H. Morikawa

Nagoya Math. J.
Vol. 90 (1983), 57-62

## ON A CERTAIN HOMOLOGY OF FINITE PROJECTIVE SPACES

HISASI MORIKAWA

1. We denote by $P^{n}(q)$ the projective space of dimension $n$ over a finite field $G F(q)$ with $q$ elements, and we mean by an $i$-flat a linear subspace of dimension $i$ in $\boldsymbol{P}^{n}(q)$. Denoting

$$
\begin{aligned}
& L_{i}=L_{i}\left(\boldsymbol{P}^{n}(q)\right)=\left\{i \text {-flats in } \boldsymbol{P}^{n}(q)\right\}, \\
& \boldsymbol{Z}_{q+1}=\boldsymbol{Z} /(q+1) Z, \\
& C_{i+1}\left(\boldsymbol{P}^{n}(q), \boldsymbol{Z}_{q+1}\right)=\left\{\sum_{\sigma \in L_{i}} a_{\sigma} \sigma \mid a_{\sigma} \in \boldsymbol{Z}_{q+1}\right\}, \\
& C_{i+1}\left(\boldsymbol{P}^{n}(q), G F(l)\right)=\left\{\sum_{\sigma \in L_{i}} a_{\sigma} \sigma \mid a_{\sigma} \in G F(l)\right\} \\
& C_{0}\left(\boldsymbol{P}^{n}(q), Z_{q+1}\right)=Z_{q+1}, \quad C_{0}\left(\boldsymbol{P}^{n}(q), G F(l)\right)=G F(l) \quad(l \mid q+1),
\end{aligned}
$$

we have chain complexes

$$
C_{n+1}\left(\boldsymbol{P}^{n}(q), \boldsymbol{Z}_{q+1}\right) \xrightarrow{\partial_{n+1}} C_{n}\left(\boldsymbol{P}^{n}(q), Z_{q+1}\right) \xrightarrow{\partial_{n}} \cdots
$$

$$
\begin{equation*}
\xrightarrow{\partial_{2}} C_{1}\left(\boldsymbol{P}^{n}(q), \boldsymbol{Z}_{q+1}\right) \xrightarrow{\partial_{1}} \boldsymbol{Z}_{q+1} \tag{1}
\end{equation*}
$$

$$
=C_{0}\left(\boldsymbol{P}^{n}(q), Z_{q+1}\right) \xrightarrow{\partial_{0}}\{0\}
$$

$$
C_{n+1}\left(\boldsymbol{P}^{n}(q), G F(l)\right) \xrightarrow{\partial_{n+1}} C_{n}\left(\boldsymbol{P}^{n}(q), G F(l)\right) \xrightarrow{\partial_{n}} \cdots
$$

$$
\begin{align*}
& \stackrel{\partial_{2}}{\longrightarrow} C_{0}\left(\boldsymbol{P}^{n}(q), G F(l)\right) \xrightarrow{\partial_{1}} G F(l)  \tag{2}\\
& =C_{0}\left(\boldsymbol{P}^{n}(q), G F(l)\right) \xrightarrow{\partial_{0}}\{0\},
\end{align*}
$$

where the boundary operators $\partial_{i}$ are defined as follows,

$$
\left\{\begin{array}{l}
\partial_{i+1}\left(\sum_{\sigma \in L_{i}} a_{\sigma} \sigma\right)=\sum_{\sigma \in L_{i}} a_{\sigma}\left(\sum_{\substack{\tau \in L_{i-1} \\
\tau \subset \sigma}} \tau\right) \quad(i \geq 1) \\
\partial_{1}\left(\sum_{\sigma \in L_{0}} a_{\sigma} \sigma\right)=\sum_{\sigma \in L_{0}} a_{\sigma} .
\end{array}\right.
$$

In fact $\partial_{i} \circ \partial_{i+1}=0$, because for each pair $\sigma \supset \lambda\left(\sigma \in L_{i}, \lambda \in L_{i-2}\right)$

$$
\left|\left\{\tau \in L_{i-1} \mid \lambda \subset \tau \subset \sigma\right\}\right|=q+1
$$

Received October 9, 1981.
and for each line $\sigma \in L_{1}$

$$
\left|\left\{\tau \in L_{0} \mid \tau \subset \sigma\right\}\right|=q+1
$$

In the present note we shall be concerned with homology groups of the chain complexes (1) and (2):

$$
H_{i}\left(\boldsymbol{P}^{n}(q), Z_{q+1}\right), \quad H_{i}\left(\boldsymbol{P}^{n}(q), G F(l)\right) \quad(l \mid q+1)
$$

which are $P G L_{n+1}(q)$-modules. Frobenius map also acts on these homology groups. Obviously $H_{n+1}\left(\boldsymbol{P}^{n}(q), \quad\right)=H_{0}\left(\boldsymbol{P}^{n}(q), \quad\right)=\{0\}$.
2. Using Gauss-polynomials in $q$

$$
\begin{equation*}
\binom{a}{b}_{q}=\frac{\left(q^{a}-1\right)\left(q^{a-1}-1\right) \cdots\left(q^{a-b+1}-1\right)}{\left(q^{b}-1\right)\left(q^{b-1}-1\right) \cdots(q-1)} \tag{3}
\end{equation*}
$$

we may express briefly

$$
\begin{gather*}
\left|\boldsymbol{P}^{i}(q)\right|=\binom{i+1}{1}_{q}=1+q+\cdots+q^{i}  \tag{4}\\
\left|L_{i}\left(\boldsymbol{P}^{n}(q)\right)\right|=\binom{n+1}{i+1}_{q}=\frac{\left(q^{n+1}-1\right)\left(q^{n}-1\right) \cdots\left(q^{n-i+1}-1\right)}{\left(q^{i+1}-1\right)\left(q^{i}-1\right) \cdots(q-1)} \tag{5}
\end{gather*}
$$

Let us first calculate the 1-homologies:
Proposition 1.
(6) $\quad H_{1}\left(P^{1}(q), Z_{q+1}\right) \cong Z_{q+1}^{q-1}, \quad H_{1}\left(P^{1}(q), G F(l)\right)=G F(l)^{q-1} \quad(l \mid q+1)$,
(7) $\quad H_{1}\left(\boldsymbol{P}^{n}(q), Z_{q+1}\right)=0, \quad H_{1}\left(\boldsymbol{P}^{n}(q), G F(l)\right)=0 \quad(n \geq 2, l \mid q+1)$.

Proof. We denote $\omega_{\infty}=[0,1], \omega_{\alpha}=[1, \alpha](\alpha \in G F(q))$, then $\left\{\omega_{\alpha}-\omega_{\infty} \mid \alpha\right.$ $\in G F(q), \alpha \neq 0\}$ is a free base of $H_{1}\left(P^{1}(q)\right)$, because

$$
\begin{aligned}
& \left(\omega_{0}-\omega_{\infty}\right)+\sum_{\alpha \neq 0}\left(\omega_{\alpha}-\omega_{\infty}\right)-\left(\omega_{\infty}-\omega_{\infty}\right)=\partial_{2} \boldsymbol{P}^{1}(q)-(q+1) \omega_{\infty} \sim 0, \\
& a_{\infty} \omega_{\infty}+a_{0} \omega_{0}+\sum_{\alpha \neq 0} a_{\alpha} \omega_{\alpha} \sim \sum_{\alpha \neq 0}\left(a_{\alpha}-a_{0}\right)\left(\omega_{\alpha}-\omega_{\infty}\right)+\left(a_{\infty}+a_{0}+\sum_{\alpha \neq 0} a_{\alpha}\right) \omega_{\infty} .
\end{aligned}
$$

This proves (6). Assume that $n \geq 2$. It is sufficient to show $\sigma_{\infty} \sim \tau_{\infty}$ $\left(\sigma_{\infty}, \tau_{\infty} \in L_{0}, \sigma_{\infty} \neq \tau_{\infty}\right)$. Let $\lambda, \lambda^{\prime}, \lambda^{\prime \prime}$ be three different lines such that

$$
\lambda \wedge \lambda^{\prime}=\sigma_{\infty}, \quad \lambda^{\prime} \wedge \lambda^{\prime \prime}=\tau_{\infty}, \quad \lambda \wedge \lambda^{\prime \prime}=\sigma_{0}
$$

with a point $\sigma_{0}$. Then there exist a system of points $\sigma_{i}, \tau_{j}, \tau_{i j}(1 \leq i, j$ $\leq q-1)$ such that

$$
\partial_{2} \lambda=\sigma_{\infty}+\sigma_{0}+\sum_{i=1}^{q-1} \sigma_{i}, \quad \partial_{2} \lambda^{\prime}=\tau_{\infty}+\sigma_{0}+\sum_{j=1}^{q-1} \tau_{j}
$$

$$
\partial_{2}\left(\tau_{\infty} \vee \sigma_{i}\right)=\tau_{\infty}+\sigma_{i}+\sum_{j=1}^{q-1} \tau_{i j},{ }^{1)} \quad \partial_{2}\left(\sigma_{\infty} \vee \tau_{j}\right)=\sigma_{\infty}+\tau_{j}+\sum_{i=1}^{q-1} \tau_{i j}
$$

Since $q=-1$ in $Z_{q+1}(G F(l))$, it follows

$$
\begin{aligned}
\sigma_{\infty}-\tau_{\infty} & \sim q \tau_{\infty}-q \sigma_{\infty} \\
& \sim(q-1) \tau_{\infty}+\tau_{\infty}-(q-1) \sigma_{\infty}-\sigma_{\infty} \\
& \sim\left(-\sum_{i=1}^{q-1} \sigma_{i}-\sum_{i, j=1}^{q-1} \tau_{i j}+\tau_{\infty}\right)+\left(\sum_{j=1}^{q-1} \tau_{j}+\sum_{i, j=1}^{q-1} \tau_{i j}-\sigma_{\infty}\right) \\
& \sim\left(-\sigma_{0}-\sum_{i=1}^{q-1} \sigma_{i}-\sigma_{\infty}\right)+\left(\tau_{\infty}+\sigma_{0}+\sum_{j=1}^{q-1} \tau_{j}\right) \sim 0
\end{aligned}
$$

3. For each flat $\sigma$ we denote
(8)

$$
S(\sigma)=\sum_{\substack{\lambda \leq L_{0} \\ \lambda \in \sigma}} \lambda \vee \sigma,^{2)}
$$

Lemma 1.
(9)

$$
\partial_{i+2} S(\sigma)= \begin{cases}(-1)^{i} \sum_{\substack{\tau \in L_{i-1} \\ \tau \in \sigma}} S(\tau) & (\text { odd } n) \\ \sigma+(-1)^{i} \sum_{\substack{\tau \in L_{i-1} \\ \tau \in \sigma}} S(\tau) & (\text { even } n) \\ & \left(\sigma \in L_{i}\left(P^{n}(q)\right)\right.\end{cases}
$$

Proof. Since an $i$-flat in $\lambda \vee \sigma$ is $\sigma$ or $\mu \vee \tau$ with an ( $i-1$ )-flat $\tau$ in $\sigma$ and $\mu \in L_{0}$ satisfying $\mu \vee \sigma=\lambda \vee \sigma$, hence it follows

$$
\begin{aligned}
\partial_{i+2} S(\sigma) & =\left[\binom{n+1}{1}_{q}-\binom{i+1}{1}_{q}\right] \sigma+\left[\binom{i+1}{1}_{q}-\binom{i}{1}_{q}\right]_{\substack{\tau \in \sum_{\begin{subarray}{c}{i-1} }} \neq \sigma \sigma} \\
{i \notin \sigma}\end{subarray}} \lambda \vee \tau \\
& =\left(q^{i+1}+\cdots+q^{n}\right) \sigma+q^{i} \sum_{\substack{\tau \in \sigma \\
\tau \leq \sigma}} \lambda \wedge \tau .
\end{aligned}
$$

On the other hand

$$
\lambda \vee \tau=\sigma \quad\left(\lambda \in L_{0}, \tau \in L_{i-1} ; \lambda \not \subset \tau ; \lambda, \tau \subset \sigma\right),
$$

hence we have

$$
\begin{aligned}
\sum_{\substack{\tau \in \sigma \\
\lambda \nsubseteq \sigma}} \lambda \vee \tau & =\sum_{\tau \in \sigma} \sum_{\tau \in \tau} \lambda \vee \tau-\sum_{\substack{\lambda \tau \tau \sigma \sigma \\
\lambda \subset \tau}} \lambda \vee \tau \\
& =\sum_{\tau \in \sigma} S(\tau)-\left[\binom{i+1}{1}_{q}-\binom{i}{1}_{q}\right]\binom{i+1}{1}_{q} \sigma \\
& =\sum_{\tau \in \sigma} S(\tau)-q^{i}\left(1+q+\cdots+q^{i}\right) \sigma .
\end{aligned}
$$

1) $\tau_{\infty} \vee \sigma_{i}$ means the join of $\tau_{\infty}$ and $\sigma_{i}$.
2) $\lambda \vee \sigma$ means the join of $\lambda$ and $\sigma$.

From $q^{2}=1$ in $Z_{q+1}(G F(l))$, we have

$$
\begin{aligned}
\partial_{i+2} S(\sigma) & =\left(1+q+\cdots+q^{n}\right) \sigma+q^{i} \sum_{\tau \tau \sigma} S(\tau) \\
& = \begin{cases}(-1)^{i} \sum_{\substack{\tau \in \sigma \\
\tau \in L_{i-1}}} S(\tau) & (\text { odd } n), \\
\sigma+(-1)^{i} \sum_{\substack{\tau \in \sigma \\
\tau \in L_{i-1}}} S(\tau) & (\text { even } n) .\end{cases}
\end{aligned}
$$

Theorem 1.

$$
\begin{equation*}
H_{i+1}\left(P^{2 n}(q), Z_{q+1}\right)=0, \quad H_{i+1}\left(P^{2 n}(q), G F(l)\right)=0 \quad(l \mid q+1) . \tag{10}
\end{equation*}
$$

Proof. By virtue of (7), from the assumption

$$
\partial_{i+1}\left(\sum_{\sigma \in L_{i}} a_{\sigma} \sigma\right)=\sum_{\tau}\left(\sum_{\sigma \supset \tau} a_{\sigma}\right) \tau=0
$$

it follows

$$
\partial_{i+2}\left(\sum_{\sigma} a_{\sigma} S(\sigma)\right)=\sum_{\sigma} a_{\sigma} \sigma+\sum_{\tau \in \mathcal{L}_{i-1}^{*}}\left(\sum_{\sigma \supset \tau} a_{\sigma}\right) S(\tau)=\sum_{\sigma} a_{\sigma} \sigma .
$$

When $i=0$, we have already proved in Proposition 1.
Proposition 2. The Euler-characteristic is given by

$$
\begin{aligned}
& \sum_{i=0}^{n+1}(-1)^{i} \operatorname{dim} H_{i}\left(P^{n}(q), G F(l)\right)=\sum_{i=0}^{n+1}(-1)^{i}\binom{n+1}{i}_{q} \\
&=\left\{\begin{array}{cc}
(-1)^{(n+1) / 2} \prod_{i=1}^{(n+1) / 2}\left(q^{2 i-1}-1\right) & (\text { odd } n) \\
0 & (\text { even } n)
\end{array} \quad(l \mid q+1) .\right.
\end{aligned}
$$

Proof. From the relations

$$
\begin{aligned}
\operatorname{dim} C_{n+1}\left(\boldsymbol{P}^{n}(q)\right) & =1=\operatorname{dim} \operatorname{Im} \partial_{n+1}, \\
\operatorname{dim} C_{i+1}\left(\boldsymbol{P}^{n}(q)\right) & =\operatorname{dim} \operatorname{Im} \partial_{i+1}+\operatorname{dim} \operatorname{Ker} \partial_{i+1} \\
& =\operatorname{dim} \operatorname{Im} \partial_{i+1}+\operatorname{dim} \operatorname{Im} \partial_{i+2}+\operatorname{dim} H_{i+1}\left(\boldsymbol{P}^{n}(q)\right), \\
\operatorname{dim} C_{1}\left(\boldsymbol{P}^{n}(q)\right) & =1+\operatorname{Ker} \partial_{1}=1+\operatorname{Im} \partial_{2}+\operatorname{dim} H_{1}\left(\boldsymbol{P}^{n}(q)\right), \\
\operatorname{dim} C_{0}\left(\boldsymbol{P}^{n}(q)\right) & =1
\end{aligned}
$$

it follows

$$
\begin{aligned}
\sum_{i=0}^{n+1}(-1)^{i} \operatorname{dim} H_{i}\left(\boldsymbol{P}^{n}(q), G F(l)\right) & =\sum_{i=0}^{n+1}(-1)^{i} \operatorname{dim} C_{i}\left(\boldsymbol{P}^{n}(q)\right)+1 \\
& =\sum_{i=0}^{n+1}(-1)^{i}\binom{n+1}{i}_{q} .
\end{aligned}
$$

From the relations

$$
\binom{n}{l}_{q}=\binom{n}{n-l}_{q}, \quad\binom{n}{l}_{q}=\binom{n-1}{l}_{q}+\left(q^{n-l}-1\right)\binom{n-1}{l-1}_{q},
$$

we have

$$
\sum(-1)^{t}\binom{2 m+1}{l}_{q}=0
$$

and

$$
\begin{aligned}
\sum(-1)^{l}\binom{2 m}{l}_{q}= & \sum(-1)^{l}\binom{2 m-1}{l}_{q}+\sum(-1)^{l}\left(q^{2 m-l}-1\right)\binom{2 m-1}{l-1}_{q} \\
& +\sum(-1)^{l}\binom{2 m-1}{l-1}_{q} \\
= & -\sum(-1)^{l-1} \frac{\left(q^{2 m-1}-1\right) \cdots\left(q^{2 m-l}-1\right)}{\left(q^{l-1}-1\right) \cdots(q-1)} \\
= & -\left(q^{2 m}-1\right) \sum(-1)^{l}\binom{2(m-1)}{l}_{q}=(-1)^{m} \prod_{i=1}^{m}\left(q^{2 i}-1\right)
\end{aligned}
$$

4. Using a system of homogeneous coordinates, we define the dual flat $\hat{\sigma} \in L_{n-i+1}$ of a flat $\sigma \in L_{i}$ as follows

$$
\hat{\sigma}=\left\{\left[\hat{\alpha}_{0}, \cdots, \hat{\alpha}_{n}\right] \mid \sum_{i=0}^{n} \hat{\alpha}_{i} \beta_{i}=0\left(\left[\beta_{0}, \cdots, \beta_{n}\right] \in \sigma\right)\right\} \quad(2 \leq i \leq n+1)
$$

and

$$
\widehat{\boldsymbol{P}^{n}(q)}=1,
$$

and we have the dual pairings;

$$
\begin{aligned}
& C_{i+1}\left(\boldsymbol{P}^{n}(q), Z_{q+1}\right) \times C_{n-i+2}\left(\boldsymbol{P}^{n}(q), Z_{q+1}\right) \longrightarrow Z_{q+1}, \\
& C_{i+1}\left(\boldsymbol{P}^{n}(q), G F(l)\right) \times C_{n-i+2}\left(\boldsymbol{P}^{n}(q), G F(l)\right) \longrightarrow G F(l),
\end{aligned}
$$

defined by

$$
\left\{\begin{array}{l}
\langle\sigma, \hat{\tau}\rangle=\left\{\begin{array}{ll}
1 & (\sigma=\tau) \\
0 & (\sigma \neq \tau)
\end{array} \quad\left(\sigma \in L_{i}, i \leq n-1\right)\right.  \tag{12}\\
\left\langle 1, P^{n}(q)\right\rangle=1
\end{array}\right.
$$

Lemma 2.

$$
\begin{align*}
& \left\langle\partial_{1}(\sigma), P^{n}(q)\right\rangle=\left\langle\sigma, \partial_{n} P^{n}(q)\right\rangle=1 \quad\left(\sigma \in L_{0}\left(P^{n}(q)\right),\right.  \tag{13}\\
& \left\langle\partial_{i+1} \sigma, \hat{\tau}=\left\langle\sigma, \partial_{n-i+1} \hat{\tau}\right\rangle \quad\left(1 \leq i \leq n, \sigma \in L_{i}, \hat{\tau} \in L_{n-i}\right) .\right. \tag{14}
\end{align*}
$$

Proof. The first equation (11) is a direct consequence of the definition $\langle$,$\rangle . Since two conditions \sigma \supset \lambda$ and $\hat{\sigma} \subset \hat{\lambda}$ are equivalent, it follows

$$
\begin{aligned}
& \left\langle\partial_{i+1} \sigma, \hat{\tau}\right\rangle=\sum_{\tau \in \sum_{i-1}}\langle\lambda, \hat{\tau}\rangle=\left\{\begin{array}{ll}
1 & (\tau \subset \sigma) \\
0 & (\tau \not \subset \sigma)
\end{array},\right. \\
& \left\langle\sigma, \partial_{n-i+1} \hat{\tau}\right\rangle=\sum_{\hat{c} \in \sum_{\hat{L}}^{L_{n}-n} \hat{\imath} \in \hat{\imath}-1}\langle\sigma, \hat{\lambda}\rangle=\sum_{\substack{\lambda \in L_{i} \\
\lambda \supset \tau}}\langle\sigma, \hat{\lambda}\rangle=\left\{\begin{array}{ll}
1 & (\tau \subset \sigma) \\
0 & (\tau \not \subset \sigma)
\end{array} .\right.
\end{aligned}
$$

Proposition 3.

$$
\begin{align*}
& H_{i+1}\left(\boldsymbol{P}^{n}(q), Z_{q+1}\right) \simeq H_{n-i}\left(\boldsymbol{P}^{n}(q), Z_{q+1}\right)  \tag{15}\\
& H_{i+1}\left(\boldsymbol{P}^{n}(q), G F(l)\right) \simeq H_{n-i}\left(\boldsymbol{P}^{n}(q), G F(l)\right) \quad(l \mid q+1) \tag{16}
\end{align*}
$$

Proof. By virtue of Lemma 2 we have

$$
\begin{aligned}
& \operatorname{Ker} \partial_{i+1}=\left(\operatorname{Im} \partial_{n-i+1}\right)^{\perp} \\
& \operatorname{Im} \partial_{i+2}=\left(\operatorname{Ker} \partial_{n-i}\right)^{\perp} \\
& \operatorname{Ker} \partial_{1}=\left(\operatorname{Im} \partial_{n+1}\right)^{\perp},
\end{aligned}
$$

where ( $)^{\perp}$ means the orthogonal submodule with respect to the pairing. Proposition 3 is a direct consequence of the duality for modules with a pairing.

Proposition 4.

$$
\begin{equation*}
\operatorname{dim} H_{2}\left(\boldsymbol{P}^{3}(q), G F(l)\right)=1-q-q^{3}+q^{4} \quad(l \mid q+1) \tag{17}
\end{equation*}
$$

Proof. By virtue of Proposition 1, 2, 3 it follows

$$
\operatorname{dim} H_{2}\left(P^{3}(q), G F(l)\right)=\binom{4}{2}_{q}-2\binom{4}{1}_{q}+2=1-q-q^{3}+q^{4}
$$

Examples.
$\operatorname{dim} H_{2}\left(P^{3}(2), G F(3)\right)=7$,
$\operatorname{dim} H_{2}\left(P^{3}(3), G F(2)\right)=52$,
$\operatorname{dim} H_{2}\left(P^{3}(4), G F(5)\right)=189$,
$\operatorname{dim} H_{2}\left(P^{3}(5), G F(2)\right)=\operatorname{dim} H_{2}\left(P^{3}(5), G F(3)\right)=496$.

## References

[1] N. L. Biggs, Finite groups of automorphisms, London Math. Soc. Lecture Note, Ser. 6 (1971).
[2] N. L. Biggs and A. T. White, Permutation groups and combinatorial structures, London Math. Soc. Lecture Note, Ser. 33 (1979).

