}_{i+1} \Lambda_{j+1}\right), U=A / \mathfrak{p}_{i+1}-\{\overline{0}\}$.

Now, $U=k\left(\mathfrak{p}_{i+1}\right)-\{\overline{0}\}=k\left(\Re_{j}\right)-\{\overline{0}\}$ (for the assumptions) $=T$, so the hypothesis on Λ_{j} can be written: $\Lambda_{j}=\left\{x \in \Lambda_{j+1} \mid x \bmod \left(\mathfrak{F}_{j} \Lambda_{j+1}\right) \in \varphi\left(k\left(\mathfrak{p}_{i+1}\right)\right)\right\}$, and it is enough to prove: $\mathfrak{p}_{i+1} \Lambda_{j+1}=\mathfrak{P}_{j} \Lambda_{j+1}$.

Let $S=A-\mathfrak{p}_{i+1}$. As before seen, for $j \in\left\{j_{i}+2, \cdots, j_{i+1}\right\}, S^{-1} \Lambda_{j}$ is local, with maximal ideal $\mathfrak{R}_{j} S^{-1} \Lambda_{j}$, and contains the ring $S^{-1} \Lambda_{j_{i}+2}$, obtained from $A_{p_{i+1}}$ by blowing-up $\mathfrak{p}_{i+1} A_{p_{i+1}}$. Moreover, $e\left(\left(\Lambda_{j}\right)_{\mathfrak{F}_{j}}\right)=e\left(A_{p_{i+1}}\right)$, so $e\left(A_{p_{i+1}}\right)$ $=e\left(\left(S^{-1} \Lambda_{j}\right)_{\mathfrak{F}_{j} S-1_{j}}\right)$; besides, $k\left(\mathfrak{\Re}_{j} S^{-1} \Lambda_{j}\right)=k\left(\mathfrak{p}_{j}\right)=k\left(\mathfrak{p}_{i+1}\right)=k\left(\mathfrak{p}_{i+1} A_{p_{i+1}}\right)$. Then, owing to Proposition 2.4, we have: $\mathfrak{p}_{i+1} S^{-1} \Lambda_{j}=\mathfrak{p}_{j} S^{-1} \Lambda_{j}$, and this implies $\mathfrak{p}_{i+1} \Lambda_{j+1}=\mathfrak{P}_{\jmath} \Lambda_{j+1}$, for the assumptions on S. So, the result follows for $j \in\left\{j_{i}+2, \cdots, j_{i+1}\right\}$. As regards $\Lambda_{j_{i}+1}$, we know that $S^{-1} \Lambda_{j_{i}+1}=A_{p_{i+1}}$, so its maximal ideal $\mathfrak{P}_{j_{i}+1} S^{-1} \Lambda_{j_{i}+1}$ equals $\mathfrak{p}_{i+1} A_{\mathfrak{p}_{i+1}}=\mathfrak{p}_{\imath+1} S^{-1} \Lambda_{j_{\imath}+1}$; then, $\mathfrak{R}_{j_{i}+1} S^{-1} \Lambda_{j_{i}+2}=\mathfrak{p}_{i+1} S^{-1} \Lambda_{j_{i}+2}$. Then, the result follows for each $j \in$ $\left\{j_{i}+1, \cdots, j_{i+1}\right\}$.

Now, we show certain classes of rings, such that (*) satisfies the two equivalent conditions of Theorem 2.6.

Corollary 2.7. Under the same assumptions as in Theorem 2.6, a ring A such that ${ }^{A} \sqrt{\bar{b}}=\mathfrak{b}, \mathfrak{b}=A:_{A} \bar{A}$, satisfies condition 1) of Theorem 2.6.

Proof. We shall prove that A satisfies 2) of Theorem 2.6; it is enough to show that this condition holds for each $i \in\{0, \cdots, k-1\}, j \in\left\{j_{i}+1, \cdots\right.$, $\left.j_{i+1}\right\}$, if $\sqrt[A]{\mathfrak{b}}=\mathfrak{b}$. So, let $i \in\{0, \cdots, k-1\}, S=A-\mathfrak{p}_{i+1}$. At the beginning of the proof of Theorem 2.6 we showed that the localization of (*)' at S is:

$$
A_{v_{i+1}}=S^{-1} \Lambda_{j_{i}+1} \subset S^{-1} \Lambda_{j_{i}+2} \subset \cdots \subset S^{-1} \Lambda_{j_{i+1}} \subset \overline{A_{p_{i+1}}} .
$$

In this particular case, we have: $A_{\mathfrak{p}_{c+1}}=S^{-1} \Lambda_{j_{i}+1} \subset S^{-1} \Lambda_{j_{i}+2}=\cdots=A_{p_{i+1}}$, since (as we shall prove) the conductor of $S^{-1} \Lambda_{j_{i}+2}$ in $\overline{A_{\mathrm{p}_{i+1}}}$ is not a proper ideal. Let $\mathfrak{b}_{j_{i}+2}$ be the conductor of $\Lambda_{j_{i}+2}$ in \bar{A}; then, the conductor of $S^{-1} \Lambda_{j_{i}+2}$ in $\overline{A_{p_{i+1}}}$ is $\mathfrak{b}_{j_{i}+2} S^{-1} \Lambda_{j_{i}+2}$. If this ideal is proper, it is the intersection of the prime ideals $\mathfrak{P}_{a_{1}}, \cdots, \mathfrak{P}_{a_{r}}$ of $S^{-1} \Lambda_{j_{i}+2}$ such that $\left\{\mathfrak{P}_{a_{j}} \cap A_{\mathfrak{p i}_{i+1}}\right.$, $j=0, \cdots, r\}=\operatorname{Ass}\left(A_{p_{i+1}} / \mathfrak{b} A_{p_{i+1}}\right)-\left\{\mathfrak{p}_{i+1} A_{p_{i+1}}\right\}$ (see Corollary 1.10); but ${ }_{6} A_{p_{i+1}}$ $=\mathfrak{p}_{i+1} A_{p_{i+1}}$, since $\mathfrak{b}=\sqrt{4} \sqrt{\mathfrak{b}}$, so $\mathfrak{b}_{j_{i}+2} S^{-1} \Lambda_{j_{i}+2}$ is not proper.

So, it follows that in (*)' the only "link" concerning blowing-up of prime ideals over \mathfrak{p}_{i+1} is $\Lambda_{j_{i}+1} \subset \Lambda_{j_{2}+2}$; then, it is enough to show that $\Lambda_{j_{i}+1}$ satisfies 2) of Theorem 2.6. Indeed, we have: in $\Lambda_{j_{i}+1}, \mathfrak{P}_{j_{i}+1}$ is the only prime ideal over \mathfrak{p}_{i+1}, because $S^{-1} \Lambda_{j_{\imath}+1}=A_{p_{i+1}}$ is local, and its maximal ideal is $\mathfrak{P}_{j_{i}+1} S^{-1} \Lambda_{j_{i}+1}$. So, we have also: $\left(\Lambda_{j_{i}+1}\right)_{\mathfrak{P}_{j_{i}+1}}=S^{-1} \Lambda_{j_{i}+1}$ ([1], p. 40) $=A_{p_{i+1}}$. Besides, since $\sqrt[A]{ } \sqrt{\mathfrak{b}}=\mathfrak{b}$, the conductor of $A_{p_{i+1}}$ in $\overline{A_{p_{i+1}}}$ is $\mathfrak{p}_{i+1} A_{p_{i+1}}$, then, owing to the above facts, we have also: the conductor of $S^{-1} \Lambda_{j_{i}+1}$ in $S^{-1} \Lambda_{j_{i}+2}$ is $\mathfrak{p}_{i+1} S^{-1} \Lambda_{j_{i}+1}$, which equals $\mathfrak{P}_{j_{i}+1} S^{-1} \Lambda_{j_{i}+1}$. It follows (Lemma 2.1): $\operatorname{emdim}\left(\left(S^{-1} \Lambda_{j_{i}+1}\right)_{\mathcal{P}_{i+1} S^{-1} \Lambda_{j_{i}+1}}\right)=e\left(\left(S^{-1} \Lambda_{j_{i}+1}\right)_{\mathcal{F}_{j_{i}+1} S-1_{\Lambda_{j i+}}}\right)$, i.e. $\quad \operatorname{emdim}\left(\left(\Lambda_{j_{i}+1}\right)_{\Re_{j_{i}+1}}\right)$ $=e\left(\left(\Lambda_{j_{i}+1}\right)_{\Re_{j_{i+1}}}\right)$. So, $\Lambda_{j_{i}+1}$ is as required.

Corollary 2.8. Under the same assumptions as in Theorem 2.6, if A is seminormal, then A satisfies condition 1) of Theorem 2.6.

Proof. If A is seminormal, then ${ }^{A} \sqrt{\mathfrak{b}}=\mathfrak{b}$; so, we can apply Corollary 2.7.

Corollary 2.9. Under the same assumptions as in Theorem 2.6, let A be local, analytically irreducible and such that $\operatorname{emdim}(A)=2$. Then, condition 1) of Theorem 2.6 holds if and only if $e(A)=2$.

Proof. If A satisfies 1) of Theorem 2.6, in particular we have: $e(A)$ $=\operatorname{emdim}(A)=2$. (Theorem 2.6). On the contrary, suppose $e(A)=2$. For each Λ_{j} in (*)', Λ_{j} is a local ring (since \bar{A} is a discrete valuation ring, see [3], p. 748), so it is enough to prove: emdim $\left(\Lambda_{j}\right)=e\left(\Lambda_{j}\right)=e(A)=2$. Let \mathfrak{m} (resp.: \mathfrak{P}_{j}) be the maximal ideal of A (resp.: of Λ_{j}). We have: $e\left(\Lambda_{j}\right) \leqslant e(A)$. In fact, $e(A)=1_{A}(A / x A)$ (for a suitable regular $\left.x\right)=1_{A}(\bar{A} / \mathrm{m} \bar{A})$ (see [4], Remark a), b) p. 657, Lemma 1.8), and also $e\left(\Lambda_{j}\right)=1_{A_{j}}\left(\bar{\Lambda}_{j} / \mathfrak{B}_{j} \bar{\Lambda}_{j}\right)$ (see [4], as above). Now, $\bar{\Lambda}_{j}=\bar{A}$, so $e\left(\Lambda_{j}\right)=1_{A_{j}}\left(\bar{A} / \Re_{j} \bar{A}\right)$. Besides, owing to Lemma 2.3, putting $k=k(\mathfrak{n})=k\left(\Re_{j}\right)$, we have: $1_{A}(\bar{A} / \mathfrak{m} \bar{A})=1_{k}(\bar{A} / \mathfrak{n} \bar{A})$, $1_{A_{j}}\left(\bar{A} / \mathscr{F}_{j} \bar{A}\right)=1_{k}\left(\bar{A} / \Re_{j} \bar{A}\right)$. We have also: $\bar{A} / \mathscr{ß}_{j} \bar{A}$ is isomorphic to $(\bar{A} / \mathfrak{m} \bar{A}) /\left(\Re_{j}, \bar{A} / \mathfrak{m} \bar{A}\right)$ as a k-vector space. So, $e\left(\Lambda_{j}\right)=1_{k}\left(\bar{A} / \Re_{j} \bar{A}\right)=1_{k}(\bar{A} / \mathfrak{m} \bar{A})$ $-1_{k}\left(\Re_{j} \bar{A} / \mathfrak{m} \bar{A}\right) \leqslant 1_{k}(\bar{A} / \mathrm{m} \bar{A})=e(A)$.

Then, we have: emdim $\left(\Lambda_{j}\right) \leqslant e\left(\Lambda_{j}\right)$ ([4], Corollary 1.10$) \leqslant e(A)$ (as before seen $)=2$. On the other hand, emdim $\left(\Lambda_{j}\right) \geqslant 2$, because Λ_{j} is not regular. It follows: $\operatorname{emdim}\left(\Lambda_{j}\right)=e\left(\Lambda_{j}\right)=e(A)=2$.

So, Corollary 2.9 shows that, if C is an analytically irreducible plane curve with singular point P, the local ring of C at P satisfies condition 1) of Theorem 2.6 if and only if P is a double point. Also for a larger
class of analytically irreducible curves we can characterize the rings A satisfying condition 1) of Theorem 2.6: see the next Corollary 2.10, which shows how Proposition 2.3 of [7] can be deduced from Theorem 2.6.

Let A be the local ring of a monomial curve: $A=k \llbracket t^{n_{1}}, \cdots, t^{n_{p}} \rrbracket$, with k algebrically closed. By $S=\left\langle n_{1}, \cdots, n_{p}\right\rangle$ we denote the semigroup generated by n_{1}, \cdots, n_{p}.

Corollary 2.10. Let $A=k \llbracket t^{n_{1}}, \cdots, t^{n_{p}} \rrbracket$, where $n_{1}<\cdots<n_{p}$ generate minimally $S=\left\langle n_{1}, \cdots, n_{p}\right\rangle$. Then, condition 1) of Theorem 2.6 holds if and only if $n_{2} \equiv 1 \bmod \left(n_{1}\right), n_{j}=n_{j-1}+1$ for $3 \leqslant j \leqslant p$.

Proof. Since each Λ_{j} in (*) is local, it is enough to prove: "emdim (Λ_{j}) $=e\left(\Lambda_{j}\right)=e(A)$ for $j=1, \cdots, n-1$ " if and only if " $n_{2} \equiv 1 \bmod \left(n_{1}\right), n_{h}=$ $n_{h-1}+1$ for $3 \leqslant h \leqslant p$ " (see Theorem 2.6). One has: the condition " $e\left(\Lambda_{j}\right)$ $=e(A)$ for $j=1, \cdots, n-1$ " is equivalent to " $n_{2} \equiv 1 \bmod \left(n_{1}\right)$ ". In fact, if $e\left(\Lambda_{j}\right)=e(A), j \in\{1, \cdots, n-1\}$ then $e\left(\Lambda_{j}\right)=n_{1}$; it implies that the remainder r of the division of n_{2} by n_{1} is equal to 1 , otherwise there is a Λ_{j} such that $e\left(\Lambda_{j}\right)=r<n_{1}$, for a $j \in\{1, \cdots, n-1\}$ (see [7], Lemma 2.1). Contrariwise, if $n_{2} \equiv 1 \bmod \left(n_{1}\right)$, owing to Lemma 2.1 of [7] we have: $e\left(\Lambda_{j}\right)=n_{1}$ for $j=1, \cdots, n-1$, so $e\left(\Lambda_{j}\right)=e(A)$

Now, it is enough to apply Proposition 3.1 and Theorem 1.5 of [7], to complete the proof.

References

[1] N. Bourbaki, Algebre Commutative Ch. 5-6, Hermann, Paris, 1964.
[2] S. Greco and P. Valabrega, On the theory of adjoints, Lecture Notes in Math., 732 (Algebraic Geometry) Springer-Verlag (1978), 98-123.
[3] E. Kunz, The value-semigroup of a one-dimensional Gorenstein ring, Proc. of Amer. Math. Soc., 25 (1970), 748-751.
[4] J. Lipman, Stable ideals and Arf rings, Amer. J. Math., 93 (1971), 649-685.
[5] E. Matlis, 1-Dimensional Cohen-Macaulay rings, Lecture Notes in Math., 327 Springer-Verlag (1970).
[6] G. Tamone, Sugli incollamenti di ideali primari e la genesi di certe singolarità, B.U.M.I. (Supplemento) Algebra e Geometria, Suppl., 2 (1980), 243-258.
[7] -_, Blowing-up and gluings in one-dimensional rings to appear on Commutative Algebra: Proceedings of the Trento Conference, Lecture Notes in pure and applied Math., M. Dekker Inc.

Istituto di Matematica
Università di Genova
Via L. B. Alberti 4
16132 Genova
Italy

[^0]: Received October 5, 1982.
 This work was supported by C.N.R. (Consiglio Nazionale delle Ricerche).

