
H. Saito
Nagoya Math. J.
Vol. 94 (1984), 1-41

THE HODGE COHOMOLOGY AND CUBIC EQUIVALENCES

HIROSHI SAITO

In 1969, Mumford [8] proved that, for a complete non-singular alge-
braic surface F over the complex number field C, the dimension of the
Chow group of zero-cycles on F is infinite if the geometric genus of F is
positive. To this end, he defined a regular 2-form ηf on a non-singular
variety S for a regular 2-form η on F and for a morphism f:S-> SnFy

where SnF is the 72-th symmetric product of F, and he showed that ηf

vanishes if all 0-cycles f(s), s e S, are rationally equivalent. Roitman [9]
later generalized this to a higher dimensional smooth protective variety
V. For ω e H°(V, Ωq

v\ he has defined ωn e H°(SnV, Ωq) and proved that ωn

has the following property: if /, g: S -> SnV are morphisms such that the
zero cycles f(s) and g(s) are rationally equivalent for every s e S, then
f*o)n = g*ωn. We may say this property, roughly, like this: f*ωn cannot
distinguish the rational equivalence relation. The rational equivalence
is the finest equivalence relation among the adequate equivalence rela-
tions (cf. [12]). We can therefore pose the problem: which equivalence
relation can f*ωn distinguish and which one can f*ωn not?

On the other hand, Samuel has defined the cubic equivalences in
[12]. Consider an algebraic family of cycles on a smooth projective
variety V over an algebraically closed field k, parametrized by a smooth
variety S. We can regard this family as a "function" on S with values
in the set of cycles on V. A cycle algebraically equivalent to zero can
be considered as the difference of values at two points for an appropriate
"function" on a smooth projective curve. We shall assume that the
parameter space S is a product of two curves C1 X C2. Then we can
define a difference of the second order: take two points a[0) and aι1} on
Cί9 ί = 1, 2, respectively, and form a difference of values at (a[°\ a(

2

0)) and
(αί1}, ai0)). We also form a difference between (α{0), ap) and (αί1}, c#>). The
difference of the second order is the difference of these two differences.
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Similarly we can consider the differences of higher order. The totality
of differences of the ^-th order with values in the cycles on V defines
an equivalence relation on the set of cycles on V, which we call the
^-cubic equivalence relation. This equivalence relation behaves nicely,
i.e., if X and X' are cycles on V, ^-cube equivalent, then, for a morphism
/, the direct images f*X and /*X', or the pull-backs f*X and f*X\ if
defined, are also ^-cube equivalent.

Now we assume, for simplicity, k = C and let /be a family of effec-
tive r-cycles on V parametrized by S. To an element ω e Hr+ir(V) —
Hr(V, Ωr+*), we can attach a regular -̂form pω on S, generalizing
Roitman's f*ωn. Then one of our theorems (5.7) replies partially to the
problem raised above, by saying that pω cannot distinguish the '̂-cubic
equivalence relation for I < f; but Pω happens to distinguish the ^-cubic
equivalence, cf. (5.14). Our answer is, however, incomplete, as the
following example indicates: if S is a point and t = 0, then pω is the
dual of the fundamental class of Im (/), and it occurs that pω = g*ω but
Im(/) and Ίm(g) are not algebraically equivalent, i.e., not 1-cube equiv-
alent by the example of Griffiths [3, 7].

Regarding the Hodge cohomology H**(V) as a functor from the
category of smooth projective varieties to that of C-vector spaces, we
shall denote by *H**(V) the minimum subfunctor covariant and contra-
variant of H**(V), stable by the multiplication, and containing all the
fundamental classes of algebraic cycles and H°>XV). Then *Hp*q(V) = 0
for p > q and *Hp~ltP(V) can be interpreted as the tangent space for the
algebraic part of the p-th intermediate Jacobian. If grgCHp(V) is the
set of cycles on V of codimension p, ^-cube equivalent to zero modulo
(β + l)-cubic equivalence, then the theorem (5.14) states that *Hp-*'p(V)
ΦO implies greCHp(V)® Q φ 0. This shows that a part *Hp'e>p(V) of
the Hodge cohomology Hp'ίtP(V) controls the structure of Chow group
of codimension p.

In Chapter 1, we describe relations between cycles on S X V and the
rational maps from S to the Chow schemes of V, which are reformula-
tions of well-known facts about Chow schemes. In Chapter 2, we gen-
eralize a part of Roitman's theory to the case of cycles of intermediate
dimension and see that pω never distinguishes the rational equivalence.
The statements of the propositions in this Chapter and their proofs,
which we refer to [9] with slight modification, are the prototypes of
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theorems in Chapter 5. In Chapter 3, we define cubic equivalences and

describe the elementary properties of them. We also remark an interest-

ing theorem essentially due to Swan: if the ground field is the algebraic

closure of a finite field, then the theorem of square holds for arbitrary

cycles on a smooth projective variety. In Chapter 4, we show that the

set of rational maps from a projective scheme into another forms a

scheme as Έloms(X, Y) does, for use in the following chapter. Chapter

5 is devoted mainly to the statements and the proofs of the theorems

mentioned above.

§ 1 .

(1.1) Let k be an arbitrary field, and V be a geometrically integral

algebraic ^-scheme, r an integer >0. By an r-cycle on V, we understand

a formal sum Σ ΠiXi of r-dimensional integral subschem.es Xt of V, where

nte Z. If nt > 0, X is said to be effective. We say also X a cycle on V

of codimension (m — r) where m = dim V. If K/k is a field extension, we

have a morphism φκ/k of schemes Vκ = V X k K -> V. Given an integral

subscheme X of V, we define φ%/k,r(X) by

φlkίV(X) = Σ length (ΘXκJy ,

where y runs over the maximal points of Xκ. By linearity, we can extend

ψκ/k,v to a map from the set of cycles on V to those on Vκ. A cycle Xr

on Vκ is said to be rational over k if there exists a cycle X on V such

that X; = φ%/kίV(X). Note that such X is unique.

(1.2) Suppose further V projective over k and fix an embedding

V<=—>P over k and take an algebraically closed field Ω ZD k. Then we

can speak of the degree of an r-cycle on V and the Chow scheme Cr(VΩ)d

of effective r-cycles of degree d on Va. Cr(VΩ)d is defined over k, i.e., there

exists a scheme Cr(V)d over k such that Cr(VΩ)d = Cr(V)di0). The Ω-valued

points of Cr(VΩ)d correspond bijectively to the set of r-cycles on VΩ of

degree d. Let X be an effective r-cycle on VΩ of degree d and x the

corresponding β-valued point of Cr(V)d. We say that x is rational over

k if κ(x) = k for the image x of x by Cr(VΩ)d = Cr(V)(fl) -> Cr(V)d. If X

is rational over k, then x is rational over k; conversely if x is rational

over k, then there exists a purely inseparable finite extension K of k such

that X is rational over K (cf. [11], p. 47). Therefore if char k — 0 and x

is rational over &, X is rational over k.
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(1.3) If Kjk is a field extension, and if T is a variety over k such

that k(T) = K then for r-cycle Xf on VKy we can define an r-cycle Xf

on T X V by the following procedure: if X' is an integral subscheme of

VK9 X' = the schematic image of X' by Vκ -» T X V. For general X7, we

define Xr by linearity. If X is an integral subscheme of T X V such that

X a T X V—> T is surjective, then Xκ is an integral subscheme of Vκ. For

X = Σ ntXif iί Xί a T X V-+T are surjective for all i, nέ 9̂  0, we say

that X is non-degenerate on T. For a cycle X on Γ X V non-degenerate

on T, we can define the cycle Xκ by linearity. Then Xf ^+ X' and X »-> X^

define a one-to-one correspondence between the set of r-cycles on Vκ and

the set of cycles on T X V of codimension p = m — r, non-degenerate on

T.

For a cycle X on T X V nondegenerate on T, if d is the degree of

the cycle Xκ on V/o Xκ determines a if-rational point of Cr(V)d, hence

a /^-rational map f:T~>Cr(V)d. Conversely, given a ^-rational map

/: T-"> Cr(V)d, we denote by x the image of the generic point of T.

The corresponding cycle is rational over a purely inseparable extension

Kf of K. If K' = if (true when char & = 0), let X' be the corresponding

cycle on Vκ and X the cycle on T XV, the "closure'' of X'; then X is

(effective and) non-degenerate on T and Xκ = Xf is of degree d. If /: T

•••> C r(y) d is obtained by a cycle on Γ x F a s above, then we may assume

K' = K and X = X. Starting from a rational map f: T ~> Cr(V)d and if

Kf = if, we obtain a cycle X on T X V. The rational map induced from

the cycle X is the rational map /. If char k = 0, it therefore follows that

the correspondences Xt->/ and f*-*X define bijective maps between the

set of rational maps of T to Cr(V)d and the set of cycles X on T X V oΐ

codimension p which is non-degenerate on T and such that X(t) for

general t e T is degree d.

Remark (1.3.1). Let /: T-> Cr(V)d be a rational map and Kf a purely

inseparable extension of k(T) over which the corresponding cycle is ra-

tional. If there exists a smooth projective variety Tf with the function

field K\ we have a cycle X on Tf X V with the properties described

above. Note that if C is a projective curve and if Krjk{C) is a purely

inseparable finite extension, there exists a smooth projective model C" of

Kf\ and if C is of genus zero, so is C. Taking this fact into account,

the reader will convince oneself that the propositions (2.2) and (2.3), and

the theorems (5.5) and (5.6) below hold even in the positive characteristic
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case (provided that k is uncountable if necessary).

(1.4) Let k be algebraically closed, V smooth protective, T smooth

quasi-projective and X a cycle on T X V of codimension p, non-degenerate

on T. There exists a normal projective variety T containing T as an

open set. Let X be the closure of X in T X V9 and d the degree of the

cycle XHτ) on VkίT). X induces a /e-rational map ff\ T••-> Cr(V)d, or /: T

~*Cr(V)d. If teT is a closed point such that X(ί) is defined, then /'(ί)

is defined and corresponds to X(t) (cf. [11], p. 107, and Zariski Main

Theorem). Conversely, if a closed point t0 e T is in dom (/), then X(t0) is

defined. In fact, let Y be the cycle on V corresponding to f(t0). Since

T X V is smooth, if X(£o) is not defined, Supp (X) Π (t0 X V) is of dimension

> r. Hence there exists an irreducible component Xt of Supp (X) whose fibre

over t0 is not in Supp Y. Let C be an irreducible curve in the component

such that C" has a point x e V not in Supp Y and C"(Γo) φ φ, where To is

the open subset in T of points t e ϊ 1 such that X(t) is defined. We denote

by C the image curve of C' on T and by C its normalization <p: C —> T.

Putting p0: Co = C(Γo) -> Γo, we have a cycle Xo = (p0 X id)*(XΓoXF) on Co X

V such that if Xo is its closure in C X V, we have X0(s) = X(ψo(s)) fo r

all s e Co. Moreover the rational map induced by the cycle Xo is the

morphism C-+T—> Cr(V)d, hence the point /' oφ(s) e Cr(V)d corresponds

to the cycle X0(s) for s e C. But if s0 is a point with φ(s0) — t0, Supp (X0(tQ))

will contain the point x, whence Xo(̂ o) Φ Y> This contradicts the fact

(1.5) Let Γbe smooth projective over k and ψ: T > Cr(V)d a rational

map corresponding to a cycle X, and teT a. point. If C is a smooth

projective curve and /: C —> T is a morphism such that /(C) Π dim ψ Φ φ,

then we have a rational map g: C -> Γ > C r(y)ώ, which in fact is a

morphism. If α e C is a point with f(ά) = ί, then as a cycle on V, g(α) e

C r(y)d is uniquely determined up to rational equivalence, not depending

on the choice of C, / and α, and is in the rational equivalence class x(t),

where x e CHP(T X V) is the class of X: If 7 is a zero-cycle on T

supported by dom ψ, by [ψ*(7)] we shall understand the cycle 2 λii[ψ(^)],

where f = 2] Λ*(O (̂ « 6 %) a n ( i [ψ(^)] ^s ^ n e cycle on V corresponding

to the Chow point ψ(^). Note first that if 7 and 7' are 0-cyeles

rationally equivalent on T, if dim T7 = 1 (hence ψ is a morphism) and

if ψ coriesponds to a cycle on T X y, then ψ (̂Γ) and ψ*(Γ) are
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rationally equivalent. Now we return to the general case. There exists

a cycle ί on C supported by /"Xdomψ) such that ΐ and the cycle (a) are

rationally equivalent. Then [g(a)] ̂  [g*(ϊ)] = [ψ*(/*(Γ))] - x(/*00), (t) =

f*(a)~f*(r) on Γ, hence the class of [g(α)] - x(/*(r)) = Λ#).

(2.1) Let V be a smooth projective variety of dimension m over an

algebraically closed field k of characteristic 0, with an embedding V c P^,

)̂  its Chow scheme of effective r-cycles of degree d on V. We put

= {(X, Y) e Cr(V)d x C r (F) d ; X ~ Y on V}.

PROPOSITION (2.2). 2??at(V) ι s a countable union of closed subsets of

Cr(V)d X Cr(V)d. More precisely, for integers π > 0, d\ d;/ > 0, let

= \(x Y) " "' Cr{V)i'x Cr{V)i>) such that

- pr2 0/(00) = Y + p r : 0/(00) + pr2°/(0)

d is ί/zβ w^io^ o/ ^ ^ ( y ) ? ^ ^ " α̂ zd ίΛe closures of the latter

subsets in Cr(V)d X Cr(V)d are contained in E^t(V)d.

The proof is similar to that of [9], Theorem 1, replacing SnX by

Cr(V)d.

Note that if an integral subvariety F of PN is a countable union of

closed subsets Fn, then there exists an n such that F = Fn provided that

k is uncountable (This holds even if char k Φ 0).

PROPOSITION (2.3). If k is uncountable and f, g: T-+Cr(V) are two

morphίsms from a smooth quasi-projectίve variety T to the Chow scheme

such that for all teT, f(t) and g(t) are rationally equivalent, then there

exists a smooth quasίprojectίve variety S, a dominant morphίsm e: S-+T

and a morphίsm H: Px X S-> Cr(V)d, X Cr{V)d.. such that

foe + (pr! o H\oxs) + (pr2 o H\^xs) = g o e + (pr2 o H^) + (pr2 o H\oxs),

where " + " denotes the summation on the Chow scheme which are

morphίsms of the form Cr(V)d X Cr(V)d,->CXV)d + d..

Again the proof is similar to [9], Theorem 2.

(2.4) We shall recall the definitions and elementary properties of the
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Hodge cohomology. For a smooth quasi-projective variety U, we set

Hpq(U) = Hq(U,Ωp).

Then if /: U > Vis a morphism of such varieties, we obtain a map

f*:Hp>q(V) >Hpq(U)

with the functorial property. If / is proper, i.e., projective, we can define

a map*)

/*: Hpq(U) > Hp-d'q-d(V)

where d = dim U — dim V. If U and V are projective, then /* and f# are

dual provided that Hp*q(U) and Hp~d'q-d(V) are regarded as the duals of

Hn-p>n-q(U) (n = dim [7) and Hm~p^-q(V) (m = dim V = n - d) respec-

tively by Serre duality. Let Vo be an open subscheme of V and consider

the Cartesian diagram:

U - U V

Then the diagram

^*-> Hp-d>q-d(V)

commutes.

The direct sum of HPi9(U) for 0 </?, q < dim ί/ has a bigraded (anticom-

mutative) ring structure, and /* is a ring homomorphism. For a proper

morphism /: U -+ V, the projection formula holds, i.e., f*(x.f*(y)) = f*(x).y

for xeH**(U) and y e H**(V).

To a closed integral subscheme Z of U of codimension p, we can

attach an element {Z} of HP'P(U), called the fundamental class of Z.**}

By linearity we can attach an element {Z} of HPP(U) to a cycle Z of

>::) cf. [4]. The problem is to define /* for a closed immersion /. Use the isomor-
phism Sxtι

v (Θu, ΩpΓd) = ω(g)Ωψ~d (i= -d), 0 (iΦ—d), where ω is A~d of the normal bundle
of U in V [6].

**> Define, for example, {Z}=(—l)P-1cp(Oz)/(p—l)lf where cp(?) is the p-th. Chern class
of ?; note that ch(0#)={Z} +"higher terms" so that the compatibility with pull-back,
or with multiplication is obvious. The compatibility with direct image results from
Riemann-Roch theorem, cf. [4], p. 151.
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codimension p on U. If Z and Z' are cycles on U properly intersecting,
then {ZZ'\ = {Z}.{Z}. If /: U-> V and Y is a cycle on V such that /* Y
is defined, then {f*Y} = /*{Y}; if / is proper, and X is a cycle on U,
{UX} = /#{X}. Hence, if Z ^ 0, then {Z} = 0.

Let V be a smooth protective variety and /: T-> Cr{V)d a morphism
from a smooth quasi-projective variety into the Chow scheme of V, cor-
responding to a cycle l o n T x V non-degenerate on T. For ω e Hr+er(V)
{β > 0). we define pω by

(2.4.1) /#ω = prΓ*({X}.pr*ω) = : {Z}(α)) = X(ω) .

Hence we obtain a map

f*:Hr+t>r(V) >H'\T).

(2.4.2) If g: S-^Γ is a morphism, we have (f°gf = g*f*. In fact
(g X idF)*X is defined, cf. (1.4), and corresponding to fog9 and we get

X idF

= prWfe X idvy{X}Xg X idF)*pr*ω)

= Vή*((g X idF)*({X}.pr^ω)) (Kunneth formula)

(2.4.3) If /: 5Γ-> Cr(V)d and g: Γ-> Cr(V)d, are morphisms, we have

f+g: T^lcr(V)d x Cr(V)d,-^Cr(V)d+d,.

Then (/ + gf = /# + g#. In fact if X and Y are corresponding to / and g,
respectively, then f+g corresponds to the cycle X + Y, from which the
equality follows immediately.

PROPOSITION (2.5). Under the same hypothesis as in (2.3), we have

r = g*.
The proof is similar to [9], Theorem 4.

(2.6) Let CH(V) be the Chow ring and CHP(V) the codimension p
part of CH(V). A map K of a smooth quasi-projective variety ϊ7 to CHP(V)
(p -\- r = m = dim V as before) is said to be regular if there exist a smooth
quasi-projective variety S, ze CHP(S x V) and a commutative diagram

S

(2.6.1) * j \^(?)
T >CHp(V),
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where g is proper surjective, and z(s) = if(z)9 is: V ~ s X Vc S X V9 the

immersion. Cutting S by hyperplanes transversal to the generic fibre of

g, and choosing an irreducible component dominating T and finally de-

singularizing it, we may assume that g is generically finite. Let Z be a

representative of z and Z/ the sum (with multiplicity) of components of

Z non-degenerate on S, and Zrr = Z — Z>'. Then each component of Z"

is degenerate on S. Since z"(s) = 0 for s e S where z" is the class of Z"

in CH(S X V), we may assume that Z is non-degenerate on S. Z is a

difference of two effective cycles Z+ and Z~. Let d+ and c?_ be the

degrees of Z+(s) and Z~(s) for general s e S. Then Z defines a rational

map /: S-*Cr(V)d+ X CχV)d_ such that for seS with Z(s) defined, Z(s)

= pr!θ/(s) — pr2o/(s). Resolving the indeterminancy of the rational map

/, we can assume that / is a morphism, and we have a commutative

diagram

SJ-> Cr(V)d+ x CXV)d_ 9 (X, Y)

•ϊ ϊι I
T > CH"(V) a the class of X - Y.

K

We suppose now that k is uncountable. For ω e Hr + hτ{V), we put

- βω)lάeg g,where ft = pr i o/(j = l, 2). For /c*ω to be well-defined, we must show that

the second member is independent of S, / and g chosen. Let

S'-^C(V),, XC(V),._

T > CH"(V)
K

be another one. We can find a smooth quasi-projective variety S"9 mor-

phisms h: S" -> S and h'\ S" -> S' proper surjective and generically finite

such that goh — gf °hr. So we may assume S — Sr and g = gf because

of h*h* = deg h and /i^/i'* = deg h'. Since g1 is surjective, /Ί(s) — /2(s) =

/ί(s) - /ί(s) for seS, i.e., fί+f'2=f2 + f[. The proposition (2.5) and (2.4.3)

show that fc*ω is well-defined. We have further g*tc*ω — f[ω — βω. In fact,

we have k{T) c A(S). Let i£ be a finite Galois extension of k(T) contain-

ing k(S), and S r be a non-singular model of K such that there exists a

proper morphism S' -+ S inducing the inclusion k(S) C k(S') = K. If g'
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ρ

denotes the composite S' —• S —> Γ, it is sufficient to show that g'*tc*ω =

fί*ω - f'M where f[\ S' -* S ^ Cr( V),±. We can therefore assume k(S)lk(T)

is a finite Galois extension. Let σ be a fe(Γ)-automorphism of k(S).

Then σ induces a rational map ^ S •••» S such that goι

σ = g. Let So be

the domain of definition of V and we put To = T\g(S\S'o), an open subset

of T and So = g~\T0):

S

0 \"^O8\ϊ8
ι2Ό c Γ

j

The restriction g0: So -> To of # to So is proper surjective. Setting /c' = κ°j

and 'σ0: So —* S-* S, we have two morphisms f°i, f°'σ0: So—>-Cr(V)d+X

ι_ covering κr. The argument above shows

i.e., i*(f*ω -

which in turn implies f\ω — f\ω viewed as a rational ^-form on S is in-

variant under the action of the Galois group. There is therefore a rational

/-form α/ on T such that g*ω' = f{ω — f\ω, from which

ω' = g*(f*a> ~ /*ω)/deg g = Λ:*ω, i.e., g*Ar*α> = /Jω - f\ω .

Note that if Z is a cycle on S X V of codimension p whose components

are degenerate on S, then {£}(?): ffr+/'r(V)->ίP °(S) is a zero map, since

if So c S is an open subset such that Zo = Z\SoXV is zero, then

0 = {Zo}(?): # - ^ ( V ) > ̂ ' °(S) • H' XSJ .

Thus κ*ω is characterized as follows: if in the diagram (2.6.1), g is gener-

ically finite, κ*ω e H£0(T) is the element ω' e Heo(T) such that g*ω' = ^(ω).

(2.6.2) Suppose φ: Tr —> T is a morphism. Then /COΛ|Λ is also regular

and

(2.6.3) If J7 is a smooth projective variety and ue CHr+q(VχU), we

have a map
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u(Ί): CHp(V) > CH«{U), x ι • u(x) = Wu*(

Then u(?)ofc: T-> CHq(U) is also regular and

O(?)OΛ;)* = KΌ'U: £ P + Z-*««-«([7). > Hι\T).

These assertions follow readily from the above characterization of /c*ω.

(2.6.4) Ί£ ιct:T-+ CHP(V) (i = 1, 2) are regular maps, then κλ + Λ:2: T

-» CΉ"P(V) is also a regular map and (fcί + Λ:2)
# = 4 + κ\. In fact, let zi e

CHp(StχV) and g^St^T be proper surjective morphisms such that

κiogi = 2̂ (?) (i = 1, 2). We are immediately reduced to the case S{ = S2

and gγ = ,g2. Then the assertion is evident.

LEMMA (2.7). If κ\ T-+CHP(V) is regular, then for any xeCHp(V),

κ"ι{x) in T is a countable union of closed subsets.

In fact we have

8

T >CH"(V).
K

Then g-'OrX*)) = f-\δ~\{xj). If x is the class of a difference of effective

cycles X+ e Cr(V)d'+ and X_ e CT(V)Λ._, then

+, 7.) e C r (y) d + X Cr( ^

If c?+ — d_ Φ d'+ — rf^, /r 1 ^) = φ; if rf+ — d_ = d\ — c? ,̂ we have a morphism

F: Cr(V)rtJ. X C r(y)d_ - ^ Cr(V)Λ» X Cr(

where d" = rf+ + d_. δ~'(Λ:) is a countable union of closed subsets in

Cr(V)d+ X Cr(V)d_ by 3-»(x) = F-\EUV)a) and by (2.2). This implies that

g'ι(κ~\x)) is a countable union of closed subsets of S. Since g is proper

surjective, κ~'(x) — g(g'\ιc'ι(x)) is a countable union of closed subsets of

T.

(3.1) We shall recall the definition of the cubic equivalences. Let

k be an algebraically closed field of arbitrary characteristic, V a smooth

projective variety over k.
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DEFINITION (3.1.1) cf. [12], Let £ be a positive integer. Two cycles

X and Y on V of codimension p are said to be S-cube equivalent and

denoted by X<~y Y if there exist £ curves (smooth projective over k)

Cί9 C£, SL cycle Z on CΊ X X Ĉ  X V of codimension p, points a[°\

a? of Ci (ί = 1, , £) such that

(3.1.2) Z(aίh\ , αJV) are denned for all *\, , it = 0, 1,

(3.1.3) X - Y = χ ; (-iy*+'~+iiZ(a?*\ - - ^ α ^ ) .

For ^ = 1, ^-cubic equivalence is no other than the algebraic equi-

valence. 2-cubic equivalence is also called square equivalence and 3-

cubic equivalence is called simply cubic equivalence. For convention

we say that any two cycles on V are 0-cube equivalent.

Remark (3.1.4). Our definition is a priori different from Samuel's

one because in our definition the objects are defined over k, while in

Samuel's, they are considered over the universal domain.

PROPOSITION (3.2). 1) The £-cubic equivalence is an adequate equi-

valence relation (cf. [12]) so that the set of cycles on V modulo £-cubίc

equivalence is naturally equipped with a structure of commutative rings

and has functorialproperties; in particular the £-cubic equivalence is coarser

than the rational equivalence.

2) If £f < £9 the £-cubic equivalence is finer than the £-cubic equi-

valence.

3) If X is a cycle on V, ί-cube equivalent to zero and if Xr is a

cycle on V\ f-cube equivalent to zero, then the cycle XχXf on Vx V

is (£ + l')-cube equivalent to zero.

The proofs, more or less formal, can be found in [12].

(3.3) We denote by FeCHp(V) the cycles on V of codimension p, £-

cube equivalent to zero modulo rational equivalence and by FeCHp(V)

the direct sum of F*CHP(V) for 0 <p < dim V. We also write F'CHP(V)

= F*CHr(V) if p + r = dim V. By definition, F°CH(V) = CH(V). We

have thus a descending filtration

CH(V) = F°CH(V) ^ FιCH(V) z> 3 F£CH(V) 3 F£+1CH(V) z>. •. .

We put: greCHp(V) = gr*CHr(V) - F'C

gr*CH*(V) - 0 gr*CH*(V).
0 d i VV
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By (3.2.3)), gr*CH*(V) has a structure of bigraded commutative rings, the

multiplication being induced by that of CH(V). For a morphism /: V-+

V, /*: CH(Vr) --> CH(V) induces a homomorphism of bigraded rings

/*: gr*CH*(V) >gr*CH*(V);

/*: CH(V) —> CH(V) induces a group homomorphism

/*: gr*CH*(V) >gr*CH*(V)

such that U(gr£CHr(V)) c

EXAMPLES (3.4) 1) gr°CHp(V) is the so-called Neron-Severi group

of codimension p.

2) grxCHx(y) is isomorphic to the Picard variety of V as groups.

3) We have gr'CH^V X V) ~ gr'CH^V) X grιCH0(V) which results

from the formula

Σ nt(ίxt, yt)) r^, {Σ "*(*,)} X OΌ) + (x0) X {Σ Λt

where xu xQ e V, and yif y0 e V7 and nt are integers such that Σ nι — 0.

In particular, if V is a product of curves,

LEMMA (3.5) (cf. [12, 13]). Let X be a cycle on V of codimension p

and ί a positive integer. Then the following conditions on X are equivalent:

a) X is £-cube equivalent to zero.

b) There exist & smooth projectίve varieties Tu , Te over k, a cycle

Z on Ti X X Tί X V of codimension p and points ai0) and ap on Tt

(1 < ί < £) satisfying the conditions (3.1.2) and (3.1.3) with Y = 0.

c) The same condition as b), but we further require T[s to be jacobian

varieties.

Clearly c) implies b). a) follows from b) because any two points on

a variety can be joined by a smooth projective curve not necessarily in

the variety. It therefore suffices to show that a) implies c). Let Cu Z

and aψ be as in (3.1.1) with Y = 0. We shall show that there exists a

cycle X' on V satisfying the condition c) such that X and Xf are ra-

tionally equivalent. We assume that the genera of C£s are positive, since

if one of d is rational, we can take Xf = 0. First we suppose Z is a

prime cycle, i.e., Z is a variety. Let Ji be the jacobian of Ct and gt the

genus of d. For 1 < j t < gi9 let
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ψji-j,' Cf X X Cf > C, X X C,

be the product of jrth projections Cf —> C* for i = 1, ••-,-#, and Y the

reduced subscheme of Cf1 X X Cf X V with underlying closed subset

U (^...^Xid^Z).
Ju ,J£

If Sgl is the symmetric group of degree gi9 G = Sgl X X Sgi acts on

Cfx X X Cf X V and Y is stable by the action of G. Moreover

(Cf x xCfx V)/G = S^C, x . . . x S"C, X V.

LEMMA (3.5.1). Let LjK be a finite Galois extension with the Galois

group G. If X' is an algebraic K-scheme and Y is a G-stable reduced

subscheme of X = Xf X L, then YjG is a closed reduced subscheme of X

and (Y/G) X L = Y.
K

Consider the diagram

Y' = Y/G.

We have the natural morphism k: Y-> Y[L). We shall show that k: Y-+

Y{L) is an isomorphism, which implies Y' = Y/G -> X7 is a closed im-

mersion. Yr is reduced because of reducedness of Y Y(L) is also reduced

since LjK is a finite separable extension. Y —> Y'^ - ^ 1 is a closed im-

mersion by hypothesis. Hence k: Y-+ Y[L) is also a closed immersion, so

that it is sufficient to show that k: Y—> Y(L) is bijective, or surjective.

Let p be a point of Y(L). There is a point g of Y such that the image

of q in Yf is equal to that of p, by the surjectivity of Y-> Y7. G acts

on Y[L) and the actions of G on Y(L) and on Y are compatible with the

morphism k. Since the action of G on a fibre of Y[L) -> Y' is transitive,

there exists a σ e G such that σ-q = p. As Y is G-stable, p is a point

of Y.

We shall continue the proof of (3.5). Let η be the generic point of

Cfx X X Cf. Then Yη is a reduced closed subscheme of Vκ{v). Hence

if K = AT(}?)G, there exists a closed subscheme Y; of Vκ such that Y; X κ(η) =

Yr If j / is the generic point of Jx X • X Je, then Λ;(J/) = K; therefore

Ϋ;, - Y' for the schematic closure Ύ' of Y7 in ̂  X X J, X V. Let

7 :̂ Cfι -> J^ be the canonical morphism and
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7Γ == πλ X X π£: C f X X C f > Jλ X X J4.

We have {(π X iάv)~1(Y/)}v = Yv. Let F be the union of irreducible com-

ponents of (π X iάyyXΫ') degenerate on Cfι X X Cf; F is a closed

subset of Cf X X Cf' X V disjoint from VκW. If we denote by U the

open subset

JiX'-X Jλ(hn(F > Cf X X Cs/ >JX X X J , ) ) ,

we have

(^ x id -̂xcΫ' n u) x v) - (7 n π-\u)) x y.

Shrinking U if necessary, we can assume that π~\U) X V—• U X V is flat,

hence denoting the associated cycles also by the same symbols, we have

(πσ X idr)*((Ϋ'\U) XV) = (Y\π-χU)) X V.

By definition we have Y = ΣJu...Jt (,fy}ι,...,jι X idΓ)*(Z), hence for Λ; 6 π'\U),

Ϋ'(π(x))= Σ

By virtue of the moving lemma, for any x e Cf1 X X Cf', we have

y'(π(x))= Σ zfrju-M),
Jw Je

where yf and z are the ratinoal equivalence classes of Yf and Z, respec-

tively. By linearity, we may suppose that this equality holds for an

arbitrary cycle Z on C, X X Cβ X V. Denoting a^ = (aj?\ ai0), , a£0))

€ C?Λ (1 < h < £9 ί = 0, 1), we have

ju 'de ΰ , ,ΐί = o,i

= Σ (-ly^-^'zCoί'1', , α'i£)) = the class of X,
ϊ i , . , ΐ ί = 0 , l

since if one of jΊ, , j£ is greater than 1, say j h > 1, then

From the moving lemma we deduce that there exists a cycle Zf on

Jι X X Jι X V, rationally equivalent F 7 such that Z'(;r(αίω, , α^}))

are all defined. Putting ^(αp) = α;o) 6 Jτ (j = 0, 1), and
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we have our assertion. If one of C7 is rational, let Ju , Jt be arbitrary

jacobians, a\φ) and α^(1) arbitrary points on Jiy and Zr = 0. Since X and

X' are rationally equivalent, there is a cycle Z* on Px X V non-degenerate

on Pj (hence the components are flat over P:) such that Z*(0) = X and

Z*(l) = X7. Consider a rational function on JΊ X χjs defined in a

neighbourhood of the finite set {(α((ω, , aft

{it))\ iu , it = 0, 1}, with its

value 0 at (αί(0), , a'£
{0)), and with its value 1 at the other points of the

finite set. Let Γ be the closure of its graph in Jι X X Je X Px and

Z" = Γ o Z*, a cycle on Jx X X Jί X V; since Z* is "flat" over Pl9 the

cycle is defined. The following first member is defined and

Z*(0) = X if h = = i, = 0

Z*(l) - X;, otherwise,

hence,

q.e.d.

(3.6) Let A be an arbitrary abelian variety over k. We set

and let * denote the Pontrjagin product.

LEMMA (3.6.1). The elements of F«CHP(V) are the elements of the form

z(ϊ), where z e CHP(A X V), ϊ e I%£ and A is an abelian variety.

In fact since If a F£CH0(A\ z(ϊ) e F*CHP(V). Conversely, let xe

FβCHp(V) and X a cycle on V representing x. Then X is ^-cube

equivalent to zero and by (3.5),

where Z is a cycle on JΊ X X J, X V, and Jt are jacobian varieties.

Let A = JΊ X X Je and z the class of Z. Then

= * ( { « ) - (σί1')} X X { « ) -

But we have
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{ « ) - (αί1))} X . . . X {(an - (αj1')}

= { « , 0 , ...,0)-(a?\0, . . . , 0 ) }

* . .*{(0, . . . , 0 , α f ) - ( 0 , . . . , 0 , α ^ ) } ,

which belongs to Jjf', so that x is of the form above.

C O R O L L A R Y ( 3 . 6 . 2 ) . F £ C H P ( V ) i s a d i v i s i b l e g r o u p f o r a n y ί > l

This follows from the fact that I%* is divisible.

THEOREM (3.7). If k is the algebraic closure of a finite field, then

F2CHP(V) = 0 for any integer p and smooth projective variety. In other

words, the theorem of square holds for cycles of arbitrary codimension on

a smooth projective variety.

By [1], IT — 0 for an abelian variety over k; the theorem follows

from the lemma (3.6.1).

LEMMA (3.8). 1) Let X be an r-cycle on V. The following are equi-

valent:

i) X is ί-cube equivalent to zero.

ii) There exist ί smooth projective curves Cί9 , C£, a rational map

and points af and a1^ on d such that ψ{aγί], • • , a(/ι)) are defined for all

i u • • •, i,, = 0, 1, and

X= Σ (-ly^-^ilvr^φia1^, • • , α f " ) ] - [vr2oφ(a^, • • ,αί">)]}
i i , , i ί = 0 , l

iii) In ii), we require Cf

ts to be jacobίan varieties in stead cf smooth

projective curves.

2) Let C% (ί — 1, , £) be projective curves (not necessarily smooth

but irreducible), φ: Cί X X C£ ••-> CΊ(V)d a rational map, a{0) and a{p points

of Ct (i = 0, - -, £). For each (iu , ί£), consider a smooth curve Γ and a

morphism ψ: Γ -» d X X C& such that ψ-^dom φ Π Reg (Cx X X CJ)

Φφ and ψ(x) = (aih), , a[l()) for some xeΓ. Then the rational map

ψoψ: Γ"-> Cr(V)d is a morphism and lei Xilt...ίi£ = [<poψ(X)]m The cycle

Σ (-ΐ)tl+" +ttXtl,...,it
ίi,' ,i4 = 0,l

is then ί-cube equivalent to zero.
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1). i) => ii) follows from (1.4) and the fact that, in the definition

(3.1.1), we may suppose Z non-degenerate on CΊ X X Ce. Assume ii).

Replacing C'β by their purely inseparable coverings and lifting the points

aψ to points on the covering if necessary, we may suppose that φ cor-

responds to a cycle on CΊ X X C£ X V; then i) results from (1.4). The

equivalence of i) and iii) follows similarly, noticing (3.5).

2). Considering the normalization Ct of Cu replacing it by a purely

inseparable covering (if necessary) and taking account of the fact that

Γ lifts to a curve Γ such that the following diagram commutes:

Γ > C ^ XC,

Γ >C1X ..χCi9

we may assume that C's are smooth projective and the rational map φ

corresponds to a cycle on CΊ X X Ce X V. Then 2) is a consequence

of (1.5) and the fact that the ^-cubic equivalence is coarser than the

rational equivalence.

Remark (3.9) Consider the condition on FιCHv(V):

(B) There exist an abelian variety A and a group isomorphism

h: FιCHp(V) ^ A such that for any u e CHP(T X V), where T is a smooth

projective variety, the map

is a morphism; here v! is a map of the form t H-» u((t) — (tj), toe T.

Then it is immediate that if F2CHP(V) Φ 0, then F'CH^V) never

satisfies the condition (B). Note that the condition (B) is a kind of

boundedness condition on CHP(V).

§4.

(4.1) Suppose that k is an arbitrary field, that Xand Y are algebraic

/^-schemes and that X is reduced. Let /: X > Y be a /z-rational map, V

the domain of definition of /, an open subset of X, and /0: V-> Y a

representative of /. Consider the graph Γ C V X Y = V X Y of f0. Let
k

U be the schematic closure of Γ in X X Y. Since F ^ Γ is reduced,

(1) U is also reduced. We have a morphism UdXχY-+X. By base

change V->X, (2) Γ = U{v) —> V is an isomorphism and (3) Um — Γ is
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dense in U. By the definition of rational map, (4) V is dense in X.

Conversely, suppose given a closed subscheme U of X X Y and an open

subset V of X with properties (1) — (4). Then by (2), we have a morphism

/0: V-> Um -• ί / c X X Y-> Y. The property (4) implies that /0 defines a

^-rational map /: X > Y. It is readily checked that the correspondence

Γ —> U is one-to-one. We can therefore identify the set of ^-rational

maps from X to Y with the set of closed subschemes U of X X Y such

that there exists an open subset V of X satisfying the properties (1) ~ (4).

If a ^-morphism from Y to X is given, the set of ^-rational sections is

identified with a set of closed subschemes of Y with some similar properties,

cf. (4.2.1) ~ 4)) below.

(4.2) Let S be a locally noetherian scheme, X and Y S-schemes of

finite type, and p: X -> Y an S-morphism:

s
Let Γs_ΐΆt(XIY) be the set of closed subschemes U of X flat over S such

that there exists an open subscheme V of Y satisfying the following

conditions:

(4.2.1) p'v\ Um -• V induced by p'\ U c X-* Y via base change V-> Y is

an isomorphism;

(4.2.2) For each s e S, Vs d Ys is dense,
(4.2.3) Us c Xs is geometrically reduced for all s e S;

(4.2.4) (C7(n)β C ?7S is dense for all s e S.

Note that given U, there exists the maximum open subscheme V of Y

satisfying the above conditions. Given T->S, U^-> Um induces a map

We get therefore a contravariant functor

(4.2.5) /yrat(X/Y): (loc. noetherian schemes/S) -> (Sets).

PROPOSITION (4.3). Suppose X projectίve over S, cms? Y projectίυe and

flat over S. Then the functor Γs_ΐΆt(X/Y) is represented by an open sub-

scheme of the Hilbert scheme Hilbz/>9.

It is sufficient to show the following: Suppose U a closed subscheme

of X flat over S. For some s e S, if there exists an open dense subset
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V of Ys such that Uv, —> V is an isomorphism, that Uv. is dense in Us

and that Us is geometrically reduced, then there exist an open subset So

of S containing s such that there exists an open subset V of Y satisfying

the conditions (4.2.1) ~ 4)) above when we replace S by AS0. First of all,

by [5], IV, 12.1.1, vii, and by the properness of U over S, the set of s e S

satisfying the condition (4.2.3) is open. The set U' of x e U such that x

is isolated in pf~\p'(x)) is open. Since p' is proper and pf(U\U') Π V

= φ, Yo = Y\p'(U\U') is open in Y and contains V. Then U0=p'-ι(Y0)

is proper over Yo and flat over S. The morphism p[Yώ: UQ-> Yo is finite.

Let Uo = Spec A with A a coherent 0Fo-Algebra. Define the coherent

0Fo-Modules iV and C by the exact sequence

0 > N > ΘYo > A > C > 0 .

For y e V , the sequence

0YoJmv > AylmyAy > CylmyCy > °

is exact. Uy ~ y implies Cy\mvCy = 0, hence Cy — 0, i.e., Supp C Π V

= φ. Denote by Y1 the open subset Y0\Supp C of Yo containing V, and

set Ui = p'~1(Y1). We have a diagam

V > Yγ > Yo — > Y > S.

Since V is open in Ys, there is an open subset Y'Q of Y such that V; =

Yί ΓΊ Y,. Replacing Yx by Yx Π Yί, we may assume V ; - (Yj),. We denote

the restriction of A to Y1 also by A. Since U is flat over S, A is flat

over S. We therefore get the exact sequence

0 • > N/msN- > ΘYljmsΘYl > A/msA > 0 .

(UX ~ (Y1)8 = V implies NlmsN = 0, or N= insN, a fortiori, Ny = myNy

for y e Vf. Hence Ny - 0 for y e V or Supp N Π V = φ. V= YASupp N

is open in Y and contains V\ It is clear that U{v) —* V is an isomorphism.

The following lemma will complete the proof of the proposition.

LEMMA (4.3.1). Suppose Y proper flat over S, V an open subset of Y>

s e S. If Vs is dense in Ys, then there exists an open subset So c S such

that for each s' e So, Vs, is dense in Ys,.
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F = Y\ V is a closed subset of Y. Denote the restriction of py: F

S by p'. We define d° and d' by

d> F > z, y H -

Then d' is upper semi-continuous, and d° is continuous since Y is flat

over S. The restriction d of d ° to F is also continuous. Clearly we have

d(y) > d'(y) for yeF. The denseness of Vs in Ys is equivalent to d(y) >

d'(y) for all ^ e Fs. By the continuity of d° and the upper semi-continuity

of d', for each y e F8, there exists an open neighbourhood N(y) of ^ in F

such that d(/) > d'(yf) if / eiV(y). If O - U ^ T O , O is open in F

with Fsa O a F and c?(/) > d ^ / ) for ^ ; e O. By the properness of pγ,

pγ(F\O) is closed. We have on the other hand s £ pγ(F\O) by Fs C O. Let

So be the open subset S\pγ(F\O) in S. Then s e So. If s' e So and if y e Fβ,,

then y e O so that d(y) > d^y), hence Vg, is dense in yβ/.

(4.4) Given a locally noetherian scheme S, and S-schemes X and Y,

we shall put

(4.4.1) Homs.rat(X, Y) = Γ s . r a t (Z X Y/X),
S

i.e., the set of closed subschemes U of X X Y, flat over S such that Us

s

is geometrically reduced for s e S and such that there exists an open

subset V of X satisfying the conditions 1) J7(7) —• V is an isomorphism,

2) Vs is dense in Xs for s e S and 3) (U{v))s is dense in £/s for s e S. We

denote further Γs_τ&t(X X Y/X) by

(4.4.2) Homs_rat(X, Y).

For a geometric point s of S, if X-s is reduced,

(4.4.3) Homs.rct(X, Y)(s) = Γω_Iίt(X-s X Y./X,)
*(β)

= the set of /c(s)-rational maps from X̂  to Ys.

The proposition (4.3) immediately implies the

PROPOSITION (4.5). Let S be a locally noetherian scheme, Y a projectίυe

scheme over S, and X a flat projectίυe scheme over S. Then the functor

a^X, Y) is representable by open subscheme Horns.T&t(X9 Y) o/Hilb x χ y / 5 .
s

(4.6) Given an S-morphism /: Z —> X, we define
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Hom5_rat(Z,/;X, 7)

as the set of pairs (φ, U) of φ e Hom5(S, Z) and a closed subscheme U of

X X 7 flat over S such that Us is geometrically reduced for s e S and such

that there exists an open subscheme V of X satisfying the conditions:

(4.6.1) the morphism U{v) —• V induced from U a X X Y-+X is an iso-
s

morphism;

(4.6.2) V, is dense in X
s
 for seS;

(4.6.3) (U
(v)
)
s
 is dense in U

s
 for s e S;

(4.6.4) foφ(S) c V.

Note that the condition (4.6.4) is the same as (f°φYι(V) = S. The set

Hom5. r a t(Z,/;X, 7) is a subset of Hom5(S, Z) X Hom5_rat(X, 7). For a

morphism T-^S, the correspondence (̂ >, U)^(φτ, Uτ) defines a map

Homs_rat(Z, /; Z, 7) > Homr_rat(ZΓ, /Γ; XΓ, Yτ)

and a contravarient functor

(4.6.5) Hoπv r a t(Z, /; X, 7) : (loc. noetherian schemes/S) >(Sets)

Clearly this is a subfunctor of hz X Homs_rat(X, 7). For a geometric point

s of S, if ^ is reduced, with the above identification,

(4.6.6) Hom,_rat(Z,/;X, 7) (s)

zeZ,(s),

= • (z, ψ); ψ: X-s" > Y-s is a /c(s)-rational map,

f(z) is in the domain of definition of

PROPOSITION (4.7). Let S, X and 7 be as in (4.5) and f:Z->Xbean

S-morphism. Then the functor Hom5_rat(Z, /; X, 7) is representable by an

open subscheme Homs_r&t(Z, f; X, 7) of Z X Homs_r{it(X, 7).
s

It is sufficient to show that if s e S and if (φ, U) e Hom5(S, Z) x

Hom5_rat(X, 7) is such that (^s, Us) e Homs_rat(Zs, fs; Xs, 7S), then there exists

an open neighbourhood So of the point s in S such that, for s' e S09

(φ,,, Us) e Hom,,Λt(Z,,/,,; X,,9 Ys), where s - Specks)) and s' = Spec(φO).

If V is an open subset of Xsf satisfying the conditions (4.6.1) —4)) (where

we replace S and V by s and V, respectively), then by the proof of (4.3),

there exist an open neighbourhood Sj of s in S, and an open subscheme

V, of XSl satisfying the conditions (4.6,1)-3)) such that (Vi), - V. Then

SQ = (/Ό^-^Vj) is the required open subset.
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(4.8). Suppose (φ, U) 6 Homs_rat(Z, /; X, Y). With the above notations,

f°φ: S-+X is factorized as S—> Vc X. If p" \ U{v) ^ V is induced from

Ua X X Y->X by the base change V^X, then we obtain a morphism

ψ:S—> v^Xu{¥) c z x y—• y.

s

Thus we get a map

Hom,_rat(Z, /; X, 7) > Homs(S, Y), (9, U). > 3Γ,

and a collection of this kind of maps defines a morphism of functors

(4.8.1) ev: Hom*_rftt(Z, /; X, Y) > hγ

lγ .

In particular, if the hypothesis of (4.7) is satisfied, we obtain a morphism

of schemes ev: Homs_τ&t(Z, f; C, Y) —> Y.

If (z, ψ) e Hom^_rat(Z, /; X, Y)(s), where s is a geometric point of S, and

if X-s is reduced, then zeZ-s(s) and ψ: X-s> >> Ys is a rational map with

/(*) € dom ψ, and ev((2, ψ)) =

§5.

(5.1) Let V be a smooth projective variety of dimension m over an

algebraically closed field k of characteristic zero, and p an integer > 0.

For integers d, ί > 0, we put

(5.1.1) Eξ(V)t = {(X, Y) e Cr(V)d X Cr(V)d; X^fYon V},

where r = m — p, and we identify the cycles on V with their Chow points.

We shall prove the analogues of Propositions (2.2), (2.3) and (2.5).

(5.2) There exists a countable number of families of smooth irre-

ducible projective curve $Fμ\Sf μ (μ e M) such that for any smooth irreducible

projective curve C, there exist a μ e M and a point s e ^ such that C ~

(SF'μ)s; the indexing set M is countable and SF'μ-~>ϋfμ is smooth projective

and each fibre is irreducible of dimension 1. Note that the set of

(Q, μl9 -,μe,'d'9 d") formed of Q e Q[T], μl9 , μί e M and of positive

integers d\ dn is countable.

(5.3) Fix for a moment μu ,μ£eM and QeQ[T]9 and denote the

set of maps from [1, £] to {0,1} by 2ίlti\ where [1, £] is the set of integers

between 1 and £. To simplify the notations, we shall write:
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ΰ7τ cπr cp cp
^ i ^ μi > is i ^ μt 9

& = &x x ... x 3Ft,

& = ̂  X X ̂

Then, J^ is a scheme smooth protective over £f. For <τ e 2CM], we shall

define the ^-morphism

(5.3.1) σ : ^ χ / = ( f , χ ^ 1 ) χ . . . χ ( ^ χ J*',) ^ X X ̂  = ^ ,

by

Recall that Hom%.M{^ X f , j ; , f , y χ CUV)*, X Cr{V)d.) is an open sub-

scheme of the quasi-projective sheme (IF X J^) X Homs._TΛt(&r, Sf X C r(y)d, X

Cr(V)d,), where Qe Q[T] is the corresponding Hubert polynomial. Consider

(5.3.2) W = Π HomtU^ X ̂ , ^ ^ , ^ X Cr(V)d, X Cr(

an open subscheme of (& X &) X Hom^J^, ¥ X Cr(V)d» X Cr(V)d.. For
sr

<7e2CM], we have a morphism

(5.3.3) (/*: W7 c Hom%_J& X^,σ;^,^X Cr(V)d, X Cr(V)d,,)

-^> ̂  x cr(v)4, x cxv),,.. ̂ ΐ cχv)d, x

For σ e 2CM], we put |σ| = Σ i ^ ί ^ ^ O We define the morphism

(5.3.4) Σ' W' > Cr(V)N x Cr(V)N, iV = ^~\df + d'O ,

by

Σ 7 (*) = ( Σ Pri ° σ *( x ) + Σ Pr2 ° <7*O), Σ Pri ° σ*(x) + Σ Pr2 ° σ*(x)) ,
|σ |=0 | σ | = l | σ | s l \σ\=0

where = means "modulo 2" and " + " are the morphisms of the form

Cr(V)d X Cr(V)d. > C r (V) d + d , , (X, 7) i > X + Y,

and pr2, pr2 are the projections on Cr(V)d, and Cr(V)d//. Finally consider

the morphism

(5.3.5) Σ : Cr(V)d x Cr(V) X W > Cr(V)d+N X CXV)d+N ,

(X, y, X) ,
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where Φ: Cr(V)d x Cr(V)a x Cr(V)N x Cr(V)N -+ Cr(V)d+N x Cr(V)d+N is

such that (X, Y, X', Y') ̂ (X+X',Y+ Y'). We put W = Σ'K^X Δ being
the diagonal of Cr{V)d+N X Cr(V)d+N. We shall then set

(5.3.6) E*(Vyj)"'1'-"1><d'"1") = p r W,

where pr: Cr(V)d X Cr(V)d X W"-+ C ^ F ^ X Cr(V)d is the projection; hence

pr W is a constructible subset of Cr(V)d x Cr(V)d.

(5.4) Let p: S-> W, i.e., ?> e W(S). Since We. Cr(V)d X Cr(V)d X W,

Ψ is of the form ψ = (/", g, h) e Cr(V)d(S) x Cr(V)d(S) x VF'(S). Note that

x S = (J^)s x x

where {^z)s = ^ X S. By definition,

,, X

X &s, σs; Fs, S X Cr(V)d, X Cr(V)d,,)S

C ψ s X ^ S ) ( S ) X H o m i r a t ( ^ 5 , S X Cr(V)d, X
S

(ά?s x &8χs) = ^ ( S ) x ^ ( S ) x x &ίS) x ^ ( S ) .

S o f t - (sί°>, s^, .,s?\ sγ\ ψ) for s«> e ^ ( S ) , y = 0, 1; i = 0, . ., £, and

for ψ e Homi r a t (^S9 S X Cr(V)d. X Cr(V)d.). Then ψ defines a rational map

By definition, ψ o sσ are defined for any a e 2 [ M ], where

The definition of W implies that

(5.4.1)

) σ ) = l 1 σ ] Ξ = 0

in C r(y) d + iV(S).

Conversely, suppose S = Spec fe and suppose that μ1? , μe e M,

S-^yμi are given. Hence ^ can be defined as above. Let /, g e Cr(V)d(S),

and ψ = ψ: ^ s •••> Cr(V)d, X Cr(V)d« = S X C,(V)d, X Cr(V)d. be a rational

map. If s[j) e ^ i (S) satisfy the conditions Im sσ C dom ψ for σ e 2cl>/], and

if the equality (5.4.1) holds, then φ = (f, g, h) e W(S), h = (sί°\ s^, , sf,

s{/\ψ), where W is defined as above for an appropriate QeQ[T].
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THEOREM (5.5). Under the hypotheses the notations as above, we have:

(5.5.1) ERV)d = U E*(Vr)<p «' «>d/'d"> (as closed points),

where the union is taken over all Q e Q[T], μx, , μee M and positive

integers df and d".

(5.5.2) Ef(V)d ID ΈKV)ψ>"7'' > te,d',d")

for arbitrary Q, μu and df and d;/, where the bar denotes the closure in

Cr(V)d X Cr(V)d. In particular, Ef(V)d is a countable union of closed

subsets of Cr(V)d X Cr(V)d. Moreover, if we replace J ^ / ^ s by their asso-

ciated families of jacobians in (5.3), then the equality (5.5.1) also holds.

The equality (5.5.1) follows from (3.8, 1)) and (5.4). To show (5.5.2),

notice first that Ep

i(V)(?>μi'"'μ"d'>d") = Ef(V)d^"^d'Ί is constructible. Hence

it is sufficient to verify that if Γ is a curve (maybe singular or non-

complete, but irreducible) in Ef(V)d

Qi"'id"\ then the closure Γ of Γ in

Cr(V)d X Cr(V)d is in E?(V)d. With the notations in (5.3), there exists a

curve Γr in W dominating Γ via the morphism pr. Let R/ be the smooth

projective model of Γr, and RΌ the open subvariety of R such that R'o is

the normalization of Γ': RQ-^Γ'. We get the morphisms

RΌ > Γ' c W c Cr(V)d x Cr(V)d x ψ x &)

x Hom,.nt φ?t se x cχv)d, x cχv)d,,)

^ *s —— *y i X " ' * X t>̂  £ ^ *-' ϊ > ^ ~~~ J-? * * " > v >

and thus the smooth families of curves {βF^R,JRf^ i = 1, , ^, by the base

change i?7 -> ̂ ^ By virtue of [2], (2.7), if the genus of the generic fibre

of (^^)R/JRQ is > 2, there exist a smooth projective curve Bt and a stable

curve F'JBt such that Bt is a covering of Rf and (F )5o ^ ( F<)fio, where

B°t = Bt X RQ. If the generic fibre of (^dnJRί has genus 1, by the argu-

ment in [2], § 2, there exist a smooth projective curve Bi which is a covering

of R', and a flat family of curves F'JBt such that (F^o - {&UB\ and such

that the (geometric) fibres of F'JBi are reduced and have at worst ordinary

double points. Finally, if the generic fibre is of genus 0, then there are

a smooth projective curve Bt which is a covering of R', and a flat family

of curves F'JBi with fibres P1 such that (F[)Bo ~ ( J ^ o . Let R be a

smooth projective curve with R-^BU i = 1, , £, such that the morphisms

R->Bi-+Rf are the same. The fibres of JF{ x fi = (F^JR are reduced
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and have at worst ordinary double points and (F[)R χ i ? 0 ~ i^dϋ- X RQ,
R ° R>Q

where Ro = R X R'o. Blowing up (Fi)R at points over R\R0 if necessary,
R'

we obtain flat families of curves FJR such that Ft are smooth projective
surfaces and (Fi)Ro ~ ( J ^ ) ^ X i?0 and such that the fibres of FJR are

0 K

reduced and have at worst ordinary double points. We put F = Fλ X
R

X i^. Considering Ro—> i?$ —> W, we are in the situation remarked in

(5.4): we have jR0-sections s[j): Ro -> (Ft)Ro9 j = 0, 1; ί = 1, , ^, a rational

map

and morphisms /: Ro-+ Cr(V)d and g: i?0 —• Cr(V)d satisfying the equality

(5.4.1) in which

s« = s['™ X X s?«»: i?0 > FRo = (FOΛO X X (F,)Λ o,
R R

and Im sσ c dom ψ. Since i? is a smooth curve, and JFJi? is proper, the

i?0-sections s^ have their extensions s{j): R—> F^ Moreover /, g: Ro^

Cr(V)d are extended to f, g: R-+Cr(V)d by the completeness of Cr(V)d.

Note that F is integral because FjR is flat and the generic fibre of F/R

is integral. Since FRo is an open subset of F, ψ defines a rational map

ψ: F' > Cr(V)d, X Cr(V)d,f. Defining sσ as s% ψosσ are morphisms and the

equality (5.4.1) holds replacing /, g, ψ and sσ by /, g, ψ and s% respectively.

To show ΓeEj!(V)d, it suffices to prove that for any r e R, we have

f(r) s~^g(r). But by the extended version of the equality (5.4.1), it is

sufficient to verify

Σ pr, o ψ o sσ(r) ^ 2] Wi ° Ψ ° s(r), i = 1, 2,

for any r 6 i?. To simplify the notations, replacing pr^ o ψ by ψ, we can

assume ψ: F••> Cr(V)d,. Let r e i ? be a point such that some of (FJ r

(i = 1, - - -, ί) have singularities. We notice that the set of such r's is a

finite set. For , 1 < j < £, let L ; be the set of points x e Fr = (i^i)r X •

χ(F£)r at least j of whose projections onto (ί\) r 's fall to double points.

Then Lj 3 L2 Z) z> L̂  are closed subsets of F r , hence of F. We endow

the reduced subscheme structures to L/s. Blow up first F with center

Z^ to obtain Ff and let L[ZD Lf

2ZD - - -Z) Lf

i_ι be the strict transforms of

Lj Z) Z) L^jj then blow up F 7 with center L̂ _2 to obtain F" and so on

until we blow up F virtually with center L2 to obtain F and a morphism
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F-+F. We assert:

I) F is non-singular at the points of the fibre over r e R.

II) For each x e F, any two points of the fibre Fx are joined by a

finite numbers of rational curves in the fibre.

To show these assertions, we shall recall basic facts about the blowing-

ups : Let X be a scheme, Y z> Z be its closed subschemes, Xx the blowing-

up of X with center Z and Y the strict transform of Y. If X; -> X is a

flat morphism, setting Yf = Yiχι) and Zf = Z ( x 0 , X X ^ is the blowing-up

of Xf with center Z ;, and Xf X YΊ is the strict transform of Y\ Pick up
X

a point xeF and put Φ = $>pec(&FjX) where 3F)X is the completion of ΦFtX

with respect to the maximal ideal. Then we have a flat morphism Φ-+F.

Denote by xt the image of xeF by the projection F->F € . Rearranging
the numbers of indices, we can assume that xί9 , x r are ordinary double

points and x^+i, •• , ^ are smooth points. Hence we have xeLe, but

x ^ L f + 1 . Since F{ are smooth,

1'
k[[uu υiy t\V(μtVi - t)

for i < £f and

for i > £'. Also we have

ΘR.r ΰ>R,r

= k[[ul9 υu , us,, v£>, u£,+1, - ,Ut, tίlKuM — t, , ut,vt. — t ) .

The ideal of όFiX defining (Lt)$ = L{ is

(5.5.3) Π (κλl, ι;λl, , M2I, vh) ,

where the intersection is over those (λl9 , λt) that satisfy 1 < ^ <

< %i < ^;. As we have remarked above, .Fφ is obtained by the same pro-

cedure as F replacing F by F$ and L/s by £/s. We note that the fol-

lowing are equivalent:
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— F is smooth at the points of the fibre over x;

pφ \s regular at the closed points of the fibre over the unique closed

point x of' Φ.

Moreover, we have Fx ~ (&$)$. Starting with

Φ - Spec(k[[uu υl9 , uV9 υ4,9 ui>+l9 , ui9 tWHu.v, - t, , uvvv - t))

and Λi defined by the ideal of the form (5.5.3) in the affine ring of Φ, we

define Φ by the same process as F, replacing F by Φ and L/s by Λ/s.

We have an obvious flat morphism Φ ->Φ and Lt — (Ai)$. To verify the

assertions I) and II) above, it suffices to show that Φ is smooth at the

points of the fibre over the point x0 corresponding to the ideal (ul9 vu ,

u£>, v£,, ue,+ί, - - , u£, t) and that ΦXQ has the property described in II), because

of Φ X Φ ~ Fφ. We shall prove our assertions by induction on £, so that
Φ

we assume our assertions for

Spec(k[uu υu , un., υn,, un, + 1, , un, t\l(uίυ1 — t> , un.υn. — t))

for n' < n < £. Considering the smooth base change

Svec(k[ul9 vl9 , uV9 vV9 u£,+ι, , uί9 t\\(μιvι - t, , uvvr - t))

> Spec(A[M!, vί9 • • , ue.9 v,,, UKUM - t, , UyV, - t))

we may assume £'=•£.

In Spec(/v[^b vί9 , ŵ , v£])9 Φ is defined by

Then /l̂  = x0 is defined by ^ = LΊ = = u4 = υ£ = t = 0. The dlowing-

up Φ' of Φ at /l̂  is gluing of affine pieces of the following type: in the

coordinate system ux\uί9 vx\uί9 , u^x\uί9 vt_λ\ut9 uέ, vjug919

(uJUcXvJUt) = = (Ut-JUeXUe-JUt) = U,/^ ,
Φf°\

t = u2

e(υjue).

On the other hand, Λ&_λ is the union of

ιιγ = v, = - - = ut.x = vί_1 = uί,1 = υi + 1 = = w^ = υt = 0 ,

for f = 1, , £; hence its strict transform Άί_ι in this piece is

uju£ = vjuέ = = ιιt_ι\ue = v^Jiij = 0,

Moreover the strict transform /f_2 in this affine piece is the union of
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= = M/_i/^ = IVi/M* = 0,

for i — 1, , £; and the strict transform A'2 of Λ2 is, in the piece,

given by the union of

Uillle = Vju£ = Ui\uί = Vjlue = 0 ,

for 1 < i < j < ^. Denoting w' = wjw, U* = υju (i — 1, , £ — 1) and

£' = vju£9 we have

and the ideal of Λ\ is of the form (5.5.3), replacing ut and υt by w< and

υ'i) hence by inducting hypothesis, we see the first assertion.

We shall verify the second assertion; let x and xf be the points of Φ

whose images x and x' in Φ are identical, and let xt and x[ be the images

of x and x; in Φ'. If xx = xί, then by induction hypothesis, we are

done. Suppose xx Φ x[. Since the morphism Φ' -^ Φ is an isomorphism

outside Λ£, we have x = x' e Λ£, so that xu x[ e Φ'Λr We claim that there

exists a finite number of rational curves Γi (i = 1, , ή) in Φ'Ae such that

Γ, ζί Λ'2 for all i, αd 6 Γl9 x[ e Γ n and Γ, Π Γ t + 1 ^ φ (1 < i < n); This claim

implies our second assertion: the curves TYs lift to the rational curves

Γi in Φ. If ^ e Λ Π Γi + 1 (l<ί< n), if yt e Γt and yί + 1 e fi + 1 are points

over yt and if x and x' are points on A and on Γn over xx and x[ re-

spectively, by induction hypothesis, yt and yί + 1 can be joined by a finite

number of rational curves and the same is true for x and x9 and also for

x! and x. Moreover yt and yt are on the curve Γi9 whence the assertion

II). We show the claim for arbitrary xί9 x[ e Φf over Λ£, hence we may

assume that xx and x[ are contained in the same piece of Φr above, say,

the above piece. We shall denote the varieties intersected with the above

affine piece by the same symbols as the varieties. The variety ΦAt is

denned by

(uJuXυJut) = = (ut.JutXue-Jut) = υjue.

ui = t = 0.

We can therefore take (uju£, υjug9 , vt.x\ut9 vju£) as the coordinate sys-

tem for ΦΛr Let (al9 bu ,a(_u bt-u c) and (αί, b{, , a^u b^u c') be the

coordinates of the points x1 and x[. To show xx and x[ joined by a

rational curve in ΦAp it is sufBcient to find polynomial functions fi(w)9
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gl(w\ -Jt-iw) and g£_t(w) with Λ(0) = at, ^(0) - 6,, Λ(l) - αj and gι(ΐ)

= δί such that

for all 1 < i < j < L Note that a point with vjuβ Φ 0 is not in Λ'2. First

we shall assume that c and & are non-zero. Considering the functions

fz(w) = diW and gi(w) = δ ^ , Xi and the point (0, , 0) are joined. Simi-

larly x[ and the point (0, ,0) are joined. Hence in this case we are

done. We then assume c = 0. We shall show that xx and a point with

vju£ Φ 0 can be joined by a rational curve. Since afii = c = 0 for i < £,

di or bt is zero. For simplicity, we suppose (and we can suppose) aλ αv

=£(),&!=•••=&„ = αv+1 = δυ + 1 = = δv_! = 0. We put

fXw) = at + (1 — αjw;,
w* Π («i + (1 ~ ai)w) if i < v

Π

Thus X! and the point with coordinates (1, , 1) are joined by a rational

curve. Since any two points with vju£ Φ 0 can be joined by rational

curves, this completes the proof of our assertions.

Iterating the above procedure at the fibres containing a singularty

of F, we get a smooth projective variety, again denoted by F and a

morphism F -> F such that for any x e F, the fibre of F over x has the

property II), or that the points of the fibre Fx are rationally equivalent

on F. If z' denotes the rational equivalence class of the cycle on F X V

corresponding to the rational map ψ: F->F*>> Cr(V)d,, then z'(a') (a' e F)

depends only on the image a of a' in F. Hence we denote the rational

equivalence class z\a') by z(a). We notice that the set of singular points

of F is of codimension > 3 in F and hence the complement of the domain

of definition of the rational map ψ: F •> Cr(V)d, is of codimension > 2.

Let r e R be an arbitrary point and C\ an irreducible component of (Fί)r

for each 1 < i < £. Then (C{ X X CO (Ί dom ψ φ φ, so that ψ deter-

mines a rational map-ip: C[ X X C'e-~> Cr(V)d,. Note that

Γ = domψ Π RegF Π Reg(Cί X X C[)

is a non-empty open subset of C[ X X C'e. Let a e C[ X X C[, Γ be

a smooth complete curve, b e Γ a. point and ^: Γ -» CJ X X Ĉ  a mor-
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phism such that φ~\T) Φ φ and ψ(b) = a. Then ψ oψ is a morphism from

Γ to Cr(V)d,; we have therefore a cycle ψoφφ) e Cr(V)d,. Since φ: Γ-+

C[ x - - X C'£ a F lifts to φ: Γ ~^F, and ψoψ = ψΌφ, the cycle ψ'o^(6)

is in the class 2(α) by (1.5). Since (FJ r is connected for ί = 1, - ,^,

there are points ŝ 0) = cέ(0), , c^z^) = s^ on ( F ^ such that ct(n) and

c^λi + 1) are on the same irreducible component of (ί\) r for n = 0, ,

:<° °>(r)

XT^Λ Λ Fr (£ = 2)

For OΊ, >,jt) (0 < jι < nz), let x i l 5...J c = z((c1(j1)9 -,ce(je))). In virtue of

(3.8, 2)), we have

^ ^ ^ V f — i V σ ' r p F£ΓHP(V}

On the other hand, xniσ{i),...,neσw) i s ^ n e class of ψ o sσ(r) for any σ e 2 [ 1 'η

by (1.5). Summing (5.5.4) over 0 < jt < nt (ί = 1, , ̂ ), we see that the

rational equivalence class of Σ σ ( —l) | σ |ψ ° sσ(r) is in F£CHP(V), i.e.,

Σ ϊ o s σ ( r ) ^ Σ | o s t ) , q.e.d.
|ff|=0 W \σ\=l

COROLLARY (5.5.5). // κ\ T-^CHP(V) is regular, then for any £>0,

fc~1(FeCHp(V)) is a countable union of closed subsets of T.

The proof is similar to that of (2.7).

From now on, we suppose that k is uncountable.

THEOREM (5.6). Let V be a smooth projectίve variety, T a smooth quasi-

projectίve variety, f and g\ T-+Cr(V)d morphίsms such that for teT,

f(i) /->^ g(t). Then there exist a smooth quasi-projecίive variety S, families ΓJS

of curves (resp. jacobίan varieties) over S (each fibre is a smooth protective

curve (resp. jacobίan variety)), sections s[0), s^: S-> Γt (1 < i < ί) of ΓJS,

a dominant morphism e: S -> T, and a rational map
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H: A x x Γ, > Cr(V)d, x CχV)d,,
s s

(d\ d" > 0) such that

(5.6.1) H is defined on sσ(S) c Λ X X Γ,,
s s

foe-\- Σ Wi°Hosσ~\- Σ W2°Hosσ

(5.6.2) M Ξ 0 M Ξ 1

M = l \σ\=0

w h e r e s σ = sίσ0)) X X s i σ ( / ) ) : S - ^ Γ,X - - X Γ£ f o r σ e 2 C M ] .

Consider Λ = (/, g): T -> CχV)d X Cr(V)d. The hypothesis implies

Imh d E^(V)d. Since Im h is constructive and T is irreducible, there

exists an irreducible open dense subset TQ oΐlmh. Since E%(y)d

Q'μu%">μ"d'>d")

are constructive in CXV)d X CXV)d and since k is uncountable, by virtue of

(5.5.1), there exist Q, μί9 - ,μs, d\ and d" such that To Π JSff(y)^^»-'^'d#'d#/>

contains a non-void open subset in To. Employing the above notations,

consider

W X T > W

pr7
pr

T—>Cr(V)dχCr(V)d,

where W is that in (5.3) for Q, μu , ̂ , dr, d7/. Then prr is a dominant

morphism; picking up some irreducible component Sr/ of the fibre product

dominating T and replacing *S/ by some open subscheme of S'cά, we may

suppose that in the diagram

S—>W x T—>WaCr{V)dχW;—> W—>&>

(5.6.3) e \

r • cχv)d x cχv)d,

S is smooth and e: S -> T is dominant. By the base change S —• £f, we

have families of curves (resp. jacobians) Γt = (^i)s. Then the theorem

follows from (5.4) and the commutativity of the diagram (5.6.3).

THEOREM (5.7). Let /c: T"-* CHV{V) be a regular map, where T is a

smooth quasίprojectίve variety. If κ(T) c F'CHP(V), then, for 0 < tf < β,

we have

κ*(Hr+i''r(V)) - 0 ,

where r + p = dim V.
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By the construction of Λ;#, it is sufficient to show that if /, g: T -+
Cr(V)d satisfy the hypothesis of (5.6), then f*ω = g*ω for ω e Hr+έ'>r(V).
By virtue of (5.6), there exist a smooth quasi-projective variety S, a
dominant morphism e: S -» T, families ΓJS of jacobians, their sections
s[j): S -> Γt (1 < ί < l\ j = 0, 1) and a rational map H: Γ1X"-χΓi -•

Cr(V)d, X Cr(V)d,, satisfying the conditions (5.6.1) and (5.6.2). Note that
e*: H°(T, Ωe') -> H%S, Ωe') is injective since e is dominant; it therefore
suffices to verify (foefω = feoe/α). The theorem will result from the next
two lemmas, taking account of the property (2.4.3).

LEMMA (5.7.1). Suppose S and T be smooth quasί-projectίυe varieties
and ω e Hr+r'r(V). If φ: T~> Cr(V)d is a rational map, there exists an
element η e He'%T) such that, for any morphism f:S-+T with f(S) C domφ
{hence φ o f is defined and a morphism), we have

(φoffω = f*η.

Let TQ = dom φ and i: To -> T be the inclusion, φ0: To-^ Cr(V)d a repre-
sentative of φ, X the cycle on Γ x V corresponding to φ and Xo the cycle
on To X V corresponding to φ0. Then (i X idF)*X is defined and equal to
Xo. We set η = X(ω). Then, as shown in the proof of (2.4.2), we have
i*η = X0(ω). The morphism / as above is factorized as f:S^T0^> T.
Then by definition, φof= φ0of0y hence we have (φoffω = (φ0ofoyω = f*(φQ*ω)

) = /,*(»*(,)) = f*η.

LEMMA (5.7.2). Let S be a smooth quasi-projective variety, ΓJS families
of jacobίan varieties (1 < i < ί), and sψ\ S -> Γt their sections (1 < ί < ί\
j = 0, 1). For any η e H^\Γ1 X X Γ£), if &' < £, we have

s s

Σ(-l) I σ Isσ*(^)-0 in W'XS).

Since we are dealing with a finite number of varieties and morphisms,
and since £P''°(?) commutes with the extension of the ground fields, we
may assume k = C. Let Sh, Γ\, etc. denote the complex analytic manifolds
associated to S, Γί9 etc. Since the diagram

/F'°(Λ x . . . x Γe) = H\Γ, X X Γi9 Ωη • H\Γϊ x . x Γf, Ωe')
s s s s

He'>\S) = H\S, Ωe') > H\S\
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is commutative, where (sσ)h = (sh)σ = (sίσ(1)ψ X X (s^ψ and the hori-

zontal maps are obvious ones, and since they are injective, it suffices

to prove the lemma for the complex analytic version; we therefore omit

the superscript h. The problem being local on S, we may suppose S an

open ball in Cm, m = dim S. Since ΓJS are families of jacobian varieties,

S X Cnί are the universal coverings of Γu where ni — dim Γi — m. We

get S-morphisms S X Cni -> Γt and

p: S X Cni X X Cn< = (S X Cni) X x ( S χ Cn<) > Γ , χ χ Λ .

Let s^}: S > S X Cnί be liftings of s^: S-+Γi9 and

s* = sίσ(1)) X X slσW) .

We have (s5)*^ = (sff)* op*^, Let z\, •• ,z7lί be a coordinate system for

C"% and x\ , xm for S c Cm. We set

dx1 = dxiχ Λ Λ dx^ ,

rf^rf* = dzjl Λ Λ rf^jυ

for J = {&Ί < < ίJ and c/̂  = {jλ < < jv}. Then p*^ is of the form

P*V = Σ fi,jlt-,j,dxz A dz^ A Λ d<<

where the summation is over (I, Jί9 , c7̂ ) such that ί c ( l , • " , τ n } , d r

i c

{1, , n<} with IJΓ| + I J,\ + + I Jt\ = ^, and where Λ,^...,^ e Γ(S X CW l X

• X Cnt, Θ). For s e S fixed, since (ΓjX x Γ,) s is compact, Λ , ^ , . . , ^ , ?)

are constants. So we may regard fIiJu...,Je e Γ(S, &). Denoting

s[J): S > S X Cnι > Cnι,

and

we have

(§-)* op*^ = Σ fj^.^dx1 A CXσ, J,) Λ Λ C,(σ, J,).

Hence,

Σ (-l)M(s')*9 = Σfi^ Jidx1 Λ [Σ (-l)'"Ci(σ, ί ) Λ - Λ CX̂ , e/,)] ,
a a

where by the first 2 on the right side, we understand the summation over

(/, c/j, , c/J as above. For a fixed (/, Ju , JJ, since \Jλ\ + + \Je\
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= £r — \I\ < £, there is a number i such that Jt = φ. Then the expression

in the bracket is equal to zero because

= o ,

where ? means the absence of ?. The lemma is thus proven.

Remark (5.8). We have proven the ^-cubic equivalence versions of

[9], Therems 1, 2 and 4. The results in [9, 10] deduced formally from them

are, of course, valid in the ^-cubic equivalence case. Here, we shall

indicate two of such results (without proofs).

For any effective 0-cycle X on V of degree d let

Vx = {x e V; (x) + Y ^ X for some Ye S ^ 1 V}.

Then Vx is a countable union of closed subsets of V. By dim Vx, we

understand the maximum of the dimensions of "irreducible components"

of Vx and let codim Vx - dim V - dim Vx. Then the set {Xe SdV; codim

Vx < a} is a countable union of closed subsets of SdV for any integer α,

so that there is a countable intersection t/ of open subsets in SdV that

the maximum δd of codim Vx for Xe S^F is attained on U. Then <5d <

δd + 1 and we set

d£(V) = lim <5d = δd for d > 0 .

Then 0 < d£(V) < dim V and d£(V) Φ 1. Clearly, dQ(V) = 0. By (3.4,3)),

= 0 if V is a product of curves.

COROLLARY (5.8.1). If H°(V, Ωq) φ 0, q> 2, and £ > q, then dέ(V) > q

(cf. [10], Theorem 3).

A canonical morphism V-> Alb V induces the natural map FιCH0{V)

Alb V, hence grιCH,{V) -> Alb V.

COROLLARY (5.8.2). If dλ(V) = 0, then ^r !(V)-> Alb V is an isomor-

phism of groups (cf. [10], Theorem 4), and vice versa.

One can ask whether dβ(V) < £ or not for each £. If this is true

for £ = 1, grιCHQ(V) is always isomorphic to Alb V. For an abelian variety



HODGE COHOMOLOGY 37

V, dλ(V) - 0 and gr'CH^V) ~ Alb V (cf. [12]).

(5.9) To state the next theorem, we shall define *Hpq(V).

Let 2ίp(V) be the k-vector subspace of HPP(V) generated by the fun-

damental classes of algebraic cycles on V of codimension p. SΪ*(V) =

©pSί^V) is a subring of H**(V) and stable by pull-backs or direct

images. For a positive integer £, let (HOiί(V))'e denote the image of

H01(V) (x) .. <g> H°\V) > H

induced by the multiplication of H**(V).

DEFINITION (5.9.1). Let 0 <p < q be integers. *Hp>q(V) is by defini-

tion the k-vector subspace of Hp'q(V) generated by the elements of the

form u(x\ where u e%p+άimT (T X V), x e (H°>χT)y«-p) and T is a smooth

projective variety. Similarly, bHPίQ(V) is the ^-vector subspace generated

by u(x), where u e 2I p + d i m Γ ( Γ x V) and xeHOq~p(T).

Clearly, *Hp>q(V) c Ή*>*(V) and *ί ί '^(y) = 6 H ^ ' ( y ) = 8P(V).

LEMMA (5.10). 1) .For cmy morphism f: U-> V, f*(*Hp>q(V)) c *Hp>q(U).

2) For α îy morphism f: U-+V, fJ*H™(JJ)) a*H*-d *-*(V), where

d = dim C7 — dim V.

3) 1/ x e mpq{U) and y e *Hp'*q'(V)9 then x X y e *Hp+p'*q+q'(U X V).

Γ/ιβ similar properties hold for bHp'q(V).

1) Indeed, for u e Sl*(T X V), 3/ e (H^(T))'{q-p\ we have

ΛWy)) = ((id, x /)*(^))(y).

2) For z/e2ί*(Γχ C7), x e (H°^(T))^q-p\ we have

/,(^(x)) = ((id, x /)*(*))(*).

3) ff κeSί*(Γχ f7), ue2ί*(Sχ V), xe(H°^(T)y(q-p) and

then w(x) X v(y) = (u X ι;)(x xy), l ί X i e St*(ΓX S X [7 X V) and

XX y e (H01(T x S))-(q + qf-p-p/).

COROLLARY (5.10.4). *H**(V) = ©0<P<Q Ήpq(V) is a subring of ί P * ( V),

and similarly for δίί**(Vr).

(5.11) We have clearly inclusions %*(V) c *H**(V) c Ή**(V) C
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H**(V). We shall show that in the definition of *Hp>q(V), we may restrict

T to varieties of the form

T = C,X - -X Cg_p , C{: curves,

or to abelian varieties. Suppose, in fact, given subspaces Hpq(V) for all

p <q, with the properties 1), 2), and 3) above and assume that HPP(V)

ZD 2P(V) and H0'\V) = H01(V) for all V and p. Then we have Hpq(V)

ID *Hpq(V) for all p < q by the properties 1), 2), and 3). Denote the k-

vector subspace of HPQ(V) which, in the definition of *Hpq(V), is obtained

by restricting T to abelian varieties (resp. products of curves as above)

by Hp>q{V). Since Hp>q(V) has the properties 1), 2) and 3) above, and

HP^P(V) = ΪP(V), we have only to check Hoί(V) = HQΛ(V). In the case

of Tbeing abelian varieties, if i: V-> Alb V = A is a canonical morphism,

we have i*: H°\A) - H°^(V); but since A is an abelian varieties, Hoί(A)

= H0>1(A), so that H°\V) = i*H°>l(A) = ί*H01(A) c H* \V) c Ho>1(V). In

the case of T being products of curves, it therefore suffices to show that

HOfl(V) = HOtl(V) for an arbitrary abelian variety V. We can find a

jacobian variety J" and a homomorphism h: V-* J with finite kernel.

Then since h*HOil(J) = i/0)1(V), we are reduced to the case where V is

the jacobian variety of a curve C of genus g. We have a natural ge-

nerically finite morphism /: Cg —> V. By projection formula,

(deg /) id: H01(V) -^-> W\Cg) - ^ > Hΰl(V),

hence /* is surjective. So if H°\Cg) - W\Cg), we are done. The map

K: H°>\C)®g >H°\Cg)

defined by

K(xu - , xg) - Σ Vγΐχi
ί = l

is an isomorphism, where piv Cg —> C is the i-th projection. Since

H01(C) = H0Λ(C), H01(Cg) 3 ^ X C O 3 Im (K: H°^(C)®g -• H^\Cg)) =^lmK

= i/0>1(C^). By a similar method, we can show that, in the definition of
δίίp'<?(VΓ), we can restrict ϊ 7 to varieties of dimension q — p.

COROLLARY (5.11.1). For any V and p, *Hp-hp(V) = ^ - ^ ( V ) c

It is well-known that this subspace is equal to the tangent space of

the algebraic part of the p-th intermediate jacobian of V if k = C.
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PROPOSITION (5,12). dim *H°>q(V) is a birational invariant of V for

each q.

If V —> V is the blowing-up of V with a non-singular center W, then

y*. *H°'q(V) ->*H0'q(V) is an isomorphism. In fact we have an isomor-

phism

0<£<r

where r is the codimension of W in V, and this isomorpihsm and its in-

verse are composed of pull-backs, direct images and multiplications by

fundamental classes of algebraic cycles. Hence the isomorphism remains

valid when we replace H by *H. Since mQ-^-\W) = 0 for i > 0, /*: *£Γ0 9( V)

~ *H°'q(V). Now if V and V are birationally equivalent, we have a

diagram

v < v > > v > v — v
v ^ v s -r T v i r v 0 — v ,

where Vi + 1 is a blowing up of Vt with non-singular center, and Vs —• Vr is a

birational morphism. We have dim *JBro'«(y/) < dim *H°>q(Vs) = dim *H°^(V).

Switching the roles of V and V\ we get the reversed inequality, hence

Remark (5.13). It is well-known that dimδi/0'9(V) - dimlϊo '9(V) is a

birational invariant of V. We may ask whether H°>q(V) = *HOq(V) for

any V and p, which is equivalent to

Ήp*q(V) = *flΓ2l'?(Vr)

for any V and p < q.

THEOREM (5.14). // *Hp-<>p(V) φ 0, then we have gr£CHp(V) (x) Q Φ 0.

By hypothesis, we can find I curves C1? >.-9Ci9ue 8P+ /(d X X ^ x F )

and x e (fP Xd X X C,))^ - ^ ^ ( C , X . X C£) such that u(x) Φ 0. We

may further assume that u is the fundamental class of a cycle U on

C2 X X Cί X V. By abuse of notation, we shall denote the rational

equivalence class of a cycle by the same symbol as the cycle itself. Fix

points at of Ct (1 < i < £), and consider the regular maps

ιί\ Cx X X C, • CfloCCj X X Q

defined by

Λ XX!, , x,) = ((x1) - (a,)) X X ((*<) - (α,)).
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and

K: CX X X Ct - ^ CHIC, x . . . x C,) —

Im K' C F'CHoiC, X X Q implies Im K C F'CH»{V). On the other hand,
by (2.6.3), we have ^ = Λ; / #O^(?), where

> H^iC, x X Ct)

ΐ>ut *w(?) is the transpose of

κ(?): ί P ' ί d X X Q • ί P "

hence we see ιu(Ί) Φ 0. If we write K' (xly , x£) = (xθ X X (^) + i?,

then JR is a sum of elements of the form ± (y^ X X (^), where at least

one of yi's is at and the rests are x/s. In other words,

K' = ^o + Σ κj>

where

Λ:0: d x x Q > CHIC, x . x Q

is the regular map

KoOi, , x*) = ( î) x x fe)

and Λ J are regular maps such that

^ : d X X Ct ~^-> T5 - ^ > Cfli(d X . . . X Q

with fCj regular, a morphism fj9 and dim Γj < i. For 5 6 ϊlί\Cι X C€),

we have ΛΓ/#>7 = κ\η + Σ Λ5^ B u t ^ = 37, and κ]η = 0, because

Λ4:^^(c,x . x g Λ H' TOi//^(c,χ. . χ g

and dim Ts < ί\ thus Λ:/# = id on W\CX X X Q so that A:# = ιu{Ί) Φ 0

on Hr+e>r(V). For each integer n > 0, (nιc)*(Hr+i>r(V)) Φ 0, which implies

Im (ntc) <£ Fe+1CHp(V) in virtue of (5.7). Since

{ c e ^ x X C4; nκ(c) e F

is a countable union of closed subsets of CΊ X X Ce distinct from

CΊ X X C£ for each n by (5.5.5),

U {c e d X X C,; ιwc(c) e F^+ 1Ciί^F)} ^ Q X X Ct.
n

K c e Cj X X C| does not belong to the first member, then for any
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n > 0, wc(c) g F'+ 1CiJ p(y), i.e., κ(c) e FeCHp(V) gives a non-torsion element

of gr*CHp(V), hence greCHp(V) ® Q Φ 0.

Remark (5.15). From *Hp-e'p(V) φ 0, we deduce only

EXAMPLE (5.16). If V is an abelian variety, we have H°tP(V) =

Λp iP'XV), hence *flr°'ϊ(Vr) =£ 0 for 0 < q < dim V, which in turn implies

*H™(V) Φθ for all 0 < p < q < dim V,

by the Hard Lefschetz Theorem. Hence we find greCHp(V) <g) Q Φ 0 if

0 < •# < P < dim V. If VF is the associated Kummer variety, we have

*Hp>*(W) Φ 0 for p + q = 0 (2), so that gr'CH^W) ® Q φ 0 if ^ is even

and 0 < ^ < q < dim W. Notice that Ήpq(W) = 0 for p + g = 0 (2); it

would be interesting to know if greCHp(W) = 0 for odd ί.
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